
~ [HI ’92 Mav3-7.1992

APPLYING COGNITIVE WALKTHROUGHS TO MORE
COMPLEX USER INTERFACES:

EXPERIENCES, ISSUES, AND RECOMMENDATIONS

Cathleen Wharton Janice Bradford A4arita Fran.zke

Robin Je@ies

Hewlett-Packard Laboratories U S WEST Advanced Technologies

and Hewlett-Packard Laboratories and

Dept. of Computer Science and P. O. Box 10490 Dept. of Psychology and

Institute of Cognitive Science Palo Alto, CA 94303-0867 Institute of Cognitive Science

University of Colorado bradford(ilhplabs.hpl. hp.com University of Colorado

Boulder, Colorado 80309-0430 ieffries @ hdabs.ht)l.hncom Boulder, Colorado 80309-0345, -——r

cwharton(!cs.colorado. edu ‘
L

ABSTRACT
The Cognitive Walkthrough methodology was developed in

an effort to bring cognitive theory closer to practicq to
enhance the design and evaluation of user interfaces in
industrial settings. For the first time, small teams of
professional developers have used this method to critique
three complex software systems. In this paper we report
evidence about how the methodology worked for these
evaluations. We focus on five core issues: (1) task selection,
coverage, and evaluation, (2) the process of doing a Cognitive
Walkthrough, (3) requisite knowledge for the evaluators, (4)
group walkthroughs, and (5) the interpretation of results. Our
findings show that many variables can affect the success of
the techniqu~ we believe that if the Cognitive Walkthrough
is ultimately to be successful in industrial settings, the
method must be refined and augmented in a variety of ways.

KEYWORDS: Cognitive Walkthrough, group walkthroughs,
task-based evaluations, usability inspection method, user
interface evaluation.

INTRODUCTION
The need for practical techniques for critiquing and iterating
a user interface design early and often in the development
process is well recognized. The ideal technique would be

usable early in the development cycle and inexpensive in
monetary cost, time, and the need for access to scarce
expertise. Several evaluation techniques are available that
attempt to meet various of those goats, e.g., usability testing,
heuristic evaluation, guidelines and style guides, GOMS
analyses, and Cognitive Walkthroughs [3, 5, 6, 8, 11]. This
paper reports on experiences using the Cognitive
Walkthrough method in real development environments.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying ISby permis-
sion of the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permwslon.

@ 1992 ACM 0-89791-513-5/92/0005-0381 1.50

--
mfranzke @clipr,colorado.edu

The Cognitive Walkthrough is a model-specific
methodology originally designed for the evaluation of
simple Walk Up and Use interfaces. Consequently, most
applications of the method have been based on interfaces of
that type (see [7, 8, 13]). Recently, however, there have been
attempts to understand how the method scales up to
interfaces that are themselves more complex, but still

support infrequent or novice users [2, 5, 7]. Additionally, it

has been a goal [of 2 and 5] to conduct these evaluations in
more realistic contexts by having them carried out in
industrial environments by groups of software developers,
rather than by HCI specialists.

In this paper we discuss both issues and recommendations
for this methodology in light of our experiences with three
complex user interfaces. We describe recurring issues we
observed and their implications for the use of the technique
by others. The fact that these same issues came up during
independent applications of the method by different
individuals to different systems lends credence to the
robustness of the phenomena we describe; however, one

must keep in mind that we are reporting anecdotal evidence,
not the results of controlled experiments,

THE COGNITIVEWALKTHROUGH:AN OVERVIEW
The Cognitive Walkthrough is a methodology for
performing theory-based usability evaluations of user
interfaces. Analogous to the traditional structured
walkthroughs used by the software engineering community
[17], the Cognitive Walkthrough has the goal of improving
software usability by defect detection, amplification, and
removal. Like other forms of usability walkthroughs [6, 11],
Cognitive Walkthrough evaluations emphasize basic
usability principles. In contrast to other types of usability
evaluations, the Cognitive Walkthrough focuses on a user’s
cognitive activities; specifically, the goals and knowledge of
a user while performing a specific task.

The Cognitive Walkthrough is designed to be used
iteratively, early in the design cycle, by individuals or

381



~ (H1’92 May3-7, 1992

groups. Either software developers or usability specialists
can perform the Walkthrough. It is a task-based methodology
that serves to focus an evaluator’s attention on the user’s

goals and actions, and on the system affordances that support
or hinder the effective accomplishment of those goals,
During the Walkthrough, the steps required to accomplish a
task are evaluated by examining the behavior of the interface
and its effect on the prototypical user. Both problematic and
successful task steps are recorded. Steps are deemed
successful if the expected goals and knowledge of the typical
user would result in selection of an action that leads the user
closer to her ultimate goal; they are problematic otherwise.

The Cognitive Walkthrough is based on a theory of
exploratory learning, C-E+, and some corresponding
interface design guidelines, Design for Successful Guessing,
geared toward Walk Up and Use systems [12]. A Walk Up
and Use system (e.g., automatic teller machine or airport
information kiosk) supports the notion of learning by doingl.
Since the Walkthrough is tightly coupled to the above theory
and guidelines, each step in a Walkthrough mirrors the
underlying theory by testing whether t.bese principles have
been followed in the interface’s design,

The Walkthrough is a form and task-based methodology,
whereby a task is evaluated by completing a set of forms,
each form comprising several evaluation steps. Each step, in
turn, is designed to address underlying theoretical concepts
through a list of questions to be asked about the interface.
See Figure 1 which contains a portion of a Cognitive
Walkthrough form to be used when evaluating each interface
action [16]. For example, to determine if the user is likely to
choose the appropriate action at a given stage of a task, the
Walkthrough asks how well an identier (e.g., a button
labelled “time”) is linked to the needed action (e.g., pressing

the button) and how well the needed action is linked to the
user’s current goal (e.g., to set the time on an alarm clock),

The Walkthrough method consists of three basic phases: a

preparation phase, an evaluation phase, and a result
interpretation phase, The forms guide the evaluators through
the preparation and evaluation phases with detailed
instructions; the interpretation phase, however, is more ad
hoc. The preparation phase is used to gather and record basic
system information prior to the evaluation phase. For
example, the suite of tasks to be evaluated is identified and
information about the users is noted. In the evaluation phase
questions like those in Figure 1 are asked of each step within
a given user task. And finally, in the interpretation phase all
information gathered and recorded from the Walkthrough
process is interpreted according to the following metrics:
positive responses support the inference that the interface is
good, whereas negative answers highlight steps that are
diflicult for the user. The results thus hint at interface
problems and the necessary changes.

1. People use learning by doing in situations where they are

knowledge per, and hence must rely on feedback from the
interface to shape or refine their knowledge and behavior.

Step [B] Chocdng The Next Correct Action:

[B.1] Correct Action: Describe the action that tbe user should take at this
step in the sequence.

[B.2] Knowledge Checkpoint: If you have assumed user knowledge or

ex~rience, update the USERASSUMPTIONFORM.

[B.3] SystemState Checkpoint: If the system state may influence the
user, update the SYSTEM STATE FORM.

[B.4] Action Avrdlabilitfi Is it obvious to tbe user that this action is a

possible choice here? If not, indicate why.

How many users might miss this action (% 100755025105 O)?

[B.5] Action Identifiability:

[B.5.a] Identifier Location, Type, Wording, and Meantng:

_ No identifier is provided. (Skip to subpart [B.5.d].)

Identifier Type: Label Prompt Description Other (Explain)

Identifier Wording

Is the identifier’s location obvious? If not, indicate why.

[B.5.b] Link Between Identifier and Action Is the identifier clearly
linked with this action? If not, indicate why.

How many users won’t make this connection (% 100755025105 O)?

[B.5.c] Link Between Identifier and Goal: Is the identifier easily linked

with an active goal? If not, indicate why,

How many users won’t make this connection (% 100755025105 O)?

. . .

Figure 1: Excerpt From a Walkthrough Form

THE THREE INTERFACES EVALUATED

We have conducted Cognitive Walkthroughs for three
different applications that are much more complex than the
Walk Up and Use interfaces to which the method has

previously been applied. Since the three systems are
intended to be productively used by casual or intermittent
users (users similar to those the technique is designed to
support), the method should still be applicable. Each of the
applications was designed for a different domain and class of
users, and utilizes a dtierent interface style. The three
applications we evaluated are HP-WE, REPS, and BCA.

The HP-VUE System
HP-VUE is a visual interface to the Unix operating system.2
It provides graphical tools for manipulating files, starting
and stopping applications, requesting and browsing help,
controlling the appearance of the screen, etc. A “beta-test”
version of HP-VUE was evaluated.

The evaluation of this interface was done by a group of three
software engineers similar to the actual designers of HP–
VUE. Seven common tasks were evaluat~, they were
selected by someone who was expert in using the
Walkthrough technique, rather than the evaluators

2. The Hewlett-Packard Visurd User Environment (HP-VUE
2.0). HP-VUE is a trademark of the Hewlett-Packard Company.
UNIX is a trademark of AT&T. The X Window System is a

trademark of Massachusetts Institute of Technology. Motif is a
trademark of the Open Software Foundation, Inc.

382



~ CHI’92 May3-7, 1992

themselves. The set of paper forms used for this evaluation
was developed by Wharton [16].

The REPSSystem
REPS is an existing system to guide sales representatives
through a sales call by providing them with necessary
customer and product information. Sales representatives use
the system frequently, but new users, who do not receive
intensive training on the system, are introduced often. REPS
is accessedvia ASCII terminals using function keys; it does
not support a graphical interface. At the time of the
evaluation the system had been taken down because of user
complaints. The application of the Cognitive Walkthrough
was an attempt to locate and quantify the interface problems.

The evaluation team was made up of a system developer who
helped to implement the system, a requirements analyst who
served as an advocate for the users and joined the group after
the initial design decisions had been made, and a cognitive
psychologist who joined the team as a user interface
consultant. Four task scenarios were selected by the
requirements analyst and the cognitive psychologist. Three
simple interactions (i.e., task scenarios) with the system were
formally evaluatet paper forms similar to those described in
[12] were used. In a fourth task scenario, no forms were
used. Instead the group tried to answer the standard
questions informally.

The BCA Syetem
BCA is a research prototype CAD tool intended to be used
by electrical engineers to design the construction parameters
for a bare printed circuit board and to get feedback on the
manufacturability of the design. This design task is complex,
requiring the specification of many parameters and the
weighing of tradeoffs between design choices affecting,
among other things, fabrication cost, board production yield,
and electrical performance. The targeted BCA user is an
infrequent user who needs to do these tasks between one and
three times per year. BCA runs on a Unix workstation under
X-Windows with a Motif-based interface. The version
evaluated had the requisite functionality, but had never been
previously tested by a real user,

The Walkthrough was done by the current BCA design team,
made up of a project manager, four computer scientists, and
one electrical engineer. Only one of these people had been
involved in the original design and implementation of the
system, and only one other person was familiar with the
Walkthrough method. Two tasks were evaluated, one simple
and the other complex. The set of paper forms used was
developed by Wharton [16].

EXPERIENCES,ISSUES,AND RECOMMENDATIONS
Thepurpose of this paper is to describe the issues that arose
during the Cognitive Walkthrough evaluations of these three
applications. Common themes emerged across all the
evaluations, which we believe expose the strengths and
weaknesses of the current version of the method. Elsewhere
we have published more formal analyses of two of these
evaluations, including information about the number and

types of problems found [2, 5]. Our approach here is more
anecdotal. We describe various aspects of our experiences,
illustrating the issues with examples from the evaluations,
and draw conclusions about improvements to the method.

The three interfaces described above are similar in important
ways. Firs~ all are intended to be used by casual users or
novices, so the capability to be productive on the system
without extensive training is important. Second, all support
abroad range of functionality and complex tasks. And third,
in all cases the functionality being evaluated has been
implemental, we did not evaluate design mock-ups. We now

discuss the key issues, experiences, and recommendations
relevant to the Cognitive Walkthrough evaluations of these
three applications.

Task Selection, Coverage, and Evaluation

The first step in performing a Walkthrough is to select the
tasks to be evaluated. Any interface of even moderate
complexity supports dozens or hundreds of tasks and task
variants, and only a small fraction of them can be evaluated.
However, the Walkthrough methodology does not provide
guidance on how to select tasks, because task selection is not
within the scope of the underlying theory. Nevertheless, to
achieve good results during a Walkthrough it is necessary to
understand those tasks that are most useful to evaluate, how
many tasks are needed for sufficient interface coverage, and
issues that arise when evaluating tasks.

How Realistic and Complex Should the Tasks Be? The REPS

and BCA evaluation teams selected both simple and
complex tasks, evaluating the simple tasks first. This
reflected their need to gain experience with the Walkthrough
method before doing more complex tasks. The simple tasks
tend to correspond to the functional decomposition of the
interface by its designers; the more complex tasks
correspond to compositions of functionality and relevant
transitions among subtasks. Although all evaluators strove
for realism in the tasks they selected, the length and

complexity of the evaluation process resulted in tasks being
selected that were simplifications of what users would do in
these rich environments, limiting consideration to only the
most direct path through the interface. Consequently,
potential problems may have been overlooked.

From our experiences we have found that tasks that mirror a
simple, functional decomposition of the interface typically
do not expose many problems with the interface. On the
other hand, doing a simple task first can provide the
experience necessary to perform a more complex
Walkthrough. In general, we have found that it is most
important to choose realistic tasks which exercise key
system functionality; such tasks often comprise multiple
core functions of the interface. By doing so, the evaluation
covers not just the elements, but their combination and anY
necessary transitions among the subtasks. An important
tradeoff to consider is the degree of realism or complexity of
any individual task evaluation versus the number of tasks
that can be covered, assuming fixed and limited resources. It
is important to select some tasks to be covered as realistically

383



~ CHI’92 May3-7, 1992.

as possible, which will often imply complex action
sequences with multiple alternatives, as well as to choose
other tasks to cover the full range of functionality.

Where Should Boundaries Be Drawn? Aside from

complexity, many other issues need to be considered when
determining which tasks to include in the evaluation. For
example, evaluators must decide what constitutes the
domain of the application. Should the tasks to be evaluated
encompass only what the application currently does or what
users will expect it to do? This was particularly an issue for
HP-VUE, because HP-VUE provides access to functionality
provided by both the X-Window system and the Unix

operating system; however, the release evaluated did not
cover all the functionality of X and Unix. Users have to
switch to “native mode” to accomplish some of their tasks,
When selecting the tasks to evaluate for HP-VUE, it was
difficult to decide what to do about frequent tasks that
straddled the boun~les of HP-VUE.

How Many Tasks Are Enough? All evaluations were able to

cover only a small fraction of either the set of user tasks or
the functionality of the interface. The evaluators were unable
to commit the time to fully evaluate an interface of the
complexity of the systems considered. To do so would easily
take 100 hours or more, a figure inconsistent with the 1-2
sessions the evaluators believed a critique should take. As it
was, the actual sessions were often 4-8 hours long. Because
all evaluators stopped after 6-15 total hours and 2-7 tasks, we
do not have measures of the number or kinds of problems
that might have been uncovered had additional tasks been
evaluated.

What About Task Variants? Once a candidate set of tasks is

chosen, which variants to evaluate must also be considered.
Rich interfaces often provide multiple ways to accomplish a
task, Should all the paths be evaluated, or only the “most
obvious” one for a given context? We have always evaluated
only a single path assuming that this is the one the user
would choose. Further, by decreasing the number of paths
for a particukw task, the number of tasks can be increased
appropriately. Absolute tradeoffs between the number of
tasks and paths, however, are not known.

At What Granularity Should the Evaluation Be Carried Out?
Even when a suite of user tasks under evaluation can be
refined to address these task selection and coverage
concerns, other task-related issues arise when the evaluation
is performed. Evatuatom often have trouble deciding what
the granularity of an individual action should be. For
instance, shou~d a user action consist of a meaningful set of
keystrokes, s.g.. a file name, or should each letter (keystroke)
within the file name be counted as an individual user action?
An example of this involves the HP-VUE interface, where
one may log into the HP-VUE system by using one of two
methods: (1) type login name followed by a <Cfi, or (2)
type Iogin name and then mouse click on the “OK’ button. It
may seem that these methods would have identical
implications, but depending on how the user approaches the
task physically and mentally, the termination actions (i.e.,

pressing the <Cm button or the mouse click on “OK”), may
lead to significant differences in the evaluation.

We believe the granularity of action evaluations needs to be
determined with respect to the interface under evaluation. In
most cases it seems that a reasonable collection of
keystrokes, such as those used to input a file name, can be
counted as a single user action. But if the interface requires
different physical actions, such as keystroke and mouse click
actions, then these should be treated as two separate actions.
(cf. The approach of Card Moran, and Newell’s Model
Human Processor [1], where a <CIb is always treated as a

separate step.)

What About /denfica/ Subtasks? Another issue is that of
identical embedded subtasks within a set of different, larger
tasks. When using realistic tasks, several different tasks may
contain an identical subtask. Should this be treated as the
same subtask each time it comes up, or will there be nuances
of the different contexts that may change the evaluation of
that subtask? When this situation arises during an evaluation
process, the evaluators must decide whether to do a detailed
evaluation of those identical aspects. During our evaluations
we encountered some pairs of contexts in which the identical
subtask would be performed differently. Had the evaluators
treated the previously analyzed subtask as a “solved
problem” in the second context, important problems would
have been overlooked. Thus, for identical embedded actions,
all transitions definitely should be evaluated, but it may be
safe to short-circuit some of the actual subtask evaluations.

What About a High-Level Treatment of User Tasks? The final
issue we raise concerns the Walkthrough’s lack of a high-
level treatment of the suite of user tasks. Because the tasks

are evaluated at the granularity of individual user actions,
there is no way to determine if the task as a whole evaluates
well. It is only known how the individual user actions
evaluate. This is a shortcoming of the method, because the
designer also needs to know whether a task itself is sensible,
non-circular, too long, or important to the user. The
possibility of missing interface problems because the
Walkthrough does not encourage evaluators to take a broad
view of the task is one for which we have not found a
solution. We have relied on informal critiques to ensure that
such issues are not missed.

The Process of Doing a Cognitive Walkthrough

As described previously, the WaIkthrough methodology
consists of a set of forms to be filled out while exploring user
actions and system responses during one or more tasks. The
central Walkthrough form asks a series of questions about a
single atomic action in a task; thus, copies of this form are
filled out dozens of times during a complete Walkthrough.

Groups who adhered most closely to the Cognitive
Walkthrough procedures found the repetitive form filling to
be very tedous, enough so that it discouraged some
evaluators from using the method in the future.

Similarly, the separation of bookkeeping requirements from
the actual evaluation ended up being another procedural

384



V CHI’92 May3-7, 1992

impediment — often a wait was thrown up between those
people who focused on the interface proper and those who
focused on the recordkeeping. In our evaluations, we found
that groups who rotated or otherwise shared responsibility
for bookkeeping did better in this regard.

While doing a Cognitive Walkthrough, evaluators often
noticed problems that were not directly relevant to the
current task. For example, while working on a step that
involves typing a file name into a text field, the evaluators
might notice the absence of wild card options, even though
the task being evaluated did not require the use of wild cards.
It is always difficult to know what to do with such issues.

Taking the time to resolve them greatly lengthens the
Walkthrough and causes the group to lose context
information about the current task that can be time-
consttming to regain. On the other hand, it is easy to lose
track of these side issues and never get back to them if they
are not captured along the way.

Thus, the methodology needs explicit procedures for
keeping track of side issues and changes needed in the
interface, together with appropriate context to reconstruct
the situation later. The group leader will still need to use
judgment about when to allow such digressions and when to
refocus the discussion, but the task may be made easier by
having a formal way to table important discussion.

A similar situation arose when the evaluators were also the
developers. They often wanted to pursue a problem beyond
the limits of the Walkthrough — to design a fix, followed
immediately with a Walkthrough on the fix. This, too, can be
time-consuming, but developers seemed to want closure on
understanding what better solutions were available.

We found the looser application of the method, as done by
the REPS group on their final task, to be more successful and
more satisfying to the evaluators. This group found the
process to be less tedious than dld any other group. This is
consistent with other findings [14]. We believe the REPS
group was successful with this “broad brush” approach
because they had first explored the interface using the more
structured methodology; they had learned when to be precise
and when they could be more casual. However, we don’t
know how to formalize the circumstances under which each

of the two different approaches would be most appropriate.

The evaluators suggested many changes to the procedural
aspects of the method, several of them having to do with
group aspects. One was to capture information that the entire
group needed to refer to (e.g., assumptions about the user
population) on overheads or flip charts, to make it more
publicly available. Another was to share the various
recordkeeping tasks, possibly rotating them between user
tasks, so that all participants felt involved in both the critique
of the interface and the identification of problems. Flnatly,
since evaluators found the main source of tedium to be the
task action evaluation form, they would have preferred to
have a “review card” to summarize the relevant questions.
Using this the evaluators could quickly go over the issues for

a task step, only committing to the paper record those issues
for which there was a problem. This would prevent them
from overlooking any important aspects, while speeding up
the process quite a bit.

Requisite Knowledge for the Evaluators

The Walkthrough methodology presupposes more
knowledge of cognitive science terms, concepts, and skills
than most software developers have. The forms refer heavily
to the specialized vocabulary of cognitive science,
containing terms such as goal structures, activation of goals,
and supergoal kiil-oJf3. The terminology could be changed
(or softened as in [7]), but the concepts they represent are
equally specialized and will be foreign to the typical
software developer. Certain of these concepts are critical to
the successful use of the method. For example, one evaluator
questioned the whole notion of goals, and whether people
actually break their primary goal into smaller subgoals when
doing a task. How does one explain the Cognitive
Walkthrough notion of supergoal kill-off to someone who
does not presuppose the existence of goals?

Because of a lack of familiarity with terminology,
misunderstandings can occur. The most common
misunderstanding was seen in task decomposition, where
goals were often indistinguishable from interface actions.
For example, one group came up with the following set of
goals for the task of loading a jile:

find the file name in the browser
select file to be loaded
click to load the file
wait

These goals are essentially the interface operations that are
performed. A more plausible decomposition might be

determine the name of the file to use
select the file
load the file

Notice that “determine the name” is a purely mental
operation that has no analog in the evaluators’ list, “select the
file” encompasses the tirst two goals in the earlier lis~ and
“load the file” encompasses the latter two. But, it’s not
obvious that users would decompose loading a tile into
“click” and “wait” without either experience or feedback
from the interface about the need to wait.

The Walkthrough developers have said that one of the most
frequently asked questions they hear is “what is the
difference between a goal and an action?” They have pointed
out that even if goals have the granularity of interface
actions, it shouldn’t matter to the results of the Walkthrough,
because if there is a mismatch between user goals and system
actions, it will just show up in a dfierent place in the
evaluation. If goals are described as interface operations, the

3. The supergoal kill-off phenomenon occurs when an arbitrary

final step, (e.g., typing carriage-return) is forgotten because a
prior subgoal (e.g., type in the file name) gets associated with
the complete goal; thus the user inadvertently considers the

entire goal accomplished when only the distinguished subgoal
is done.

385



~i [HI ’92 May3-7, 1992

evaluator will then have to justify why the user would form
those goals from the system state, rather than justify why
more realistic goals would lead to the needed actions
[Clayton Lewis, personal communication, 1990]. We found
that having goals at the granulmity of individwd actions did
lead to problems. The example above demonstrates some of
the issues that came up. In particular, for this interface, no
salient feedback is given regarding the need to wait while the
file is being loaded (which takes a long time). This problem
was not noted by the evaluators because they had assumed
that the user had the goal of waiting; they expected the user
to be unconcerned about the amount of time before the
system indicated completion of the load operation. Perhaps
the evaluators should have questioned the applicability or
obviousness of this goal, but in this instance, they found it to
be perfectly natural.

In all but one of the Walkthroughs, at least one evaluator had
more than a nodding acquaintance with cognitive science.
This seemed to mitigate the effects of the specialized
concepts and terminology reasonably well, The group that
was least knowledgeable about cognitive science had the
most problems at various levels — in task definition, in
understanding the forms, and in accepting the results of the
Walkthrough. Overall, we believe that it will be difficult to
eliminate the need for cognitive science background both to
make sense and to take full advantage of the technique. A
better approach would be to enlist someone with at least a
moderate HCI or Cognitive Science background as a
member of the evaluation team.

Group Walkthroughs

All the interfaces were evaluated by groups of two to six
evaluators. In general, the method seems to adapt quite
naturally to a group evaluation situation. However, in
comparing the REPS evaluation, viewed as successful by the
REPS team [2], and the BCA evaluation, rated as poor by its

participants, we noticed a number of situational parameters
that are correlated with the success of the method when
applied with a group. These are: division of duties, size of the

team, length of the sessions, and the length and format of the
partiCUla Walkthrough forms USed.

In both of these evaluations, one ‘walkthrough advocate’
introduced the method to the evaluation team and also
emerged as the discussion leader and facilitator. In both
cases it appeared to be important to have this person be
responsible for bringing the discussion back on focus when
it had digressed. The key issue for leading a group
walkthrough seems to be the flexible managing of the group
process between expansion (giving the team members the

chance to discuss related topics to prevent frustration) and
turning the focus back on the method. Research by social
psychologists on the functions of leaders in small problem
solving tasks suggests that an effective leader must function
as both a “task leader”, who keeps the group focused on the
current problem, and as a “social-emotional leader”, who
motivates members to work hard and coordinates inter-
member interaction [9, 15].

The BCA evaluators felt that having six people on the
walkthrough team was too many; they suggested a size of
three. Having more people can make the discussion less
focused; sharing the walkthrough forms and the interface
becomes a problem, and the proportion of errors discovered
per time investment of each team member is not economical.

The Walkthrough sessions can easily become too lengthy.
The BCA session took six hours, whereas the REPS sessions
were limited to two hours and spread over several days (as
were the VUE sessions). In comparing these two different
approaches we found that tiring the team with lengthy
meetings seemed more damaging to the process than the
possibility of losing momentum between meetings. In the
REPS evaluation the previous task evaluation was
summarized by two of the group members between
meetings, which helped the team stay focused and kept its
members aware of already localized problems.

In both the REPS and BCA evaluations we observed two
positive side effects not covered by the theory. First, the
Walkthrough served as a method of learning about the
importance of considering the background knowledge and
environment of the intended users, and how to do a careful
task analysis. For both the REPS and BCA applications the
team members’ consciousness about these issues has been
raised and they have been taken into account in further steps
of those projects.

Second, the Watkthrough served as a method of mediation
between the requirements and the development side of the
design team. When the design team is divided between
requirements analysts and system developers, a
communication gap may easily develop between them. Both
types of expertise — detailed knowledge of the users’ tasks
and needs, and the options and constraints of the
development platform — is needed to optimize the design of
a particular interface. In our experience the Walkthrough
application gave both parties a neutral ground and shared
vocabulary to negotiate these design decisions, and hence to
make optimal use of their complementary expertise.
Similarly, having a ‘Walkthrough advocate’ on the team
seemed to help to establish this focus on the interface issues
and prevent digressions into old conflicts. Research on group
decision makkg has frequently demonstrated that the
decomposition of a global decision problem into its
components, analysis and decision on each component

separately, and then recombination into a group solution is
an effective method to reduce or eliminate conflict [e.g., 4,
10]. The Walkthrough may provide similar benefits by
imposing an analogous highly-structured, task-driven,
component-by-component organization on the group
process.

Interpreting Cognitive Walkthrough Results

According to the Cognitive Wa.lkthrough originators

[Clayton Lewis, personal communication, 199 1], the
Walkthrough does not identify problems with an interface; it
identities mismatches between system affordances and user
goats. Because of the nature of the underlying theory, the

386



May3-7, 1992

Walkthrough seems to do a better job of pointing out
mismatches that are linguistic in origin (e.g., mislabeled
buttons or menu items) than those of a more graphical nature.
Whereas the Walkthrough does inform developers of the

aspects of the interface that are troublesome, identifying
specific problems and generating their solutions are tasks
beyond the scope of the Walkthrough proper, although the
data generated by doing a Walkthrough would be highly
relevant to such a task. In practice, our engineer evaluators
went beyond identifying mismatches to identifying problem
statements and often immediately to solutions,

The Cognitive Walkthrough technique can sometimes lead
evaluators to solutions that are sttboptimal. In one task
evaluated, the user was required to go back and forth
between different windows of the system, know which data
entry fields were required and the correct sequence in which
they had to be entered with no cues from the system. The
solution suggested by the evaluators was to highlight the data
entry field or calculation that was to be done next. This
solution is consistent with the Walktbrough forms, which
focus on the salience of the appropriate action at the current
step, but it is subopthnal to a solution that includes
reorganizing the data entry fields and calculation buttons in
a task-oriented manner.

We also found that the Walkthrough method can lead
evaluators to propose erroneous solutions. For instance, one
evaluation team proposed a change that would produce a
simpler action sequence in the context of the task they were
evaluating without realizing that it would remove
functionality required for other user tasks.

As the above examples point out, by deriving solutions for a

patlicular task, the evaluators may not be able to see the
larger picture and may come up with an inappropriate
problem statement or solution. In spite of this most of the
problems identified by the evaluators were appropriate
assessments of the interface they were analyzing.
Occasionally, the narrow focus on individual task steps
introduced what are essentially set effects, where the
evaluators were so focused on a particular set of solutions
that they were unable to recognize when a problem required
a solution outside of this set, Consequently, methods that
assess an interface more globally are needed as a supplement
to mitigate these problems.

CONCLUSIONS

For the first time the Cognitive Walkthrough has been
applied to highly complex, high functionality systems by
groups of software engineers. If the Walkthrough is to be
successful in helping to design better software systems, it
must be able to deal with real systems in environments such
as those we tested.

Is the Cognitive Walkthrough ready for use by real
development teams on high functionality applications?
Based on our experiences, we say “not without substantial
extensions”. There are simply too many caveats for
successful use of the method. We believe that these problems

can be overcome by further research and extensions to the
technique however, widespread practical use must await
those extensions.

The problems with Cognitive Walkthroughs are at two
levels. The first involves process mechanics. Those can be
mitigated by straightforward changes to the Walkthrough
process; speciiic recommendations for such changes are
summarized in Figure 2. The second class of problems
involves limitations in the method as it currently exists. It is
those limitations that keep the method tkom being viable at
this time. We hope that the developers of the Cognitive
Walkthrough will address these issues in their research.

One litation of the Walkthrough method is that it doesn’t
match well with current software development practice, at
least in the organizations where these evaluations were done.
The developetx we work with are interested in usability
issues, but don’t have the training or the inclination ,to
become expert on the topic. Furthermore, usability is only
one of a large number of aspects of the product they must
focus on — aspects like reliability and performance demand
equal attention, and are more clearly understood by software

●

●

●

✎

✎

✎

✎

✎

�

Task Issues

Start with a simple task and then work on more complex tasks,

Include at least one task whose complexity matches what
users will typically encounter. Balance the complexity of

individual tasks with the range of functionality to be covered,

Chose reatistic tasks that exercise key system functionality.

Look for tasks that cover multiple core functions, so as to
evaluate transitions between sub tasks.

When selecting the tasks consider issues of task granularity y,

action granularity, identical subtasks, and trisk variants.

Process and Group Issues

At least one member of the group should be familiar with the

terminology and concepts of cognitive science and with the

Cognitive Walkthrough’s process and assumptions.

Provide aids to help organize the task. Possible aids include: a

mechanism for keeping track of side issues and solution
alternatives for later re-exatnination, a review card or other

mechanism to summarize the questions to be asked at each

step, overheads or other group-visible means to capture
information frequently referred to, such as assumptions about
user knowledge.

Minimize the impact of bookkeeping tasks. Rotating the tasks

is one method; tools to automate the process are another.

The leader/facilitator needs to pay careful attention to group

process issues. Things to considec size and composition of the
group, ensuring appropriate participants’ expectations (as to

time required, nature of the process, etc.), and the need for

effective group management skills, since the walkthrougb

may expose existing conflicts among group members.

Break the walkthrough up into sessions of reasonable leugth
(2-3 hours). It is important to break only between tasks, so that
context carefully built up will not be lost.

Figure 2: Some Recommendations for an Effective

Cognitive Walkthrough

387



CHI’92 May3-7, 1992

engineers. Developers are under constant time pressure;
thus, any technique that takes more than a few person-days
would need very strong support, both among management
and the technical community to be worth jeopardizing
product schedules. They are looking to identify the most
critical interface problems; it’s hard to relate the detail-
oriented procedures of the Walkthrough to the identification
of high-impact, pervasive problems. Finally, developers
need solutions. The intentional interposing of an
internmdate step between problem identification and
solution may have benefits, but developers see it as a
roadblock to their primary goal in doing the evaluation.

The issues above create problems for other task-oriented,
developer implemented usability methods as well. There
may need to be significant changes in software development
life-cycles before any developer implemented methodology
can be successful. On the other hand, requiring major
changes to current practice is a serious impediment to the
widespread use of Cognitive Walkthroughs.

Another class of limitations concerns task selection.
Effective task selection is a critical issue for any
methodology based on user tasks. Furthermore, since the
Cognitive Walkthrough is intended to be used by developers,
the evaluators may not have access to the informed intuitions
of a user interface professional to select appropriate tasks.
While, in principle, a task selection methodology could be
added to the method, the field of HCI simply does not know
enough about task selection for a pragmatically viable
method to be developed at this time. We believe that, for the
foreseeable future, the task suite should be generated by a
knowledgeable professional, Finally, the Cognitive
Walkthrough is limited by its focus on the lower level
interface issues. Evaluators need to be provided with a
process for stepping back and looklng at the application
more globally. This is probably done most directly by
combining Walkthroughs with other evaluation methods.
However, it could be done as an extension of the
Walkthrough method.

The challenges identified above — incongruence with
current software development practice, task selection, and
the lack of focus on higher level issues — are not unique to
Cognitive Walkthroughs. They must be resolved for any user
interface evaluation method based on tasks and applied by
the developers themselves to be successful. We hope that this

paper will spur research into ways to successfully
incorporate the Cognitive Walkthrough and other methods of
this type into current practice.

ACKNOWLEDGMENTS

We would like to thank the following people for their
contributions to this work Lucy Berlin, Nancy Bruner,
Norman Chang, Scott Conradson, Felix Frayman, Bruce
Hamilton, Reid Hastie, Stan Jefferson, Clare-Marie Kara~
Nancy Kendzierski, Dan Kuokk% Clayton Lewis, Catherine
Marshall, Jakob Nielsen, Vlckl O’Day, Andreas Paepcke,
Peter Poison, John Rieman, Terry Roberts, Craig Zarmer,
and the anonymous CHI’92 reviewers.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Card, S.K., Moran, T.P., and Newell, A. The Psychology of

Human-ComputerI nteraction. Lawrence Erlbaum Associates,

Hitlsdale, NJ, 1983.

Franzke, M. Evaluation Technique Evaluated: Experience

Using the Cognitive Walkthrough. Pmt. of the Bellcore~CC

Symposium on User-Centered Design. Livingston, NJ,

November 1991.

Gray, W. D., John, B. E., and Atwood, M.E. The Pr6cis of

Project Emestine, or An Overview of a Validation of GOMS.

Proc. ACM CHI’92. (Monterey, California, May 3-7, 1992).

Hammond, K.R. and Adelman, L. Science, Values, and

Human Judgement. Science, 1976, Volume 194, pp. 389-396.

Jeffries, R., Miller, J.R., Wharton, C., and Uyeda, K.M. User

Interface Evaluation in the Real World: A Comparison of Four

Techniques. Proc. ACM CHI’91. (New Orleans, Louisiana,

April 27 – May 2, 1991) pp. 119–124.

Karat, C., Campbell, R., and Fiegel, T. Compmison of

Empirical Testing and Walkthrough Methods in User Interface

Evaluation. Proc. ACM CHI’92. (Monterey, California, May

3-7, 1992).

Lewis, C., and Poison P.G. Cognitive Wrdkthroughs: A

Method for Theory-Based Evaluation of User Interfaces.

Tutorial presented at ACM CHI’91. (New Orleans, Louisiana,

April 27 -May 2, 1991).

Lewis, C., Poison, P., Wharton, C., and Riemau, J. Testing a

Walkthrough Methodology for Theory-Based Design of Walk-

Up-and-Use Interfaces. Proc. ACM CHZ’90. (Seattle,

Washington, April 1-5, 1990) pp. 235–242.

McGrath, J.E. Gwups: Interaction and Pe~omuznce.

Prentice-Hall, Englewood Cliffs, NJ, 1984.

Neale, M.A. and Bazerman, M.H. Cognition and Rationality

in Negotiation. Free Press, New York, NY, 1991.

Nielsen, J. Finding Usability Problems Through Heuristic

Evaluation. Proc. ACM CH~92. (Monterey, California, May

3-7, 1992).

Poison, P.G., and Lewis, C. Theory-Based Design for Easily

Learned Interfaces. Human-Computer Interaction, 1990,

Volume 5, pp. 191–220.

Poison, P., Lewis, C., Rieman, J., and Wharton, C. Cognitive

Walkthroughs: A Method for Theory-Based Evaluation of

User Interfaces. To appear in Itiernational Journal of Man-

Machine Studies, 1992.

Rowley, D.E., and Rhoades, D.G. The Cognitive Jogthrough:

A Fast-Paced User Interface E~aluation Procedure, Proc.

ACM CHI’92. (Monterey, California, May 3-7, 1992).

Shaw, M.E. Group Dynamics: The Psychology of Small Group

Behavior. 3rd edition. McGraw-Hill, New York, NY, 1981.

Wharton, C. Cognitive Walkthroughs: Instructions, Forms,

and Examples. Technical Report University of Colorado at

Boulder, Institute of Cognitive Science, 1992.

Yourdon, E. Structured Walkthroughs. 4th edition. Yourdon

Press, Englewood Cliffs, NJ, 1989.


