By Charlie McDowell, Linda Werner,
eather E. Bullock, and Julian Fernald

PAIR PROGRAMMING IMPR
RETENTION, (CONFIDENCE,

Pair programming produces more profictent, confident

programmers —and may help tncrease female representation

(n the frelo.

n recent years, the growth of extreme
programming (XP) has brought con-
siderable attention to collaborative
programming. Developed over a 15-
year period by Kent Beck and his col-
leagues, Ron Jeffries and Ward
Cunningham [1], XP is a computer software
development approach that credits much of
its success to the use of pair programming by
all programmers, regardless of experience
[9]. The pair programming dimension of XP
requires that teams of two programmers
work simultaneously on the same design,
algorithm, code, or test. Sitting shoulder to
shoulder at one computer, one member of
the pair is the “designated driver,” actively
creating code and controlling the keyboard
and mouse. The “non-driver” constantly
reviews the keyed data in order to identify
tactical and strategic deficiencies, including
erroneous syntax and logic, misspellings,
and implementations that don’t map to the
design. After a designated period of time,
the partners reverse roles. Code produced by
only one partner is discarded, or reviewed
collaboratively before it is integrated.
Women and minorities continue to be

underrepresented in computer science, and
the number of women pursuing college
majors in this area is declining. In 1985, 37%
of computer science bachelors degrees were
awarded to women; in 2001 that percentage
was down to 28% [11]. A number of vari-
ables have been proposed to account for this
gender difference, including traditional
socialization practices that reinforce math and
science as male domains, lower confidence
ratings and greater math anxiety among
women, and women’s tendency to take fewer
advanced mathematics courses. The belief
that computer science is a competitive, alien-
ating field may further discourage women
from pursuing careers in this area [5].

Pair programming, when used as a form of
collaborative learning, has been shown to
increase the number of women (and men)
persisting in their previously stated intent to
pursue degrees in computer science. In addi-
tion, paired teams have been found to signif-
icantly outperform individual programmers
in terms of program functionality and read-
ability, to report greater satisfaction with the
problem-solving process, to have greater con-
fidence in their solutions, and to be more

90

August 2006/Vol. 49, No. 8 COMMUNICATIONS OF THE ACM

OVES STUDENT
AND PROGRAM

(QUALITY

likely to complete a programming assign-
ment [10]. Nevertheless, many instructors
continue to require students to complete pro-
gramming assignments independently. Pre-
sumably, continued reliance on solo
programming in academic settings is rooted
in instructor concern that at least one of the
partners in a pair will not learn as much as if
he or she completed the assignment alone. In
the worst case, one member of the pair might
do essentially all of the work. Although this
would not be “pair programming,” it is often
difficult, if not impossible, to monitor how
students actually spend their programming
time and how closely they are following the
pairing protocol.

A STUDY OF PAIR PROGRAMMING

We investigated the effects of pair program-
ming on student performance and subse-
quent pursuit of computer science-related
degrees among both female and male college
students taking an introductory program-
ming course designed for computer science-
related majors (computer science, computer
engineering, and information systems man-
agement). We collected data on 554 stu-

dents who attempted the course at the Uni-
versity of California-Santa Cruz [4]. Data
was collected from a total of four sections of
the course: Fall 2000, Winter 2001 (two
sections), and Spring 2001. One of the
principle investigators of this study, Charlie
McDowell, taught the Fall and Spring sec-
tions of the course. The Winter 2001 sec-
tions were taught by UCSC faculty
members not associated with this project.
Students in the spring section were
required to complete programming assign-
ments independently. Students enrolled in
the other sections were required to complete
all assignments using pair programming. On
the first day of class, students in the pairing
sections were given a brief 15 to 20 minute
description of pair programming and
instructed to read Williams and Kessler’s arti-
cle “All I Really Need to Know about Pair
Programming I Learned in Kindergarten”
[7]. As an incentive they were told the first
quiz might include a question on the article.
Students in the pairing sections submitted
a list of three names of potential partners,
and partners were assigned based on these
preferences. In nearly all instances, students

COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8

91

Among students who completed
the class, those who paired produced
significantly better programs than
those who worked alone.

were assigned a partner from their list. Those who
stated no preference were randomly assigned a part-
ner. Whenever possible students remained with the
same partner throughout the quarter, however, due
to schedule changes and drops, a small number of
partner reassignments were necessary. As a result of
hardships such as heavy work schedules or living far
from campus, 17 students across the three pairing
sections were permitted to program alone for various
reasons. Data from these students was combined
with the data from the students in the non-pairing
section.

Although each student was assigned to one 90-
minute lab time per week, most programming
assignments were completed outside of scheduled lab
time. The labs functioned primarily as teaching assis-
tant office hours. There were no specific in-lab
assignments and attendance was not mandatory. Pro-
gramming assignments were scored for functionality
and readability. Along with each assignment, stu-
dents submitted a log indicating the amount of time
they spent on the assignment (pairing students were
asked to differentiate between time spent driving,
reviewing, and alone), their level of confidence in
their solution, how much they enjoyed working on
the assignment, and how satisfied they were with the
process.

Regardless of whether they completed assignments
in pairs, all students took exams independently. The
final exam assessed students’ knowledge of program-
ming concepts and their ability to write new code. We
collected information about students’ SAT scores, the
courses they took over the following year, and their

92

August 2006/Vol. 49, No. 8 COMMUNICATIONS OF THE ACM

major declarations a year after taking the class.

An important assumption of this study was that all
four course sections were similar in terms of students’
academic preparation to succeed. We found no dif-
ference in the SAT math scores among the four sec-
tions. We did find that the average SAT verbal score
for one of the three pairing sections was lower than
the score for the other two pairing sections. However,
the difference was not significant when compared to
the non-pairing section nor was there a significant
difference between the pairing sections as a group and
the non-pairing section. Because the difference was
only between pairing sections it seemed acceptable.

One of the key hypotheses tested by our study was
the following:

Women who program in pairs will have higher reten-
tion rates than women who program independently.

pecifically we wanted to know if using

pairing as a learning tool for beginning

programmers would influence course

completion rates and subsequent com-

puter programming course-taking behav-

ior, both in terms of attempts and pass
rates, and students’ decisions to major in computer
science-related fields.

A comparison of students who used pair program-
ming with those who didnt indicated that pairers
were significantly more likely to remain in the course
through the final exam (90.8%) than were non-pair-
ers (80.4%). Among just those who took the final

exam, the difference in pass rates between pairing

(79.6%) and non-pairing students (78.2%) was not
statistically significant. Williams and Kessler have pro-
posed “pair pressure” as a possible explanation for
higher completion rates among paired versus unpaired
students [8]. According to Williams and Kessler, stu-
dents who work in pairs may be more likely to com-
plete programming courses because of the shared
responsibility that results from collaborative partner-
ships. As a consequence, paired students may remain
in the class for the sake of their partner. Although this
is a plausible explanation, it is not supported by this
data. The fact that in our study there was no differ-
ence in pass rates between pairers who completed the
course and non-pairers who completed the course
suggests that it was not simply the case that pairers
were more likely to “stick it out,”
but rather a larger proportion of
paired students were able to mas-
ter enough of the course material
to pass.

We followed those students
who passed the introductory pro-
gramming course for one full aca-
demic year beyond the intro
course. Consequently this analysis
was limited to the 321 students
still enrolled at UCSC three quar-
ters after taking and passing the
intro course.

Among the students intending
to pursue a computer science-
related major at the start of the
introductory programming class,
successfully passed the class with a
“C” or better, and were still
enrolled at UCSC a full year later (N=238; 187 men
and 51 women), a significantly higher percentage of the
students who had paired had gone on to attempt the
subsequent programming course (Introduction to Data
Structures) within a year (84.9%), than had the non-
pairing students (66.7%). Separate analyses by gender
of the effect of pairing on whether the subsequent
course was attempted within a year revealed about an
18% difference between pairers and non-pairers for
both women and men (73.8% of paired women vs.
55.6% of non-paired women, and 88.0% of paired
men vs. 69.4% of unpaired men). The pairing effect
was statistically significant for men but not for women.
The increase in the percentage of students associated
with pairing appears to be quite similar for men and
women. The fact that this difference was statistically
significant for men but not women is most likely attrib-
utable to the relatively small number of women (51
compared to 186 men) in this part of the study.

of intro course

Comparison

of completion rates,
pass rates, and
persistence in the
major.

% that persisted in the course and took the final 88.1 795
% of students taking the final that passed the class with C or better
% of passers that took the 2nd programming course within | year ~ 61.1

% of passers that took the 2nd course within | year—restricted to
those indicating a planned CS related major at start of intro course

% of passers still at UCSC | year later that declared a CS major

mong students who attempted the
Data Structures course, the students
from the pairing sections were more
likely to pass on their first attempt
(65.5% vs. 40.0%). That is, stu-
dents who paired in the introduc-
tory programming course were more likely to
attempt the subsequent programming class and
more likely to pass it than those who learned to pro-
gram independently. This is particularly significant
because students in the Data Structures course were
required to complete all programming assignments
individually. This indicates that there is not a prob-
lem with a significant number of weak students pass-
ing the introductory course with the help of their

Female Male All

Pair Solo Pair Solo Pair Solo

91.7 815 908 804

742 742 813 795 796 782

500 812 66.1 767 622

738 556 880 694 849 667
% of those taking the 2nd course that passed it on the first attempt 68.3 444 646 375 655 400
463 Il.1 595 4l1.1 569 338
% of passers still at UCSC | year later that declared a CS major— 595 222 740 472 708 422

restricted to those indicating a planned CS related major at start

Shaded numbers indicate statistically significant differences.

partner, only to fail in the next course where they
must program alone. The difference in pass rates
between pair and non-pair students was similar for
men (64.6% vs. 37.5%) and women (68.3% vs.
44.4%), although for the women the difference was
not statistically significant.

Among the students initially intending a computer
science major, and who passed the introductory
course and remained at UCSC for at least a year, the
pairing students were also more likely to have declared
a computer science-related major one year after com-
pleting the introductory programming class. This was
the case for both women and men. Women who
paired were more likely than women who worked
independently to be in a computer science related
major (59.5% vs. 22.2%). Similarly, pairing men were
also more likely to have declared a computer science
related major one year later than men who worked
alone (74% vs. 47.2%).

Interestingly, the same pattern of results was
observed among all students who successfully com-
pleted the introductory programming course and
were still enrolled at UCSC a year later, regardless of
whether they had initially been planning to major in
one of the computer science-related majors. Pairers

COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8 93

were significantly more likely to have declared a com-
puter science related major than non-pairers (56.9%
vs. 33.8%), and that was the case for both men
(59.5% vs. 41.1%), and women (46.3% vs. 11.1%).
See the table here for results.

Course performance. In addition to completion
and pass rates, we looked at specific parts of the
course performance. We measured two related, but
distinct indicators of course mastery. The first, the
quality of student programs, was operationalized as
students’ normalized average score on the graded pro-
gramming assignments. For the second indicator, the
extent to which students
could apply the concepts
covered during the
course, we used final
exam scores, which all
students took indepen-
dently regardless of
whether they paired or
not. For the following
analyses we included only
the 486 students who
completed the course.
Completing the course is
defined as taking the final
exam.

Among students who
completed the class, those
who paired produced significantly better programs
(86.6%) than those who worked alone (68.1%).
There was no significant gender difference in average
programming scores (men’s and women’s scores were
81.9% and 82.5% respectively), nor was there an
interaction between gender and pairing. In other
words, pairing was associated with significantly
higher scores for both women and men.

It may be the reluctance of some computer science
faculty to use pair programming in their classes is due
to a concern that at least some students will “earn”
grades that predominantly reflect their partner’s work.
It is possible, for example, that the pairing students in
our study earned higher average programming scores
simply because weaker students received scores that
were primarily due to the work of the stronger stu-
dent in the pair, thus artificially inflating the average
programming scores of the pairers.

Elsewhere we have argued that the very process of
working collaboratively enhances the quality of pro-
grams that pairs produce [3]. In that paper we com-
pared two sections of an introductory programming
course taught by the same instructor, and for which
assignments were intentionally designed to be equiv-
alent. We found the average score on programming

100% - 89.4%

I|m.
I .
All

M Pairers

80% -

60% -

40% -

20% -

0%1

Confidence in program
solutions—closing
one gender gap.

94

August 2006/Vol. 49, No. 8 COMMUNICATIONS OF THE ACM

assignments of students in the pairing section was sig-
nificantly higher than the average score of the top
50% (based on final exam scores) of the non-pairing
section.

Because students in different sections of this study
did not complete exactly the same programming
assignments, we did a follow-up study [2] in which a
section of pairing students was given the same pro-
gramming assignments as the non-pairing students
from our original study. In that study we again found
that the programs produced by the pairing students
were significantly better than those produced by the

non-pairing students,
although the difference

was not as great as in the

3.5 ?

Women

I Non-pairers

original study. This sug-
gests that some of the dif-
ference reported in our
main study could be from
variations in the difficulty
of the assignment, but
that the overall conclu-
sion is unchanged.

Because all of the stu-
dents in this study took the final exam independently,
we considered final exam scores to be a strong indica-
tion of the extent to which students had mastered the
course material. There was no significant difference in
the average final exam of the pairers (75.2%) and the
non-pairers (74.4%). This finding strongly suggests a
student’s ability to independently apply concepts to
novel problems is not compromised by learning to
program in pairs. Indeed, considering that a signifi-
cantly greater percentage of the students who paired
took the final, it seems that learning to program in
pairs results in mastery for a greater percentage of stu-
dents.

Confidence and enjoyment. Of course the most
important goal for students in any class is mastery of
the material. This is certainly the case for introduc-
tory programming courses, where future success is
dependent on a strong foundational knowledge.
However, subjective experiences in introductory pro-
gramming courses may also contribute to decisions
about whether to pursue computer science-related
degrees. For this reason it is important to understand
how the experience of pairing influences students’
confidence and enjoyment of their work. Students
responded to the following questions in their logs
completed after each graded programming assign-
ment.

Confidence: On a scale from 0 (not at all confident)
to 100 (very confident), how confident are you in
your solution to this assignment?

Men

Enjoyment: How much did you enjoy working on
this programming assignment? (1=not at all, 7=very
much)

Paired students enjoyed working on programming
assignments (M=5.15) more than non-pairing stu-
dents (M=4.69), Likewise, among just the males,
paired students reported greater enjoyment (M=5.23)
than non-pairing students (M=4.75). Women paired
students also reported greater enjoyment (M=4.90)
than non-pairing women (M=4.65), however this dif-
ference was not significant. There was also no signifi-
cant difference in the reported enjoyment of all
women versus all men.

In addition to enjoying their coursework more, stu-
dents who paired reported significantly higher confi-
dence in their program solutions (89.4%) than
students who worked independently (71.2%). Consis-
tent with findings in other areas, men were signifi-
cantly more confident (87.0%) than women (81.1%).
There was also a significant interaction between pair-
ing and gender with regard to reported confidence.
Follow-up tests of the interaction indicated that pair-
ing resulted in more confidence for both women
(86.8% vs. 63.0%) and men (90.3% vs. 74.6%).
However, the 24% increase in confidence that pairing
afforded women was even greater than the 15% confi-
dence boost experienced by men who had the benefit
of pairing. The result was a significant decrease of a
gender gap in confidence as shown in the figure here.

CoNCLUSION

The results of this study provide some of the most
compelling evidence to date of the effectiveness of
pair programming as a pedagogical tool. It appears
that pairing bolsters course completion and conse-
quently course pass rates, and contributes to greater
persistence in computer science-related majors.
Moreover, students who paired were more likely to
pass the subsequent programming course that
required them to work alone. This is a strong indi-
cator that pairing did not result in a significant num-
ber of students passing the course without learning
how to program due to a “free ride” from their part-
ner. The pairing students also produce higher qual-
ity programs, are more confident in their work, and
enjoy it more. We hope these findings will encour-
age instructors to use pair programming not only in
their introductory courses, but also in their upper-
level courses.

The continued underrepresentation of women in
computer science underscores the need for strategies
that foster women’s interest and promote their success
[5]. Pair programming appears to be one such approach
[6]. That the benefits associated with pair program-

ming extend to both men and women speaks to its
broad-based appeal. As we continue to investigate the
effects of this technique on attracting and retaining
female students, parallel research investigating these
phenomena in the workplace is also needed.

This work was funded by National Science Foundation grant EIA-0089989. Any
opinions, findings, and conclusions or recommendations expressed in this article are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

1. Beck, K. Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA, 2000.

2. Hanks, B. and McDowell, C. Program quality with pair programming
in CS1. In Proceedings of the 9th Annual Conference on Innovation and
Technology in Computer Science Education. (Leeds, UK, 2004), SIGCSE
Bulletin, 176-180.

3. McDowell, C., Werner, L., Bullock, H., and Fernald, J. The effects of
pair-programming on performance in an introductory programming
course. In Proceedings of the 33rd SIGCSE Technical Symposium on
Computer Science Education (KY, 2002) 38-42.

4. McDowell, C., Werner, L Bullock, H., and Fernald, J. The impact of

pair programming on student performance and pursuit of computer

science related majors. In Proceedings of the 25th International Confer-
ence on Software Engineering. IEEE Computer Society (Portland, OR,

2003), 602-607.

. Tech-Savvy Educating Girls in the New Computer Age. 2000. American
Association of University Women Education Foundation; Executive
summary at www.aauw.org/research/techexecsumm.cfm.

6. Werner, L.L., Hanks, B., and McDowell, C. Pair-programming helps
female computer science students. /. Educational Resources in Comput-
ing 4, 1 (2005).

7. Williams, L.A. and Kessler, R.R. All I really need to know about pair
programming I learned in kindergarten. Commun. ACM 43, 5 (May
2000), 108-114.

8. Williams, L.A. and Kessler, R.R. The effects of “pair-pressure” and
“pair-learning” on software engineering education. In Proceedings of the
13th Conference on Software Engineering Education and Training. IEEE
Computer Society (Austin, TX, 2000), 59-65.

9. Williams, L., Kessler, R., Cunningham, W., and Jeffries, R. Strength-
ening the case for pair programming. [EEE Software 17, 4 (2000),
19-25.

10. Williams, L., McDowell, C., Nagappan, N., Fernald, J., and Werner,
L.L. Building pair programming knowledge through a family of exper-
iments. In Proceedings of the IEEE International Symposium on Empiri-
cal Software Engineering. (Rome, Italy, 2003), 143-153.

. Women, Minorities and Persons with Disabilities in Science and Engi-
neering. NSF. 2004; www.nsf.gov/statistics/women.

N

1

—

CHARLIE MCDOWELL (charlie@cs.ucsc.edu) is a professor in the
Computer Science Department at the University of California, Santa
Cruz.

LINDA WERNER (linda@cs.ucsc.edu) is a lecturer in the Computer
Science Department at the University of California, Santa Cruz.
HEATHER E. BuLLock (hbullock@cats.ucsc.edu) is an associate
professor in the Psychology Department at the University of California,
Santa Cruz.

JULIAN FERNALD (jfernald@cats.ucsc.edu) is the director of
Institutional Research in the Psychology Department at the University
of California, Santa Cruz.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0800 $5.00

95

COMMUNICATIONS OF THE ACM August 2006/Vol. 49, No. 8

