
Study of Novice Programmers using Eclipse and Gild

Peter C. Rigby
CHISEL Group

Dept. of Computer Science
University of Victoria

pcr@uvic.ca

Suzanne Thompson
CHISEL Group

Dept. of Computer Science
University of Victoria

zazam@uvic.ca

ABSTRACT
In this paper we discuss a pilot user study that compares the use
of two integrated development environments (IDEs), Eclipse and
Gild, by novice programmers. Gild is a perspective for Eclipse
that is intended to be more suitable for first-year students who are
learning how to program in Java. This study focuses on qualitative
and quantitative measures; the quantitative measures include: effi-
ciency, effectiveness, satisfaction and understanding. Two statisti-
cally significant results are obtained from the satisfaction measure,
in particular: the frustration level and the overall level of satisfac-
tion. The mean differences for the remaining measures indicate that
Gild was more suitable for novices than Eclipse. Qualitative analy-
sis yields suggestions for improvement for both interfaces and also
identifies areas of success.

Keywords
Novice, Integrated Development Environment, user study

1. INTRODUCTION
The Gild (Groupware-enabled Integrated Learning and Devel-

opment) environment, a perspective of the Eclipse IDE, was cre-
ated to be a more appropriate development environment for novice
users [4]. Gild consists of a teaching perspective and a student
perspective. The teaching perspective allows instructors to create
course units that can be easily imported by students. This perspec-
tive also provides basic assignment grading support. For students,
the Gild environment reduces and simplifies the menu and tool-
bar contents, debugger, code editor, task/todo list, and the import
and export process; Gild also provides an integrated Web browser,
enforces clear steps for the save/build/run process, and allows stu-
dents to run fragments of their code without a main class through
JPages. Additional novice-friendly error descriptions are offered
for common compilation errors.

Since Gild’s deployment in January 2003, it has been used in
Canada (University of Victoria), in the USA (Berkeley, Virginia
Tech and the University of Washington), in Germany (Eberhard
Karls Universiẗat Tübingen), and possibly other institutions that
have not contacted us. At the University of Victoria it has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eclipse Technology Exchange’05, San Diego, California USA
Copyright 2005 ACM ...$5.00.

successfully used in first-year introductory programming courses.
Feedback from students has been elicited in the form of question-
naires, interviews, and an ethnographic study; however, a quantita-
tive comparison between Gild and Eclipse had yet to be completed.
If it can be empirically shown that Gild is indeed more useful for
novice programmers, this would give weight to the claims made on
its behalf and potentially lead to greater acceptance. We have con-
ducted an initial experiment that compares Gild and Eclipse from
a novice programmer’s perspective based on efficiency, effective-
ness, satisfaction, and understanding.

2. HYPOTHESIS
It is hypothesized that Gild will be more efficient, effective, and

satisfactory when compared to Eclipse by novice programmers. It
is also expected that Gild will lead to a better understanding of the
programming environment.

3. SUBJECTS
A total of six subjects voluntarily participated in this study. Sub-

jects were all students enrolled in CSC 110, an introductory Java
programming course, at the University of Victoria. Students were
recruited from CSC 110 because they had a basic understanding of
Java, but few had any experience with advanced IDEs. Students
used TextPad for their coursework, which provides basic editing
functionality. All six subjects were enrolled in their first semester
of their first year at the University of Victoria, and all had just re-
cently graduated from high school. Each subject was taking CSC
110 because it was required by their programs; four subjects were
computer science students, while two were physics students. The
subjects all had at least two months of Java programming experi-
ence and were beginning to explore IDEs.

4. DESIGN
For this experiment a repeated measures design was used, that

is, subjects used both Eclipse and Gild, cancelling individual skill
differences. With a small sample size this design provides more
statistical power than an independent samples design; in an inde-
pendent samples design differences in individual skill would have
a greater impact on the results. Subjects were equally and randomly
assigned Eclipse or Gild as their initial IDE.

Separate installations of Gild and Eclipse were placed on the
same computer. This was done because the Gild plug-in alters the
Eclipse environment (e.g., new buttons on the task bar.) Camtasia
(with audio recording) was used to record the user study session.
There were only the two principal researchers in the room with the
subject during the user study.

Subjects were asked to complete several tasks from a modified

105

eclipse’05, October 16-17, 2005, San Diego, CA
Copyright 2005 IBM 1-59593-342-5/05/0010…$5.00

assignment that they had completed at the beginning of the current
semester. It was hoped that basing the code on a class assignment
would reduce the learning time of the code itself, thus lessening the
impact of individual code understanding abilities; this focused the
experiment on the IDE. There were three tasks in a set to solve for
each IDE: a compilation problem, a logical problem, and an extra
coding assignment. The tasks were always presented in the same
order: set one tasks first, set two tasks second. Although the sets
of tasks were different from each other, they had the same level of
difficulty.

5. PROCEDURE
Subjects were asked to set aside 90 minutes for this user study.

To begin, a background (entry) questionnaire was asked by one of
the researchers. The subject was shown a simple program previ-
ously created, and was walked though the steps that needed to be
completed for the code to run. After this, the subject was shown
how to use the debugger. None of the subjects had any previous ex-
perience with debuggers. The subject was shown how to set break-
points, what the different debugger views were, and how to step
through the code. The subject was shown how to run the program
again. This was necessary since in Eclipse the subject needed to
know that the run configuration did not have to be created again;
rather, the run button could be used. Users were not shown how
to create new files, the problem view, or told anything about how
Eclipse and Gild informed users of errors. The subject was di-
rected to a list of the three tasks that were written up as an HTML
page. The subject was given 25 minutes to try to complete the tasks
for the first IDE. After 25 minutes had passed, the subject com-
pleted the understanding questionnaire; subjects could check their
answers with the IDE. The subject was then asked to complete a
satisfaction questionnaire.

The subject was provided with a tour of the second IDE through
the use of the same simple program. They were given 25 minutes
to complete the second set of tasks. At the end of 25 minutes they
were again asked to complete the understanding questionnaire and
a satisfaction questionnaire.

6. MEASURES AND VARIABLES
ISO 9241-11 [1] defines usability as “The effectiveness, effi-

ciency, and satisfaction with which specified users achieve spec-
ified goals in particular environments.” These three measures are
often the focus of HCI-related experiments and are used in this ex-
periment. Frøkjæret al. [3] found that there was at most a weak
correlation between these three measures. Therefore, this experi-
ment evaluated these three dimensions independently. This exper-
iment was also intended to measure the subject’s understanding of
the IDE and the programming process.

6.1 Efficiency
ISO [1] defines efficiency as “the resources expended in relation

to the accuracy and completeness of goals achieved.” Task comple-
tion time was the only resource measured in this experiment. For
each IDE we considered three tasks: fixing the compiler error, fix-
ing a logical error, and an extra coding assignment.

6.2 Effectiveness
ISO [1] defines effectiveness as “the accuracy and completeness

with which specified users can achieve specified goals in particular
environments”. Completeness was measured based on the subject’s
correct or incorrect completion of each given task. The granularity
was to the quarter of a mark since some subjects came close to

the correct answers within varying degrees. A good measure of
accuracy was difficult to establish.

Accuracy was measured by the number of wrong turns (i.e. in-
correct clicks) taken by the subject. Counting the number of in-
correct clicks can be used to capture errors since the subjects did
not use keyboard shortcuts (besides copy and paste) when working
within the IDE. The question that determined if an action was an
error was: Does the user’s click help him or her accomplish the
current task? If the answer was no, then that click was considered
to be an error. Scores for accuracy were completed by independent
trained evaluators.

Things that are not considered to be errors include coding errors,
the long way of doing a task, and any hovering and reading. Ex-
amples of errors include: selecting the incorrect menu for a desired
action, running an application when a compilation error is present,
and the repeat undoing and redoing of an action. Note that once a
wrong path has been taken the subject has a new goal: to get out
of this wrong path. For example, if they run the code when there is
an error they will be asked if they wish to run it anyways; if they
select “cancel” they have left the incorrect path, but if they select
“ok” then they have performed another error.

Questions and hints are also worth noting, and are considered
to be similar to errors, but are counted independently. It was not
suggested that subjects ask the investigators questions; although
questions would be answered and hints were given when a subject
became exasperated with the current task.

6.3 Satisfaction
ISO [1] defines satisfaction as “the comfort and acceptability

of the work system to its users and other people affected by its
use.” Satisfaction was measured by a five point Likert scale. (Usu-
ally “Agree” to “Disagree”.) Having the satisfaction questionnaire
following the completion of the understanding questionnaire may
have led to some bias due to the subject’s ability to answer the un-
derstanding questions.

6.4 Understanding
Understanding the programming environment and the program-

ming process is essential to the success of a novice programmer.
Efficiency, effectiveness and satisfaction fail to measure understand-
ing. Bohlenet al. [2] use the measure of achievement instead
of efficiency in their study of end-users learning new software.
Achievement is measured through test, practicum, and assignment
scores. Although it would be ideal to measure achievement as per
Bohlenet al., it was not feasible to do so in this study. The study
used a related measure, the subject’s understanding of the IDE. The
questionnaire consisted of simple true/false questions that were as-
signed to each subject twice throughout the experiment: after using
the first IDE, and after using the second IDE. The qualitative results
will be discussed first followed by the quantitative results.

7. QUALITATIVE RESULTS
In this paper the most interesting qualitative results are discussed.

Due to the nature of the assignments given, that is, the program
would block waiting for input, there were problems that came to
light that had not been encountered before. It should be noted that
the assignments included a Keyboard.java file that was also sup-
plied to the subjects in their class assignment; this file provided
a simple way to get input from the keyboard. Subjects were not
required to know how the keyboard class was implemented; the
investigators did not alter the usage of this file in any way.

7.1 Gild-specific results

106

Although Gild has a relatively simple interface, there were some
problems encountered by subjects. When code is executing (run-
ning) or being debugged in Gild, the background of the code editor
pane changes from a white colour to a light yellow colour to indi-
cate the change in the state of the IDE. Some subjects may have be-
lieved that the yellow background colour was only associated with
debugging. After subjects set a breakpoint and went to debug the
code, the program would eventually block, waiting for input. Gild
always implicitly sets a breakpoint on the first line of code to be
executed, so subjects would step through their code quickly, trying
to get to their first breakpoint. Several subjects did not understand
why the code was not reaching their first breakpoint, which was
almost always located below the first block for input. A possible
solution for this may be to flash the console window when the ap-
plication is waiting for input.

Related to subjects’ understanding of compilation errors, was
their use of the “extra help” for compiler errors that is provided
to users. Although subjects were told that there was a compilation
error in the program, few initially compiled the program. A hint
was given for subjects to look at the “Problem View” window, but
since few subjects compiled the code before going to look at the
problem view, no compiler error messages were present. Further to
this, few subjects took the time to fully read the possible solutions
for the particular compiler errors.

Another problem encountered by two Gild users was that when
they searched in the help for a solution for their particular problem,
they ended up searching the help for all of Eclipse. The results re-
turned referred to far more complicated examples then the subjects
could understand, although one subject did find the answer they
were looking for by chance. It is recommended that the help menu
in Gild makes the help for Gild more easily accessible and more
prominent then the help for Eclipse; searching for help should only
search within the help for Gild.

7.2 Eclipse-specific results
Some subjects were quite apprehensive about configuring Eclipse

to run their Java application, despite a demonstration by the inves-
tigators on how to do this. No subjects ran into major troubles with
this process, though many kept running their programs though the
Run menu instead of using the run or debug icon shortcuts.

A major difficulty subjects had with Eclipse was the use of the
debugger. Like in Gild, subjects would set a breakpoint, but the
application would block for input before switching to the debug
perspective. What was happening was that the application would
run, and then when a breakpoint was encountered Eclipse would
prompt subjects to switch to the debug perspective. Subjects would
then, in confusion, either debug the program again (a new thread
of execution) or switch to the debug perspective. The two options
were often combined by subjects in interesting and creative ways.
Few subjects noticed that the program was blocking. If the subject
chose to switch over to the debug perspective, the “Console” win-
dow would not show that the program was blocking - this would
only be shown in the Java perspective. This led to subjects run-
ning another debug thread within the debug perspective, and often
double-clicking on breakpoints in an effort to get Eclipse to run the
code from the breakpoint.

There was also an additional problem only encountered in Eclipse
whereby “ghost projects”, i.e., the Hello World project that was
used to demonstrate how to use Eclipse, would surface occasion-
ally despite being closed. In one instance there was an old termi-
nated thread belonging to the Hello World application that surfaced
in the debug perspective. It is recommended that Eclipse remove
all references to closed projects.

Table 1: Results of a paired t-test comparing efficiency, ef-
fectiveness, satisfaction, and understanding for novice users of
Eclipse and Gild. *measures composing efficiency, ** measures
composing effectiveness

Measures Mean
for
Eclipse

Mean
for Gild

Mean
Diff.

Sig. (2
tailed)

Time* 24.50 20.33 4.17 0.159
Time / Com-
pleted*

16.85 10.59 6.26 0.184

Tasks Com-
pleted**

2.13 2.29 -0.17 0.102

Questions** 3.33 2.00 1.33 0.520
Errors** 26.50 19.67 6.83 0.332
Satisfaction 24.00 27.00 -3.00 0.226
Understanding 5.83 6.83 -1.00 0.111

7.3 Results for Gild and Eclipse
A major incorrect step that many subjects did in both Eclipse and

Gild was to try to run code that they knew contained a compilation
error. Few subjects wanted to take the time to read through the pro-
gram and understand what was wrong; perhaps this was due to the
time constraint and the number of tasks that they felt they needed
to accomplish. The investigators do not believe that the subjects
felt any more rushed than when usually doing an assignment. It
is recommended that Gild prevent code from being executed when
there is a visible compilation error. Also, subjects made a habit of
following the suggestions provided by the compiler error messages
literally. For example, the compiler told subjects to delete a token
when in fact a bracket needed to be added.

Subjects had difficulty in Eclipse and Gild with locating the ter-
minate button. As previously noted, in Eclipse subjects would end
up with many threads of execution running, though Gild did not
allow this; therefore subjects were forced to find the elusive termi-
nate button in Gild. It is recommended that the terminated button be
made more visible in both environments. One subject commented
that Gild was less intimidating than Eclipse since all relevant win-
dows were visible at once. The subject felt that the layout was
good.

8. QUANTITATIVE RESULTS
The purpose of this study was to provide an experimental com-

parison of Eclipse and Gild as used by novice programmers. The
qualitative results provide insight into how novices use the two
tools and suggest possible improvements. Eclipse and Gild were
compared quantitatively based on the measures of efficiency, ef-
fectiveness, satisfaction, and understanding. The mean values for
these measures were in the predicted direction, but none were sta-
tistically significant (see Table 1), which was likely due to a small
sample size (N = 6). Interestingly, when the individual questions
on the satisfaction questionnaire were compared, two statistically
significant results were obtained (see Table 2 below). The results
appear promising, but a larger study would be required to show that
Gild has achieved its goals.

8.1 Efficiency
Efficiency was measured in terms of time required to complete

all tasks in the set for an IDE. Since many of the subjects did not
complete all of the tasks, a composite measure (time divided by the
number of tasks completed) was used to indicate how many tasks
were completed in the time the subjects used. A low score indi-

107

cates that subjects finished many tasks quickly. Gild scored 6.26
units lower than Eclipse (Table 1). This result is not statistically
significant (p = 0.184). On average subjects took 4.17 minutes less
when using Gild than Eclipse. This trend (p = 0.159) indicated
that the simplified, one-perspective Gild interface allowed users to
navigate quickly through the IDE; allowing them to complete their
tasks more quickly than when using the more complex Eclipse IDE.
The increased efficiency may also be due to less time lost search-
ing for the correct options within the environment. The additional
composite measure that is based on time and number of tasks com-
pleted did not reveal any additional information.

8.2 Effectiveness
Three measures were used to assess effectiveness: the number

of questions or hints the subject asked or was given, the number
of errors the subject made, and the number of tasks the subject
completed correctly. No measure achieved statistical significance,
though the results were in the predicted direction.

The number of tasks completed by subjects using Eclipse and
Gild were close and approached statistical significance (p = 0.102).
The mean difference is only -0.17, which is too small to be sig-
nificant since the assignment of marks was done in increments of
0.25. Ideally the experiment would have only had subjects who had
never used an IDE before. However, some subjects were admit-
ted to the sample even thought they had previous experience with
IDEs. This skill difference between subjects meant that some sub-
jects were able to solve all the tasks correctly, while other subjects
only solved a few tasks correctly; this may explain why statistically
significant results were not achieved.

The number of questions asked and hints given to a subject was
dependent on the subject’s personality. There were some subjects
that seemed to lack confidence and would ask many questions,
while others would persevere and would sometimes require a hint.
Table 1 shows that the mean difference for questions (and hints)
asked indicates that on average subjects using Gild asked 1.33 fewer
questions than subjects using Eclipse. This result was not statisti-
cally significant (p = 0.520) and would require a larger sample size
to eliminate between subject differences.

The number of errors was measured by the number of wrong
clicks (see criteria in Section 6.2). As was the case with the number
of questions asked by subjects, some subjects made many clicks,
while other subjects thought more and clicked less. Subjects made
on average 6.83 fewer errors when using Gild than when using
Eclipse; this result is not statistically significant (p = 0.332). A
larger sample size would reduce the impact of subject differences.
A more effective change would be to adjust the criteria to look at
higher level errors; although, higher level errors would likely be
more subjective, making it difficult to train independent scorers.

8.3 Satisfaction
The level of satisfaction the subjects experienced while using

the tool was measured with a five point Likert scale. The mini-
mum possible score is five and the maximum possible score is 35.
Eclipse received a mean score of 24, while Gild received a mean
score of 27 (Table 1). Although the difference was not statistically
significant (p = 0.226), the mean difference of three points was in
the direction predicted. Table 2 presents a paired t-test of each in-
dividual satisfaction questions and reveals that questions two and
seven are statistically significant. Since the overall questionnaire
did not reach statistical significance, but individual questions did,
it is useful to discuss each question. The questions are discussed in
order of decreasing statistical significance.

Table 2: Results of a paired t-test comparing individual satis-
faction questions.

Question
Num.

Mean for
Eclipse

Mean for
Gild

Mean
Diff.

Sig. (2
tailed)

1 3.50 4.17 -0.667 0.102
2 3.00 3.83 -0.833 0.042
3 3.83 3.83 0.000 1.000
4 3.83 3.67 0.17 0.771
5 2.83 3.50 -0.667 0.175
6 3.50 3.83 -0.333 0.661
7 3.50 4.17 -0.667 0.025

8.3.1 Question 7 “What was your overall level of
satisfaction using this tool?"

The satisfaction questionnaire was developed to look at different
elements of satisfaction. This final question asked in a direct man-
ner how satisfied the subjects were with the tool. Eclipse received a
mean score of 3.50 which indicates that subjects were between neu-
tral and moderately satisfied with Eclipse. Gild received a mean
score of 4.17 which means that subjects were slightly more than
moderately satisfied with Gild. A score of 5 would have implied
that the tool was satisfactory. This result is statistically significant
(p = 0.025) and implies that novices are more satisfied with Gild
than with Eclipse. This is reflected in the qualitative results (see
Section 7).

8.3.2 Question 2 “What was your frustration level
using this tool?"

On average subjects experienced a “moderate” level of frustra-
tion using Eclipse (3.00) and a “low” level of frustration using Gild
(3.83). This result is statistically significant (p = 0.042) and was
noticed by the experimenters (see Section 7). Novices must learn
many new complex concepts. If a novice is frustrated by the IDE
then learning the concepts taught in class will be more difficult.
The level of frustration experienced by the novice must be kept low
to make the learning experience fruitful.

8.3.3 Question 1 “I feel that the tool helped me with
my tasks."

Table 2 shows a trend (p = 0.102) that subjects found Gild (4.17)
more helpful with completing tasks than Eclipse (3.50). The re-
sult indicates that subjects probably found Gild more intuitive and
simple to use and, therefore, more helpful when completing the as-
signed first-year programming tasks.

8.3.4 Questions 3, 4, 5 and 6
Questions three through six did not produce significant results

or trends and will be discussed in terms of their mean values (p
> 0.15) see Table 2. Question five (p = 0.175), “I feel intimidated
when using the tool.” indicated that subjects were more intimidated
by Eclipse (2.83) than by Gild (3.50). Question six (p = 0.661), “I
would use this tool again.” received a mean score between “neu-
tral” and “mildly agree” which indicates that both Gild (3.83) and
Eclipse (3.50) should improve their support for novices. Question
four (p = 0.771), “I feel comfortable to explore the tool and try new
features.” revealed that subjects felt relatively comfortable explor-
ing new features, Gild (3.67) and Eclipse (3.83). However, subjects
used each IDE for only 25 minutes, which does not leave much ex-
ploration time. With such a large p-value the difference been Gild
and Eclipse is negligible; the means are not in the predicted di-
rection. Question three (p = 1.000), “I find the debugger helpful.”

108

received the same mean score (3.83) for both Eclipse and Gild.
However, subjects had never used a debugger and found that any
debugger was an improvement over no debugger, a more compar-
ative question would be “I find the debugger easy to use.” Qualita-
tively, subjects had more difficulty with the Eclipse debugger (see
Section 7).

8.4 Understanding
How well a subject understood an IDE was measured using a

true/false questionnaire. The questionnaire consisted of 8 ques-
tions. Table 1 shows that after using Eclipse subjects had a mean
score of 5.83 out of 8. After using Gild, subjects had a mean score
of 6.83 out of 8. On average, subjects answered 1 more question
correctly after using Gild than after using Eclipse. This result ap-
proached statistical significance with p = 0.111.

Question two, “The IDE compiles code when it is run”, was the
question most often answered incorrectly. It was answered incor-
rectly by five (out of six) subjects using Eclipse, but was answered
incorrectly twice by subjects using Gild. In order to improve the
novice’s understanding, Gild removes many of the shortcuts that
are available in Eclipse. For example, in Gild, code must be sepa-
rately saved and compiled (built) so that the novice understands that
these two actions are distinct; in Eclipse code is compiled when it
is saved (by default).

9. RECOMMENDATIONS
In this section, recommendations are given for both IDEs and

for conducting future studies. From the qualitative analysis it was
noted that Eclipse’s debugger and run configurations were particu-
lary confusing for subjects. Although not all subjects were intim-
idated by these features, their interactions with this functionality
did not indicate a full understanding of what was occurring. Gild
is designed to simplify Eclipse, but Gild was not free from usabil-
ity issues. It is recommended that the terminate button be made
more obvious in both environments. It is also recommended that
developers of Eclipse consider the needs of novice users and pro-
grammers. The underlying plug-in architecture of Eclipse lends
itself to extension, removing existing functionality is less elegant;
this has complicated the development of Gild. Making an IDE more
comprehensible to novice and intermediate programmers should be
considered as an investment since they are the next professional
programmers. The ability to simplify and customize the interface
will likely help novice users accept the Eclipse IDE. Ideally, Gild
would not exist: Eclipse would be customizable to the point where
it could resemble Gild.

The quantitative results are encouraging as two statistically sig-
nificant results were obtained and the mean differences for all main
measures were in the predicted directions. It is likely that with
slight modifications to the measures and an larger sample size,
more statistically significant results could be obtained. The mea-
sure of effectiveness produced the least interesting results (see Ta-
ble 1). Effectiveness was measured by the number of tasks com-
pleted, number of questions asked and hints given, and number of
errors made the latter two measures require modification. It is rec-
ommended that subjects not be allowed to ask questions or receive
hints as certain personality types will be more likely to ask ques-
tions than others types. The number of errors was measured using
a criteria developed for this experiment that was based on mouse
clicks. Since mouse clicks do not capture high-level errors and do
not differentiate error types (e.g., on the basis of severity), it is rec-
ommended that a criterion for classifying high-level errors be de-
veloped and that the criteria for low-level errors be further refined.
One of the original goals of the Gild project was to understand how

novices use an IDE, not just how novices use Eclipse. If a future
study were to be conducted, the measures should be mapped to the
individual requirements of Gild with the goal of verifying these re-
quirements.

10. CONCLUSION
This study provides a first attempt to experimentally compare

how usable and useful two IDEs are for novice programmers. The
hypothesis, which operationalizes the three standard ISO measures,
that Gild will be more effective, efficient, satisfactory, and lead to
greater understanding when compared to Eclipse by novice pro-
grammers, appears to have merit. The frustration level and the over-
all level of satisfaction of subjects produced statistically significant
results. Additionally, the mean differences of all other measures,
time, time divided by tasks completed, tasks completed, questions
asked and hints given, number of errors made (as per the criteria
developed for this experiment), a satisfaction questionnaire, and an
understanding questionnaire, were in the predicted direction. The
qualitative results provided insight into novices’ mental model and
highlighted some interaction design issues. A future study with a
larger sample size will be required before this hypothesis can be
accepted or rejected.

11. ACKNOWLEDGEMENTS
Our thanks to Margaret-Anne Storey, the CHISEL group, Laura

Young, Jody Ryall, and the study participants for their help with
this user study.

12. REFERENCES
[1] Iso 9241-11:1998 ergonomic requirements for office work with visual

display terminals (vdts) - part 11: Guidance on usability, 1998.
[2] G. A. Bohlen and T. W. Ferratt. The effect of learning style and

method of instruction on the achievement, efficiency and satisfaction
of end-users learning computer software. InSIGCPR ’93:
Proceedings of the 1993 conference on Computer personnel research,
pages 273–283, New York, NY, USA, 1993. ACM Press.

[3] E. Frøkjær, M. Hertzum, and K. Hornbæk. Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated? InCHI
’00: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 345–352, New York, NY, USA, 2000. ACM
Press.

[4] M.-A. Storey, D. Damian, J. Michaud, D. Myers, M. Mindel,
D. German, M. Sanseverino, and E. Hargreaves. Improving the
usability of eclipse for novice programmers. Ineclipse ’03:
Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange, pages 35–39, New York, NY, USA, 2003. ACM Press.

109

