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iypothesis testing

Tip for Success

| Before beginning this chapter, be
SUre you have mastered Chapters 1,

In this chapter, we introduce the crucial topic of hypothesis testing. Hypothesis
testing is a systematic procedure for deciding whether the results of a research
study, which examines a sample, support a particular theory or practical innovation,
which applies to a population. Hypothesis testing is the central theme in all the re-
maining chapters of this book, as it is in most psychology research.

Many students find the most difficult part of the course to be mastering the
basic logic of this chapter and the next two. This chapter in particular requires some
mental gymnastics. Even if you follow everything the first time through, you will be
wise to review it thoroughly. Hypothesis testing involves grasping ideas that make
little sense covered separately, so in this chapter you learn several new ideas all at
once. However, once you understand the material in this chapter and the two that
follow, your mind will be used to this sort of thing, and the rest of the course should

seem easier.
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At the same time, we have kept this introduction to hypothesis testing as simple
as possible, putting off what we could for later chapters. For example, real-life psy-
chology research involves samples of many individuals. However, to simplify how
much you have to learn at one time, this chapter’s examples are about studies in
which the sample is a single individual. To do this, we use some odd examples. Just
remember that you are building a foundation that will, by Chapter 7, prepare you to
understand hypothesis testing as it is actually carried out.

A HYPOTHESIS-TESTING EXAMPLE

Here is our first necessarily odd example that we made up to keep this introduction
to hypothesis testing as straightforward as possible. A large research project has
been going on for several years. In this project, new babies are given a particular vi-
tamin and then the research team follows their development during the first 2 years
of life. So far, the vitamin has not speeded up the development of the babies. The
3 ages at which these and all other babies start to walk is shown in Figure 4-1. The
| mean is 14 months (u = 14), the standard deviation is 3 months (o = 3), and the ages
follow a normal curve. Based on the normal curve percentages, you can figure that
less than 2% of babies start walking before 8 months of age; these are the babies
| who are 2 standard deviations below the mean. (This fictional distribution is close
f to the true distribution psychologists have found for European babies, although that
{
|

true distribution is slightly skewed to the right [Hindley et al., 1966].)

One of the researchers working on the project has an idea. If the vitamin the ba-
bies are taking could be more highly refined, perhaps the effect of the vitamin
would be dramatically greater: Babies taking the highly purified version should
start walking much earlier than other babies. (We will assume that the purification
process could not possibly make the vitamin harmful.) However, refining the vita-

f min in this way is extremely expensive for each dose, so the research team decides

j to try the procedure with just enough purified doses for one baby. A newborn in the
project is then randomly selected to take the highly purified version of the vitamin,
and the researchers then follow this baby’s progress for 2 years. What kind of result
should lead the researchers to conclude that the highly purified vitamin allows
babies to walk earlier?

aE
non

Age(months): 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Z Score: =2 -1 0 +1 +2

FIGURE 4 -1 Distribution of when babies begin to walk (fictional data). i |




THE Core Logic oF HYPOTHESIS TESTING 117

This is a hypothesis-testing problem. The researchers want to draw a general
conclusion about whether the purified vitamin allows babies in general to walk ear-
lier. The conclusion about the babies in general (a population of babies), however,
will be based on results of studying only a sample. In this example, the sample is of
a single baby.

THE CORE LOGIC OF HYPOTHESIS TESTING

There is a standard kind of reasoning researchers use for any hypothesis-testing
problem. For this example, it works as follows. Ordinarily, among the population of
babies that are not given the specially purified vitamin, the chance of a baby’s start-
\ ing to walk at age 8 months or earlier would be less than 2%. Thus, walking at 8
I months or earlier is highly unlikely among such babies. But what if the randomly

s i selected sample of one baby in our study does start walking by 8 months? If the spe-
& h cially purified vitamin had no effect on this particular baby’s walking age (which
- A means that the baby’s walking age should be similar to that of babies that were not
" f‘ given the vitamin), it is highly unlikely (Iess than a 2% chance) that the particular
at ’ baby we selected at random would start walking by 8 months. So, if the baby in our
& i study does in fact start walking by 8 months, that allows us to reject the idea that
e ' the specially purified vitamin has no effect. And if we reject the idea that the
i : specially purified vitamin has no effect, then we must also accept the idea that the
specially purified vitamin does have an effect. Using the same reasoning, if
ol the baby starts walking by 8 months, we can reject the idea that this baby comes
ank from a population of babies with a mean walking age of 14 months. We therefore
gld conclude that babies given the specially purified vitamin will start to walk before 14
o months. Our explanation for the baby’s early walking age in the study is that the
el specially purified vitamin speeded up the baby’s development.
des The researchers first spelled out what would have to happen for them to con-
t_he clude that the special purification procedure makes a difference. Having laid this
nin, out in advance, the researchers could then go on to carry out their study. In this ex-
ssult ample, carrying out the study means giving the specially purified vitamin to a ran-
WS * domly selected baby and watching to see how early that baby walks. Suppose the
- result of the study is that the baby starts walking before 8 months. The researchers
would then conclude that it is unlikely the specially purified vitamin makes no dif-
3 4 ference and thus also conclude that it does make a difference.
\ This kind of testing the opposite-of-what-you-predict, roundabout reasoning, is
ﬂ the heart of inferential statistics in psychology. It is something like a double neg-
o - auve. One reason for this approach is that we have the information to figure the
: robablhty of getting a particular experimental result if the situation of there being Tiv for Succass
i | u ) difference is true. In the purified vitamin example, the researchers know what the . ) P _
A robablhtles are of babies walking at different ages if the specially purified vitamin g”s SZCtl?”'TTh? Co_rg Loglc lof
2 *‘: Ogs not have any effect. It is the probability of babies walking at various ages that ev); [i; ihf;;se lfjtzf’d;s iize?f::abotZk
3 already known from studies of babies in general—that is, babies who have not re- Thus, you may want to read it a few

AR

d the specially purified vitamin. (Suppose the specially purified vitamin has no 4,05 You should also be certain
ect. In that situation, the age at which babies start walking is the same whether or  z34; you understand the logic of hy-
1o th;y receive the specially purified vitamin. Thus, the distribution is that shown  porhesis testing before reading later
gure 41, based on ages at which babies start walking in general.) chapters.

) ithout such a tortuous way of going at the problem, in most cases you could

SLIOL do hypothesis testing at all. In almost all psychology research, we base our

®NClusions on this question: What is the probability of getting our research results

“
«
(
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research hypothesis

————————
S ———————

null hypothesis

if the opposite of what we are predicting were true? That is, we are usually predict-
ing an effect of some kind. However, we decide on whether there is such an effect
by seeing if it is unlikely that there is not such an effect. If it is highly unlikely that
we would get our research results if the opposite of what we are predicting were
true, that allows us to reject that opposite prediction. If we reject that opposite pre-
diction, we are able to accept our prediction. However, if it is likely that we would
get our research results if the opposite of what we are predicting were true, we are
not able to reject that opposite prediction. If we are not able to reject that opposite

prediction, we are not able to accept our prediction.

THE HYPOTHESIS-TESTING PROCESS

Let’s look at our example again, this time going over each step in some detail.
Along the way, we cover the special terminology of hypothesis-testing. Most im-
portant, we introduce five steps of hypothesis testing you use for the rest of this

book.

STEP 1: RESTATE THE QUESTION AS A RESEARCH
HYPOTHESIS AND A NuLL HYPOTHESIS ABOUT
THE POPULATIONS

Our researchers are interested in the effects on babies in general (not just this partic-
ular baby). That is, the purpose of studying samples is to know about populations.
Thus, it is useful to restate the research question in terms of populations. In our ex-
ample, we can think of two populations of babies:

Population 1: Babies who take the specially purified vitamin.
Population 2: Babies who do not take the specially purified vitamin.

Population 1 comprise those babies who receive the experimental treatment. In
our example, we use a sample of one baby to draw a conclusion about the age that
babies in Population 1 start to walk. Population 2 is a kind of comparison baseline
of what is already known. ;

The prediction of our research team is that Population 1 babies (those who take
the specially purified vitamin) will on the average walk earlier than Population 2
babies (those who do not take the specially purified vitamin). This prediction is
based on the researchers’ theory of how these vitamins work. A prediction like this
about the difference between populations is called a research hypothesis. Put more
formally, the prediction is that the mean of Population 1 is lower (babies receiving
the special vitamin walk earlier) than the mean of Population 2. In symbols, the re-
search hypothesis for this example is py; < p,.

The opposite of the research hypothesis is that the populations are not different
in the way predicted. Under this scenario, Population 1 babies (those who take the
specially purified vitamin) will on the average not walk earlier than Population 2
babies (those who do not take the specially purified vitamin). That is, this prediction
is that there is no difference in when Population 1 and Population 2 babies start
walking. They start at the same time. A statement like this, about a lack of differ- g
ence between populations, is the crucial opposite of the research hypothesis. It is ‘
called a null hypothesis. It has this name because it states the situation in which =
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there is no difference (the difference is “null”) between the populations. In symbols,
the null hypothesis is y;, = p,."

The research hypothesis and the null hypothesis are complete opposites: If one
is true, the other cannot be. In fact, the research hypothesis is sometimes called the
alternative hypothesis—that is, it is the alternative to the null hypothesis. This is a
bit ironic. As researchers, we care most about the research hypothesis. But when
doing the steps of hypothesis testing, we use this roundabout method of seeing
whether or not we can reject the null hypothesis so that we can decide about its al-
ternative (the research hypothesis).

W e+ T

o o &0

,} STEP 2: DETERMINE THE CHARACTERISTICS
! oF THE COMPARISON DISTRIBUTION

- b Recall that the overall logic of hypothesis testing involves figuring out the probabil-
dl. ] ity of getting a particular result if the null hypothesis is true. Thus, you need to
know what the situation would be if the null hypothesis were true. In our example,

ke
$s i we start out knowing the key information about Population 2 (see Figure 4-1)—we
‘;'I, know W = 14, o = 3, and it is normally distributed. If the null hypothesis is true,
' BS Population 1 and Population 2 are the same—in our example, this would mean Pop-
i ‘;x ulations 1 and 2 both follow a normal curve, u = 14, and o = 3.
4 ‘ In the hypothesis-testing process, you want to find out the probability that you
- could have gotten a sample score as extreme as what you got (say, a baby walking
' very early) if your sample were from a population with a distribution of the sort you
) would have if the null hypothesis were true. Thus, in this book we call this distribu-
| tic- tion a comparison distribution. (The comparison distribution is sometimes called
Ons; a statistical model or a sampling distribution—an idea we discuss in Chapter 5.)
R That is, in the hypothesis-testing process, you compare the actual sample’s score to
.~ this comparison distribution.
~ In our vitamin example, the null hypothesis is that there is no difference in
walking age between babies that take the specially purified vitamin (Population 1)
and babies that do not take the specially purified vitamin (Population 2). The com-
parison distribution is the distribution for Population 2, since this population repre-
it In nts the walking age of babies if the null hypothesis is true. In later chapters, you
¥ ﬂ.lat B will Jearn about different types of comparison distributions, but the same principle
ieline 8 ~ applies in all cases: The comparison distribution is the distribution that represents
2 . .'1 population situation if the null hypothesis is true.
) take = e
on 28 STEP 3: DETERMINE THE CUTOFF SAMPLE SCORE
on 18 ON THE COMPARISON DISTRIBUTION AT WHICH
:ethlz- THE NuLL HYPOTHESIS SHOULD BE REJECTED
- mored 0
;:,mg ! ] jally, before conducting a study, researchers set a target against which they will
fompare their result—how extreme a sample score they would need to decide

the 1€~
g nst the null hypothesis: that is, how extreme the sample score would have to be

I\ ""

) Gm‘t} Oyersimplifying a bit to make the initial learning easier. The research hypothesis is that one pop-
Hation will walk earlier than the other, U, < p,. Thus, to be precise, its opposite is that the other group
Cr walk at the same time or later. That is, the opposite of the research hypothesis in this example
ges both no difference and a difference in the direction opposite to what we predicted. In terms of
our research hypothesis is i, < p,, then its opposite is p; > p, (the symbol > means “greater
al t0”). We discuss this issue in some detail later in the chapter.

comparison distribution




= Sk i

e —— R ——

120 I

INTRODUCTION TO HYPOTHESIS TESTING

cutoff sample score

for it to be too unlikely that they could get such an extreme score if the null hypoth-
esis were true. This is called the cutoff sample score. (The cutoff sample score is
also known as the critical value.)

Consider our purified vitamin example, in which the null hypothesis is that
walking age is not influenced by whether babies take the specially purified vitamin.
The researchers might decide that if the null hypothesis were true, a randomly se-
lected baby walking before 8 months would be very unlikely. With a normal distrib-
‘ution, being 2 or more standard deviations below the mean (walking by 8 months)
could occur less than 2% of the time. Thus, based on the comparison distribution,
the researchers set their cutoff sample score even before doing the study. They de-
cide in advance that if the result of their study is a baby who walks by 8 months,
they will reject the null hypothesis.

But, what if the baby does not start walking until after 8 months? If that hap-
pens, the researchers will not be able to reject the null hypothesis.

When setting in advance how extreme a sample’s score needs to be to reject the
null hypothesis, researchers use Z scores and percentages. In our purified vitamin
example, the researchers might decide that if a result were less likely than 2%, they
would reject the null hypothesis. Being in the bottom 2% of a normal curve means
having a Z score of about —2 or lower. Thus, the researchers would set —2 as their
Z-score cutoff point on the comparison distribution for deciding that a result is ex-
treme enough to reject the null hypothesis. So, if the actual sample Z score is —2 or
lower, the researchers will reject the null hypothesis. However, if the actual sample
Z score is greater than —2, the researchers will not reject the null hypothesis.

Suppose that the researchers are even more cautious about too easily rejecting
the null hypothesis. They might decide that they will reject the null hypothesis only
if they get a result that could occur by chance 1% of the time or less. They could
then figure out the Z-score cutoff for 1%. Using the normal curve table, to have a
score in the lower 1% of a normal curve, you need a Z score of —2.33 or less. (In
our example, a Z score of —2.33 means 7 months.) In Figure 4-2, we have shaded
the 1% of the comparison distribution in which a sample would be considered so
extreme that the possibility that it came from a distribution like this would be re-
jected. So, now the researchers will only reject the null hypothesis if the actual

Bottom 1%
S

Age(m 89101112 113214 -15. .16 17 .+ 18 7519-:.20-:21

Z Score: —2.33 -2 -1 0 +1 +2 e
i

e A S i e

FIGURE 4-2 Distribution of when babies begin to walk, with bottom 1% shaded
(fictional data).
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| sample Z score is —2.33 or lower—that is, if it falls in the shaded area in Figure
4-2. If the sample Z score falls outside of the shaded area in Figure 4-2, the re-
searchers will.not reject the null hypothesis.
; In general, psychology researchers use a cutoff on the comparison distribution
with a probability of 5% that a score will be at least that extreme if the null hypothe-
g sis were true. That is, researchers reject the null hypothesis if the probability of
‘ getting a sample score this extreme (if the null hypothesis were true) is less than
59%. This probability is usually written as p < .05. However, in some areas of re-
search, or when researchers want to be especially cautious, they use a cutoff of 1%
(p < .0D). 2 These are called conventional levels of significance. They are described
as the .05 significance level and the .01 significance level. We also refer to them as
the 5% significance level and the 1% significance level. (We discuss in more detail
in Chapter 6 the issues in deciding on the significance level to use.) When a sample
g score is so extreme that researchers reject the null hypothesis, the result is said to be
statistically significant (or significant, as it is often abbreviated).

b
= S7pp 4: DETERMINE YOUR SAMPLE'S SCORE
oN THE COMPARISON DISTRIBUTION

The next step is to carry out the study and get the actual result for your sample.
‘ Once you have the results for your sample, you figure the Z score for the sample’s
. raw score based on the population mean and standard deviation of the comparison
~ distribution.

Assume that the researchers did the study and the baby who was given the spe-
cially purified vitamin started walking at 6 months. The mean of the comparison
" distribution to which we are comparing these results is 14 months and the standard
deviation is 3 months. That is, p = 14 and o = 3. Thus, a baby who walks at
6 months is 8 months below the population mean. This puts this baby 22 standard
‘dev1at10ns below the population mean. The Z score for this sample baby on the
% companson distribution is thus —2.67 (Z =[6 — 14}/3 = —2.67). Figure 4-3 shows
\ score of our sample baby on the comparison distribution.

EP 5: DECIDE WHETHER TO REJECT
THE NuLL HYPOTHESIS

“ "e‘cide whether to reject the null hypothesis, you compare your actual sample’s

Z score (from Step 4) to the cutoff Z score (from Step 3). In our example, the actual

Tesult was —2.67. Let’s suppose the researchers had decided in advance that they
N flreject the null hypothesis if the sample’s Z score was below —2. Since —2.67

15 low —2, the researchers would reject the null hypothesis.

Or suppose the researchers had used the more conservative 1% significance

1 )‘K:) %e needed Z score to reject the null hypothesis would then have been —2.33

) er But, again, the actual Z for the randomly selected baby was —2 67 (a more

TN
! u reject the null hypothes1s. This situation is shown in Figure 4-3. As you
Al S ’-7':' the figure, the bottom 1% of the distribution is shaded. We recommend

|t 1o

S, when hypothesis testing is usually done on a computer, you have to decide in advance only
utoft  probability. The computer prints out the exact probability of getting your result if the null
Were true. You then just compare the printed-out probability to see if it is less than the cutoff
1evel you set in advance. However, to understand what these probability levels mean, you
the entire process, including how to figure the Z score for a particular cutoff probability.

conventional levels
of significance

statistically significant

Tip for Success

If you are unsure about these sym-
bols for population parameters, be
sure to review Table 3-2 on p. 95.
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Age(months):

Bottom 1%
- - ==

g 9 10 11 12 13 14 15 16 17 18 19 20 21

Z Score: -2 -1 0 +1 ‘ +2

Experimental Cutoff Z score
sample baby  _ 2133

(Z =-2.67)

FIGURE 4-3 Distribution of when babies begin to walk, showing both the bottom
1% and the single baby that is the sample studied (fictional data).

that you always draw such a picture of the distribution. Be sure to shade in the part
of the distribution that is more extreme (that is, further out in the tail) than the cutoff
sample score. If your actual sample Z score falls within the shaded region, you can
reject the null hypothesis. Since the sample Z score (of —2.67) in this example falls
within the shaded tail region, the researchers can reject the null hypothesis.

If the researchers reject the null hypothesis, what remains is the research hy-
pothesis. In this example, the research team can conclude that the results of their
study support the research hypothesis, that babies who take the specially punﬁed vi-
tamin walk earlier than other babies.

IMPLICATIONS OF REJECTING OR FAILING
TO REJECT THE NuULL HYPOTHESIS

It is important to emphasize two points about the conclusions you can make from
the hypothesis-testing process. First, suppose you reject the null hypothesis. There-
fore, your results support the research hypothesis (as in our example). You would
still not say that the results prove the research hypothesis or that the results show
that the research hypothesis is true. This would be too strong because the results of
research studies are based on probabilities. Specifically, they are based on the prob-
ability being low of getting your result if the null hypothesis were true. Proven and
true are okay in logic and mathematics, but to use these words in conclusions from
scientific research is quite unprofessional. (It is okay to use true when speaking hy-
pothetically—for example, “if this hypothesis were true, then ...”—but not when
speaking of conclusions about an actual result.) What you do say when you reject
the null hypothesis is that the results are statistically significant.

Second, when a result is not extreme enough to reject the null hypothesis, you =
do not say that the result supports the null hypothesis. You simply say the resultis 3
not statistically significant. ;

A result that is not strong enough to reject the null hypothesis means the study
was inconclusive. The results may not be extreme enough to reject the null hypothe-
sis, but the null hypothesis might still be false (and the research hypothesis true). -
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Suppose in our example that the specially purified vitamin had only a slight but still
real effect. In that case, we would not expect to find a baby given the purified vita-
min to be walking a lot earlier than babies in general. Thus, we would not be able to
reject the null hypothesis, even though it is false. (You will learn more about such
situations in the Decision Errors section later in this chapter.)

Showing the null hypothesis to be true would mean showing that there is ab-
solutely no difference between the populations. It is always possible that there is a
difference between the populations, but that the difference is much smaller than
what the particular study was able to detect. Therefore, when a result is not extreme
enough to reject the null hypothesis, the results are inconclusive. Sometimes, how-
ever, if studies have been done using large samples and accurate measuring pro-
cedures, evidence may build up in support of something close to the null
‘ hypothesis—that there is at most very little difference between the populations. (We

i have more to say on this important issue later in this chapter and in Chapter 6.)
SUMMARY OF STEPS OF HYPOTHESIS TESTING

: Here is a summary of the five steps of hypothesis testing.

i @ Restate the question as a research hypothesis and a null hypothesis

: about the populations.

: ® Determine the characteristics of the comparison distribution.

; part ¢ ® Determine the cutoff sample score on the comparison distribution at

utoff ; : which the null hypothesis should be rejected.

u can @ Determine your sample’s score on the comparison distribution.

 falls ® Decide whether to reject the null hypothesis.

_hﬂtlli{' A SECOND EXAMPLE

* their )

‘ed vi- Here is another fictional example. Two happy-go-lucky personality psychologists
are examining the theory that happiness comes from positive experiences. In partic-
ular, these researchers argue that if people have something very fortunate happen to
‘them, they will become very happy and will still be happy 6 months later. So the re-
searchers plan the following experiment: A person will be randomly selected from
the North American adult public and given $10 million. Six months later, this per-

s from n’s happiness will be measured. It is already known (in this fictional example)

There- 8 hat the distribution of happiness is like in the general population of North Ameri-

would an adults, and this is shown in Figure 4—4. On the test being used, the mean happi-

s Slho“; ‘ ess score is 70, the standard deviation is 10, and the distribution is approximately

sults OF n ormal

e probs * The psychologists now carry out the hypothesis-testing procedure. That is, the re-

sen and g S archers consider how happy the person would have to be before they can confi-

as from 3 ently reject the null hypothesis that receiving that much money does not make

ing hy=3 pe Ople happier 6 months later. If the researchers’ result shows a very high level of

it Wt.’en : lappiness, the psychologists will reject the null hypothesis and conclude that getting

u reject $10 | million probably does make people happier 6 months later. But if the result is not
Ver Extreme, these researchers would conclude that there is not sufficient evidence to

818, Yo}l, [ CCt the null hypothesis, and the results of the experiment are inconclusive.

result 18 : "' NOW let us consider the hypothesis-testing procedure in more detail in this ex-

e (f;' ple, following the five steps.

;pothe‘ b ut.tllfestate the question as a research hypothesis and a null hypothesis

is true)d ‘ 1€ populations. There are two populations of interest:
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,lw’ | Happiness Score: 45 50 55 60 65 70 75 80 85 90 - 95
Z Score: =2 -1 0 +1 +2

FIGURE 4-4 Distribution of happiness scores (fictional data).

» Population 1: People who 6 months ago received $10 million.
; Population 2: People who 6 months ago did not receive $10 million.

Aon o

; | The prediction of the personality psychologists, based on their theory of happiness,
o is that Population 1 people will on the average be happier than Population 2 people:
; In symbols, p; > . The null hypothesis is that Population 1 people (those who get
$10 million) will not be happier than Population 2 people (those who do not get $10
million).
M @ Determine the characteristics of the comparison distribution. The com-
' parison distribution is the distribution that represents the population situation if the
| null hypothesis is true. If the null hypothesis is true, the distributions of Populations
1 and 2 are the same. We know Population 2’s distribution (it is normally distrib-
i uted with p = 70 and o = 10), so we can use it as the comparison distribution.
i ® Determine the cutoff sample score on the comparison distribution at ‘
‘ which the null hypothesis should be rejected. What kind of result would be ex- ‘
,.ff , treme enough to convince us to reject the null hypothesis? In this example, assume J (
5 that the researchers decided the following in advance: They will reject the null hy-
pothesis as too unlikely if the results would occur less than 5% of the time if this
null hypothesis were true. We know that the comparison distribution is a normal
curve. Thus, we can figure that the top 5% of scores from the normal curve table
begin at a Z score of about 1.64. This means the researchers would set as the cutoff
point for rejecting the null hypothesis to be a result in which the sample’s Z score
on the comparison distribution is at or above 1.64. (The mean of the comparison
distribution is 70 and the standard deviation is 10. Therefore, the null hypothesis
would be rejected if the sample Tesult was at or above 86.4.)
® Determine your sample’s score on the comparison distribution. Now for
the results: Six months after giving this randomly selected person $10 million, the
now very wealthy research participant takes the happiness test. The person’s score
is 80. As you can see from Figure 4—4, a score of 80 has a Z score of +1 on the com-
parison distribution.
® Decide whether to reject the null hypothesis. The Z score of the sample
individual is +1. The researchers set the minimum Z score to reject the null hypoth-
esis at +1.64. Thus, the sample score is not extreme enough to reject the null hy- |
pothesis. The experiment is inconclusive; researchers would say the results are “not |
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Z Score: -2 -1 0 +1 +2
cutoff Z score = 1.64

Happiness Score: 45 50 55 60 65 70 75 80 85T 90 95

R —

Sample participant

FIGURE 4-5 Distribution of happiness scores with upper 5% shaded and showing
: the location of the sample participant (fictional data).

i statistically significant.” Figure 4-5 shows the comparison distribution with the top

ﬁe' 5% shaded and the location of the sample participant who received $10 million.
’e(t) You may be interested to know that Brickman et al. (1978) carried out a more
g elaborate study based on the same question. They studied lottery winners as exam-
ples of people suddenly having a very positive event happen to them. Their results
Frl_ were similar to those in our fictional example: those who won the lottery were not
he much happier 6 months later than people who did not win the lottery. Also, another
).ns group they studied, people who had become paraplegics through a random accident,
e were not much less happy than other people 6 months later. These researchers stud-
s jed fairly large numbers of individuals and explored the issue in several different
ways. Their conclusion was that if a major event does have a lasting effect on hap-
e  piness, it is probably not a very big one. So it looks like the lottery isn’t the answer.
g;e - (This pattern has also been found in other studies, e.g., Suh et al., 1996.)

[ | HOW ARE YOU DOING?

s,

. ik A. sample is given an experimental treatment that is predicted to make them score
off higher than the general public on a standard memory test. State (a) the null hy-
~ pothesis and (b) the research hypothesis.

core ) : Nypoth . . _
iSOl - (8) What is a comparison distribution? (b) What role does it play in hypothesis
: * testing?
is :
ies 23, What is the cutoff sample score?
ol -I“‘Why do we say that hypothesis testing involves a double negative logic?
v . ‘ ',What €an you conclude when (a) a result is so extreme that you reject the null hy-
. the } P.O;hESIS. and (b) a result is not very extreme so you cannot reject the null hypothe-
;c0rc Y
com- : A training program to increase friendliness is tried on one individual randomly se-
4 !qufi from the general public. Among the general public (which does not get this
mple ! tr?"“ng program) the mean on the friendliness measure is 30 with a standard devi-

.,-‘ 10n of 4. The researchers want to test their hypothesis at the 5% significance
level. After going through the training program, this individual takes the friendli-

i FASS Measure and gets a score of 40. What should the researchers conclude?
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ONE-TAILED AND T\X/O-TAILED HYPOTHESIS TESTS

In our examples so far, the researchers were interested in only one direction of re-
sult. In our first example, researchers tested whether babies given the specially puri-
fied vitamin would walk earlier than babies in general. In the happiness example,
! the personality psychologists predicted the person who received $10 million would
be happier than other people. The researchers in these studies were not interested in
the possibility that giving the specially purified vitamin would cause babies to start
walking later or that people getting $10 million might become less happy.

ks B
2 e

‘g
i3

DIRECTIONAL HYPOTHESES AND ONE-TAILED TESTS

S A

The purified vitamin and happiness studies are examples of testing directional

directional hypotheses hypotheses. Both studies focused on a specific direction of effect. When a re-
searcher makes a directional hypothesis, the null hypothesis is also, in a sense, di-

rectional. Suppose the research hypothesis is that getting $10 million will make a

person happier. The null hypothesis, then, is that the money will either have no ef-

fect or make the person less happy. (In symbols, if the research hypothesis is

{4 > L, then the null hypothesis is p; < py; < is the symbol for less than or equal to.)

Thus, in Figure 4-5, to reject the null hypothesis, the sample had to have a scorein |

i one particular tail of the comparison distribution—the upper extreme or tail (in this
example, the top 5%) of the comparison distribution. (When it comes to rejecting

the null hypothesis with a directional hypothesis, a score at the other tail would be
the same as a score in the middle—that is, it would not allow you to reject the null
hypothesis.) For this reason, the test of a directional hypothesis is called a one-
tailed test. A one-tailed test can be one-tailed in either direction. In the happiness
study example, the tail for the predicted effect was at the high end. In the baby

one-tailed test




ONE-TAILED AND Two-TAILED HYPOTHESIS TESTS

study example, the tail for the predicted effect was at the low end (that is, the pre-
diction tested was that babies given the specially purified vitamin would start walk-
ing unusually early).

NONDIRECTIONAL HYPOTHESES AND TWO-TAILED TESTS

Sometimes, a research hypothesis states that an experimental procedure will have
an effect, without saying whether it will produce a very high score or a very low
score. Suppose an organizational psychologist is interested in how a new social
skills program will affect productivity. The program could improve productivity by
making the working environment more pleasant. Or, the program could hurt pro-
ductivity by encouraging people to socialize instead of work. The research hypothe-
, sis is that the social skills program changes the level of productivity; the null
hypothesis is that the program does not change productivity one way or the other. In
A symbols, the research hypothesis is p; # p, (# is the symbol for not equal); the null
hypothesis is p; = p,.

i When a research hypothesis predicts an effect but does not predict a particular
il direction for the effect, it is called a nondirectional hypothesis. To test the signifi-
y cance of a nondirectional hypothesis, you have to take into account the possibility
3 that the sample could be extreme at either tail of the comparison distribution. Thus,
g : this is called a two-tailed test.
v 4 DETERMINING CUTOFF SCORES WITH TwWO-TAILED TESTS
é ‘ There is a special complication in a two-tailed test. You have to divide up the sig-
g ‘L; ‘ nificance percentage between the two tails. For example, with a 5% significance
— = ' ~ level, you reject a null hypothesis only if the sample is so extreme that it is in either
re- S ~ the top 2.5% or the bottom 2.5%. This keeps the overall level of significance at a
uri- total of 5%.
ple, Note that a two-tailed test makes the cutoff Z scores for the 5% level +1.96 and
yuld —1.96. For a one-tailed test at the 5% level, the cutoff was not so extreme—only
din +1.64 or —1.64, but only one side of the distribution was considered. These situa-
start tions are shown in Figure 4-6a.
~ Using the 1% significance level, a two-tailed test (.5% at each tail) has cutoffs
f +2.58 and —2.58, while a one-tailed test’s cutoff is either +2.33 or —2.33. These
tuations are shown in Figure 4-6b. The Z score cutoffs for one-tailed and two-
gd tests for the .05 and .01 significance levels are also summarized in Table 4-1.
'10121 ~ WHEN 70 Use ONE-TAILED OR TWO-TAILED TESTS
a te- i
e, di- e researcher decides in advance to use a one-tailed test, then the sample’s score
ake a S not need to be so extreme to be significant as it would need to be with a two-
10 ef- 18 ed test. Yet there is a price: With a one-tailed test, if the result is extreme in the
sis 1S 0 : 10n opposite to what was predicted, no matter how extreme, the result cannot
alto) B Considered statistically significant.
orein i  In principle, you plan to use a one-tailed test when you have a clearly directional
in this | 7 c_sis and a two-tailed test when you have a clearly nondirectional hypothesis.
ecting | Ctice, it is not so simple. Even when a theory clearly predicts a particular result,
uld be tual result may come out opposite to what you expected. Sometimes, this oppo-

he null ‘_1'3' ' :_be more interesting than what you had predicted. (What if, as in all the fairy
a one- ales about Wish-granting genies and fish, receiving $10 million and being able to
spiness, Ost any wish had made that one individual miserable?) By using one-tailed
’ sk having to ignore possibly important results.

nondirectional hypothesis

two-tailed test
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.05 significance level

.05 (one-tailed)

(.05 two-tailed =) .025 025 (=.05 two-tailed)

.01 significance level

.01 (one-tailed)

(.01 two-tailed =) .005 .005 (=.01 two-tailed)

-3
Z Score

(b) 2.33

FIGURE 4-6 Significance level cutoffs for one-tailed and two-tailed tests: (a) .05
significance level; (b) .01 significance level. (The one-tailed tests in these examples assume
the prediction was for a high score. You could instead have a one-tailed test where the pre-

diction is for the lower, left tail.) |

For these reasons, researchers disagree about whether one-tailed tests should be
used, even when there is a clearly directional hypothesis. To be safe, many re-
searchers use two-tailed tests for both nondirectional and directional hypotheses. If
the two-tailed test is significant, then the researcher looks at the result to see the di-
rection and considers the study significant in that direction.® In practice, always
using two-tailed tests is a conservative procedure. This is because the cutoff scores
are more extreme for a two-tailed test, so it is less likely that a two-tailed test will

3Leventhal and Huynh (1996) argue that this procedure is technically incorrect. If you are testing a
nondirectional hypothesis, you should only make nondirectional conclusions. A better procedure, they
suggest, is to use a “directional two-tailed test”—what amounts to two simultaneous one-tailed tests (one
in each direction). Thus, if you want an overall significance level of .05, you use a directional two-tailed
test in which the two one-tailed subparts each use the .025 level. (See Jones & Tukey, 2000, for a related
approach.) Leventhal and Huynh’s way of thinking about two-tailed tests does seem to be more logical
and to have some technical advantages. However, researchers have not yet adopted this approach, and
for most purposes the result is the same. Thus, in this book we stick to the more traditional approach.
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ONE-TAILED AND Two-TAILED HYPOTHESIS TESTS

G GIAE M One-Tailed and Two-Tailed Cutoff Z Scores
for the .05 and .01 Significance Levels

orpe—a

Type of Test

One-Tailed Two-Tailed
i
i Significance .05 —1.64 or 1.64 —1.96 and 1.96
E Level .01 —2.330r2.33 —2.58 and 2.58
i
i
i

give a significant result. Thus, if you do get a significant result with a two-tailed
test, you are more confident about the conclusion. In fact, in most psychology re-
3 search articles, unless the researcher specifically states that a one-tailed test was
used, it is assumed that it was a two-tailed test.

In practice, however, it is our experience that most research results are either so
extreme that they will be significant whether you use a one-tailed or two-tailed test
or so far from extreme that they would not be significant no matter what you use.
But what happens when a result is less certain? The researcher’s decision about
one-tailed or two-tailed tests now can make a big difference. In this situation the
researcher tries to use the type of test that will give the most accurate and noncon-
troversial conclusion. The idea is to let nature—and not a researcher’s decisions—

determine the conclusion as much as possible. Further, whenever a result is less
than completely clear one way or the other, most researchers will not be comfort-

hologists at a residential treatment center have developed a new type of therapy to
~ reduce depression that they believe is more effective than the therapy now given.
\However, as with any treatment, it is also possible that it could make patients do
orse. Thus, the clinical psychologists make a nondirectional hypothesis.
The psychologists randomly select an incoming patient to receive the new form
therapy instead of the usual therapy. (In a real study, of course, more than one pa-
i ent would be selected; but let’s assume that only one person has been trained to do
!?c ‘new therapy and she has time to treat only one patient.) After 4 weeks, the pa-
ient fills out a standard depression scale that is given automatically to all patients
er 4 weeks. The standard scale has been given at this treatment center for a long
el Thus, the psychologists know in advance the distribution of depression scores
L4 weeks for those who receive the usual therapy: It follows a normal curve with a
an of 69.5 and a standard deviation of 14.1. (These ﬁgures correspond roughly to

S€s. If

dways 2

b \estate the question as a research hypothesis and a null hypothesis
i e Populatlons There are two populations of interest:

| opu lllatlon 1: Patients diagnosed as depressed who receive the new therapy.
Population 2: Patients diagnosed as depressed who receive the usual therapy.
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Tip for Success

ways be complete opposites.

hypothesis and this determines
corresponding null hypothesis.

S ———— s

Remember that the research hypoth-
esis and null hypothesis must al-

Researchers specify the research

Depression Score: = &30 413 (o M 5548 60,54 83.6 0077
Z Score: S2 SeEe Al 0 100 42

FIGURE 4 -7 Distribution of depression scores at 4 weeks after admission for diag-
nosed depressed psychiatric patients receiving the standard therapy (fictional data).

The research hypothesis is that when measured on depression 4 weeks after ad-
mission, patients who receive the new therapy (Population 1) will on the average
score differently from patients who receive the current therapy (Population 2). In
symbols, the research hypothesis is p; # H,. The opposite of the research hypothesis,
the null hypothesis, is that patients who receive the new therapy will have the same
average depression level as the patients who receive the usual therapy. (That is, the
the depression level measured after 4 weeks will have the same mean for Populations 1

and 2.) In symbols, the null hypothesis is [, = p,.

® Determine the characteristics of the comparison distribution. If the nuil
hypothesis is true, the distributions of Populations 1 and 2 are the same. We know
the distribution of Population 2 (it is the one shown in Figure 4-7). Thus, we can
use Population 2 as our comparison distribution. As noted, it follows a normal
curve, with p=69.5 and 6 = 14.1.

® Determine the cutoff sample score on the comparison distribution at
which the null hypothesis should be rejected. The clinical psychologists select
the 5% significance level. They have made a nondirectional hypothesis and will
therefore use a two-tailed test. Thus, they will reject the null hypothesis only if the
patient’s depression score is in either the top or bottom 2.5% of the comparison dis-
tribution. In terms of Z scores, these cutoffs are +1.96 and —1.96 (see Figure 4-8
and Table 4-1).

® Determine your sample’s score on the comparison distribution. The pa-
tient who received the new therapy was measured 4 weeks after admission. The pa-
tient’s score on the depression scale was 41, which is a Z score on the comparison
distribution of —2.02. That is, Z = (X — M)/SD = (41 — 69.5)/14.1 = —2.02.

® Decide whether to reject the null hypothesis. A Z score of —2.02 is
slightly more extreme than a Z score of —1.96, which is where the lower 2.5% of the
comparison distribution begins. Notice in Figure 4-8 that the Z score of —2.02 falls
within the shaded area in the left tail of the comparison distribution. This Z score of
—2.02 is a result so extreme that it is unlikely to have occurred if this patient were
from a population no different from Population 2. Therefore, the clinical psycholo-
gists reject the null hypothesis. The result is statistically significant and it supports
the research hypothesis that depressed patients receiving the new therapy have dif-
ferent depression levels than depressed patients that receive the usual therapy.

R T
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Tip for Success

When carrying out the five steps of
hypothesis testing, always draw a
figure like Figure 4-8. Be sure to
include the cutoff score(s) and
shade the appropriate tail(s). If the
sample score falls within a shaded
tail region, the null hypothesis can
be rejected and the result is statisti-
cally significant. If the sample score

S | does not fall within a shaded tail re-
pEpeson oo ke 55;1 6?)'5 S0 A ; . gion, the null hypothesis cannot be
Z Score: —TZ - + 1 +2 : rejected.
Sample patient - cutoff Z score e cutoff Z score
; depression =41 - =-1.96 4 =196 ¢
| Z=-2.02

FIGURE 4-8 Distribution of depression scores with upper and lower 2.5% shaded
and showing the sample patient who received the new therapy (fictional data).

ad- i
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In i
sis, ‘f 1. What is a nondirectional hypothesis test?
' 2. What is a two-tailed test?
\me . . - .
the 3. Why dp you use a two-ta|leq test when testing a nondirectional hypothgsus? '
d 4. What is the advantage of using a one-tailed test when your theory predicts a partic-
ns 1 ular direction of result?
5. Why might you use a two-tailed test even when your theory predicts a particular di-
null } £ rection of result?
now 8 6. A researcher predicts that making a person hungry will affect how he or she does
can on a coordination test. A randomly selected person agrees not to eat for 24 hours
rmal ‘ before taking a standard coordination test and gets a score of 400. For people in
] ~ general of this age group tested under normal conditions, coordination scores are
n at - normally distributed with a mean of 500 and a standard deviation of 40. Using the
elect 8 - .01 significance level, what should the researcher conclude?
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132 INTRODUCTION TO HYPOTHESIS TESTING

DECISION ERRORS

Another crucial topic for making sense of statistical significance is the kinds of er-
rors that are possible in the hypothesis-testing process. The kind of errors we con-
sider here are about how, in spite of doing all your figuring correctly, your
conclusions from hypothesis-testing can still be incorrect. It is not about making
mistakes in calculations or even about using the wrong procedures. That is,

decision errors decision errors are situations in which the right procedures lead to the wrong
decisions.

Decision errors are possible in hypothesis testing because you are making deci-
sions about populations based on information in samples. The whole hypothesis
testing process is based on probabilities. The hypothesis-testing process is set up to
make the probability of decision errors as small as possible. For example, we only
decide to reject the null hypothesis if a sample’s mean is so extreme that there is a
very small probability (say, less than 5%) that we could have gotten such an ex-
treme sample if the null hypothesis is true. But a very small probability is not the
same as a zero probability! Thus, in spite of your best intentions, decision errors are
always possible.

There are two kinds of decision errors in hypothesis testing: Type I error and
Type Il error.* ‘

B Type | ERROR

Type I error You make a Type I error if you reject the null hypothesis when in fact the null hy-
! ‘ pothesis is true. Or, to put it in terms of the research hypothesis, you make a Type I
error when you conclude that the study supports the research hypothesis when in re-
ality the research hypothesis is false.
! Suppose you carried out a study in which you had set the significance level cut-
' off at a very lenient probability level, such as 20%. This would mean that it would
I | not take a very extreme result to reject the null hypothesis. If you did many studies
[ like this, you would often (about 20% of the time) be deciding to consider the re-
search hypothesis supported when you should not. That is, you would have a 20%
’ il | chance of making a Type I error.
f ' Even when you set the probability at the conventional .05 or .01 levels, you
; will still make a Type I error sometimes (5% or 1% of the time). Consider again
! the example of giving the new therapy to a depressed patient. Suppose the new
' therapy is not more effective than the usual therapy. However, in randomly pick-
ing a sample of one depressed patient to study, the clinical psychologists might
just happen to pick a patient whose depression would respond equally well to the
It new therapy and the usual therapy. Randomly selecting a sample patient like this
is unlikely, but such extreme samples are possible, and should this happen, the
clinical psychologists would reject the null hypothesis and conclude that the new
therapy is different than the usual therapy. Their decision to reject the null hy-
pothesis would be wrong—a Type I error. Of course, the researchers could not -
know they had made a decision error of this kind. What reassures researchers i ;

| . e
[ *You may also occasionally hear about a Type III error. This is concluding there is a significant result 1.
a particular direction, when the true effect is in the opposite direction. 4




DEeCISION ERRORS

that they know from the logic of hypothesis testing that the probability of making
such a decision error is kept low (less than 5% if you use the .05 significance
level).

Still, the fact that Type I errors can happen at all is of serious concern to psy-

r chologists, who might construct entire theories and research programs, not to men-
g tion practical applications, based on a conclusion from hypothesis testing that is in
3, fact mistaken. It is because these errors are of such serious concern that they are
g called Type L.
As we have noted, researchers cannot tell when they have made a Type I error.
i- However, they can try to carry out studies so that the chance of making a Type I
is error is as small as possible.
to What is the chance of making a Type I error? It is the same as the significance
ly level you set. If you set the significance level at p < .05, you are saying you will re-
5 & [ ject the null hypothesis if there is less than a 5% (.05) chance that you could have
2X- i gotten your result if the null hypothesis were true. When rejecting the null hypothe-
the ; sis in this way, you are allowing up to a 5% chance that you got your results even
are ~ though the null hypothesis was actually true. That is, you are allowing a 5% chance
1 of a Type I error.
and q The significance level, which is the chance of making a Type I error, is called
' i alpha (the Greek letter o). The lower the alpha, the smaller the chance of a Type I
error. Researchers who do not want to take a lot of risk set alpha lower than .05,
such as p < .001. In this way the result of a study has to be very extreme in order for
the hypothesis testing process to reject the null hypothesis.
hy- Using a .001 significance level is like buying insurance against making a Type I
pel error. However, as when buying insurance, the better the protection, the higher the
n re- cost. There is a cost in setting the significance level at too extreme a level. We turn
to that cost next.
_cut-
;‘gi‘i TYPE || ERROR
1€ 1e- If you set a very stringent significance level, such as .001, you run a different kind
20% of risk. With a very stringent significance level, you may carry out a study in
- Which in reality the research hypothesis is true, but the result does not come out
;, you - extreme enough to reject the null hypothesis. Thus, the decision error you would
again make is in not rejecting the null hypothesis when in reality the null hypothesis is
e new alse. To put this in terms of the research hypothesis, you make this kind of deci-
- pick- 10n error when the hypothesis-testing procedure leads you to decide that the re-
might ~ sults of the study are inconclusive when in reality the research hypothesis is true.
to the 8 ~ Ihis is called a Type II error. The probability of making a Type II error is called
ke this )eta (the Greek letter B). (Do not confuse this beta with the standardized re-
en, the ¥ * Bression coefficient that you will learn about in Chapter 12, which is also called
he new & beta.) ‘
ull hy- ¢ Consider again our depression therapy example. Suppose that, in truth, the new
uld not ™ Dy is better at treating depression than the usual therapy. However, in conduct-
“hers 18 Our particular study, the results for the sample patient are not strong enough to
#HOW you to reject the null hypothesis. Perhaps the random sample patient that you
;-'1 ted to try out the new therapy happened to be a person who would not respond
b ﬁ: }F{};e{r‘ the new therapy or the usual therapy. The results would not be significant.
. ,gxdecided not to reject the null hypothesis, and thus refusing to draw a conclu-
B ) ould be a Type II error.

alpha

Type II error
beta
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Tip for Success

It is very easy to get confused be-
tween a Type I error and a Type 1]
error. Be sure you understand each
type of error (and the difference be-
tween them) before reading on in
this chapter.

Type II errors especially concern psychologists interested in practical applica-
tions, because a Type II error could mean that a valuable practical procedure is not
used.

As with a Type I error, you cannot know when you have made a Type II error.
But researchers can try to carry out studies so as to reduce the probability of making
one. One way of buying insurance against a Type II error is to set a very lenient sig-
nificance level, such as p < .10 or even p < .20. In this way, even if a study produces
only a very small effect, this effect has a good chance of being significant. There is
a cost to this insurance policy too.

ReLATiON OF TyPE | AND TYPE Il ERRORS

When it comes to setting significance levels, protecting against one kind of decision
error increases the chance of making the other. The insurance policy against Type I
error (setting a significance level of, say, .001) has the cost of increasing the chance
of making a Type II error. (This is because with a stringent significance level like
.001, even if the research hypothesis is true, the results have to be quite strong to be
extreme enough to reject the null hypothesis.) The insurance policy against Type II
error (setting a significance level of, say, .20) has the cost of increasing the chance
of making a Type I error. (This is because with a level of significance like .20, even
if the null hypothesis is true, it is fairly easy to get a significant result just by acci-
dentally getting a sample that is higher or lower than the general population before
doing the study.)

The trade-off between these two conflicting concerns usually is worked out by
compromise—thus the standard 5% and 1% significance levels.

SUMMARY OF POSSIBLE QUTCOMES OF HYPOTHESIS TESTING

The entire issue of possibly correct or mistaken conclusions in hypothesis testing is
shown in Table 4-2. Along the top of this table are the two possibilities about
whether the null hypothesis or the research hypothesis is really true. (Remember,
you never actually know this.) Along the side is whether, after hypothesis testing,
you decide that the research hypothesis is supported (reject the null hypothesis) or
decide that the results are inconclusive (do not reject the null hypothesis). Table 4-2

ILGIRREYE  Possible Correct and Incorrect Decisions
in Hypothesis Testing

Real Situation
(in practice, unknown)

Null Research
Hypothesis Hypothesis
g True True
%
‘E Research hypothesis supported Error Correct
,E 'z & (reject null hypothesis) (Type I) decision
2 E% o
§ = é 3 Study is inconclusive Correct Error
OpI& (do not reject null hypothesis) decision (Type I
B -
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shows that there are two ways to be correct and two ways to be in error in any hy-
pothesis testing situation. You will learn more about these possibilities in Chapter 6.

-

HOW ARE YOU DOING?

1. What is a decision error?
2. (a) What is a Type | error? (b) Why is it possible? (c) What is its probability? (d)
What is this probability called?

. (a) What is a Type Il error? (b) Why is it possible? (c) What is its probability called?

4. If you set a lenient alpha level (say .25), what is the effect on the probability of (a)
Type | error and (b) Type Il error?

5. If you set a stringent alpha level (say .001), what is the effect on the probability of
(a) Type | error and (b) Type Il error?
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th a concerted movement on the part of a small but vocal group of psychologists
! !)an significance tests completely! This is a radical suggestion with far-reaching
JImplications (for at least half a century, nearly every research study in psychology
“has used significance tests). There probably has been more written in the major psy-

€ discussion has gotten so heated that one article began as follows:
£ 18 ot true that a group of radical activists held 10 statisticians and six editors

z Cpstage at the 1996 convention of the American Psychological Society and
bra hanted, “Support the total test ban!” and “Nix the null!” (Abelson, 1997, p. 12).

Psychology, we discuss the issues in at least three different places. In this
C focus on some basic challenges to hypothesis testing. In Chapters 5 and
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6, we cover other topics that relate to aspects of hypothesis testing that you will
learn about in those chapters.

Before discussing this controversy, you should be reassured that you are not
learning about hypothesis testing for nothing. Whatever happens in the future, you
absolutely have to understand hypothesis testing to make sense of virtually every
research article published in the past. Further, in spite of the controversy that has
raged for the last decade, it is extremely rare to see new articles that do not use sig-
nificance testing. Thus, it is doubtful that there will be any major shifts in the near
future. Finally, even if hypothesis testing is completely abandoned, the alternatives
(which involve procedures you will learn about in Chapters 5 and 6) require under-
standing virtually all of the logic and procedures we are covering here.

So, what is the big controversy? Some of the debate concerns subtle points of
logic. For example, one issue relates to whether it makes sense to worry about re-
jecting the null hypothesis when a hypothesis of no effect whatsoever is extremely
unlikely to be true. We discuss this issue briefly in Box 4—1. Another issue is about
the foundation of hypothesis testing in terms of populations and samples, since in
most experiments the samples we use are not randomly selected from any definable
population. We discussed some points relating to this issue in Chapter 3. Finally,
some have questioned the appropriateness of concluding that if the data are incon-
sistent with the null hypothesis, this should be counted as evidence for the research
hypothesis. This controversy becomes rather technical, but our own view is that
given recent considerations of the issues, the way researchers in psychology use hy-
pothesis testing is reasonable (Nickerson, 2000).

However, the biggest complaint against significance tests, and the one that has
received almost universal agreement, is that they are misused. In fact, opponents of
significance tests argue that even if there were no other problems with the tests,
they should be banned simply because they are so often and so badly misused.
There are two main ways in which they are misused; one we can consider now, the
other must wait until we have covered a topic you learn in Chapter 6.

A major misuse of significance tests is the tendency for researchers to decide
that if a result is not significant, the null hypothesis is shown to be true. We have
emphasized that when the null hypothesis is not rejected, the results are inconclu-
sive. The error of concluding the null hypothesis is true from failing to reject it is
extremely serious, because important theories and methods may be considered false
just because a particular study did not get strong enough results. (You learn in
Chapter 6 that it is quite easy for a true research hypothesis not to come out signifi-
cant just because there were too few people in the study or the measures were not
very accurate. In fact, Hunter [1997] argues that in about 60% of psychology stud-
ies, we are likely to get nonsignificant results even when the research hypothesis is
actually true.)

What should be done? The general consensus seems to be that we should keep
significance tests, but better train our students not to misuse them (hence, the em-
phasis on these points in this book). We should not, as it were, throw the baby out
with bathwater. To address this controversy, the American Psychological Associa-
tion (APA) established a committee of eminent psychologists renowned for their
statistical expertise. The committee met over a 2-year period, circulated a prelimi-
nary report, and considered reactions to it from a large number of researchers. In the
end, they strongly condemned various misuses of significance testing of the kind we
have been discussing, but they left its use up to the decision of each researcher. In
their report they concluded:
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1 Some had hoped that this task force would vote to recommend an outright ban on
the use of significance tests in psychology journals. Although this might eliminate
some abuses, the committee thought there were enough counterexamples (e.g.,
. Abelson, 1997) to justify forbearance (Wilkinson & Task Force on Statistical Infer-
u ence, 1999, pp. 602-603).
1}; A few yeas ago, Nickerson (2000) systematically reviewed more than 400 arti-
g- cles on this controversy. His conclusion, with which we agree (as do probably most
ar psychology researchers), is that significance testing “is easily misunderstood and
es misused but that when applied with good judgment it can be an effective aid in the
>[- interpretation of experimental data” (p. 241).
of i
re- |
ely }
out 3 |[BOX 4-1 To Be or Not to Be—But Can Not Being Be?
fb‘f; The Problem of Whether and When
ly, to Accept the Null Hypothesis
:on- !
arch i The null hypothesis states that there is no difference esis and not easily interpreted any other way. Third,
that between populations represented by different groups and most important, the researcher has to have made a
‘hy- i or experimental conditions. As we have seen, the strong effort to find the effect that he or she wants to
i usual rule in statistics is that a study cannot find the conclude is not there. Among other things, this means
 has null hypothesis to be true. A study can only tell you studying a large sample and having very thorough
ts of that you cannot reject the null hypothesis. That is, a and sensitive measurement. If the study is an experi-
iests, study that fails to reject the null hypothesis is simply —ment, the experimenter should have tried to produce
ased. uninformative. Such studies tend not to be published, the difference by using a strong manipulation and rig-
7, the obviously. However, much work could be avoided if orous conditions of testing.
people knew what interventions, measures, or experi- Frick (1995) points out that all of this leaves a
ecide ments had not worked. Indeed, Greenwald (1975) re-  subjective element to the acceptance of the null hy-
have ports that sometimes ideas have been assumed too pothesis. Who decides when a researcher’s effort was
mCl‘f‘ long to be true just because a few studies found re- strong enough? Subjective judgments are a part of
Lit1s sults supporting them, while many more, unreported, science, like it or not. For example, reviewers of arti-
[falsf , i had not. cles submitted for publication in scientific journals
am.ln i Frick (1995) has pointed out yet another serious - have to decide if a topic is important enough to com-
ignifi- ] - problem with being rigidly uninterested in the null pete for limited space in those journals. Further, the
re Dot , ‘hypothesis: Sometimes it may be true that one thing null hypothesis is being accepted all the time anyway.
/ stud- ‘has no effect on another. This does not mean that (For example, many psychologists accept the null hy-
\esis 18 ; there would be a zero relationship of no correlation or  pothesis about the effect of extrasensory perception.)
5 -,; 0 difference at all—a result that is almost impossible It is better to discuss our basis for accepting the null
d keep &

10 many situations. It would only mean that the effect
% was so small that it probably represented no real, or at
1 east no important, relationship or difference.

The problem is knowing when to conclude that
[the null hypothesis (or something close to it) might be
tru €. Frick (1995) gives three criteria. First, the null
)prthesm should seem possible. Second, the results
| "'%.‘ study should be consistent with the null hypoth-

chef In

hypothesis than just to accept it.

What are we to make of all this? It is clear that
just failing to reject the null hypothesis is not the
same as supporting it. Indeed, equating these is a seri-
ous mistake. But Frick (1995) reminds us that there
are situations in which the evidence ought to con-
vince us that something like the null hypothesis is
likely to be the case.
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HYPOTHESIS TESTS IN RESEARCH ARTICLES

In general, hypothesis testing is reported in research articles as part of one of the
specific methods you learn in later chapters. For each result of interest, the re-
searcher usually first indicates whether the result was statistically significant. (Note
that, as with the first example below, the researcher will not necessarily use the
word “significant,” so look out for other indicators, such as reporting that scores on
a variable decreased, increased, or were associated with scores on another variable.)

Next, the researcher usually gives the symbol associated with the specific method

used in figuring the probabilities, such as ¢, F, or x* (see Chapters 7 to 13). Finally,
there will be an indication of the significance level, such as p < .05 or p < .01. (The
researcher will usually also provide other information, such as the mean and stan-

dard deviation of sample scores.) For example, Carver (2004) reported: “Frustration
increased considerably from the start of the session (M = 2.35, SD = 1.60) to the end

of the session (M = 5.36, SD = 2.25), #(65) = 11.22, p < .001.” There is a lot here

that you will learn about in later chapters, but the key thing to understand now about
this result is the “p < .001.” This means that the probability of the results if the null
hypothesis (of no difference between the populations the groups represent) were

true is less than .001 (.1%).

When a result is close, but does not reach the significance level chosen, it may

be reported anyway as a “near significant trend,” or as having “approached signifi-
cance,” with p < .10, for example. When a result is not even close to being extreme
enough to reject the null hypothesis, it may be reported as “not significant” or the
abbreviation ns will be used. Finally, whether or not a result is significant, it is in-

creasingly common for researchers to report the exact p level—such as p = .03 or

p =.27. The p reported here is based on the proportion of the comparison distribu-
tion that is more extreme than the sample score information that you could figure
from the Z score for your sample and a normal curve table.

A researcher will usually note if a one-tailed test is used. When reading re-
search articles, assume a two-tailed test was used if nothing is said otherwise. Even
though a researcher has chosen a significance level in advance, such as .05, results
that meet more rigorous standards may be noted as such. Thus, in the same article,
you may see some results noted as “p < .05,” others as “p < .01,” and still others as
“p <.001,” for example.

Finally, the results of hypothesis testing may be shown only as asterisks in a
table of results. In such tables, a result with an asterisk is significant, while a result
without one is not. For example, Table 4-3 shows results of part of a study by
Stipek and Ryan (1997) comparing economically disadvantaged and advantaged
preschoolers. This table gives figures for variables measured by observing the chil-
dren in the classroom, including means, standard deviations, and F statistics (an in-
dication of the procedure used in this study to test significance, a procedure you will
learn in Chapters 9 and 10). The important thing to look at for purposes of the pre-
sent discussion are the asterisks (and the notes at the bottom of the table that go
with them) telling you the significance levels for the various measures. For exam-
ple, for calling attention to their accomplishments, disadvantaged children (M = .20)
scored significantly higher than advantaged children (M = .04). The reverse pattern
was seen for “Smiles after completing the task.”

On the other hand, making positive social comparisons did not differ signifi-
cantly between the groups (the means were .71 and .64, but these were not different
enough to be significant in this study). Thus, we cannot conclude that for preschool-
ers, being disadvantaged has any relation to making positive social comparisons. It




