

J A V A
L O O K A N D F E E L
D E S I G N G U I D E L I N E S

User interface guidelines

for designers

of applications

based on the

JavaTM Foundation Classes

TM

JAVA™ LOOK AND FEEL
DESIGN GUIDELINES

Please send your email feedback to us at
jlfguide@sun.com

mailto:jlfguide@sun.com

JAVA™ LOOK AND FEEL
DESIGN GUIDELINES

Sun Microsystems, Inc.

Addison-Wesley
An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney • Bonn
Amsterdam • Tokyo • Mexico City

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, California 94303 U.S.A. All rights reserved.

This product or documentation is protected by copyright and
distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or
documentation may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted
and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaHelp, Java 2D,
HotJava, JavaBeans, JDK, the Java Coffee Cup logo, Solaris, and
Write Once, Run Anywhere are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. Netscape Navigator is a trademark or registered
trademark of Netscape Communications Corporation. UNIX is a
registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. Adobe is a
registered trademark of Adobe Systems, Incorporated.

The OPEN LOOK and Sun™ Graphical User Interface was developed
by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from
Xerox to the Xerox Graphical User Interface, which license also
covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

U.S. Government approval required when exporting the product.

DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, ANY KIND OF IMPLIED OR EXPRESS WARRANTY OF
NON-INFRINGEMENT OR THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué
avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou
document ne peut être reproduite sous aucune forme, par
quelque moyen que ce soit, sans l’autorisation préalable et écrite
de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu
par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaHelp, Java 2D,
HotJava, JavaBeans, JDK, Java Coffee Cup logo, Solaris, et Write
Once, Run Anywhere sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d’autres pays. Netscape Navigator est une marque de
Netscape Communications Corporation. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company, Ltd. Adobe est une marque
enregistree de Adobe Systems, Incorporated.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été
développée par Sun Microsystems, Inc. pour ses utilisateurs et
licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la
recherche et le développement du concept des interfaces
d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur
l’interface d’utilisation graphique Xerox, cette licence couvrant
également les licenciés de Sun qui mettent en place l’interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment
aux licences écrites de Sun. L’accord du gouvernement américain
est requis avant l’exportation du produit.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES
CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES DANS LA MESURE AUTORISÉE PAR
LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À
UNE UTILISATION PARTICULÈRE OU À L’ABSENCE DE CONTREFAÇON.

The publisher offers discounts on this book when ordered in
quantity for special sales. For more information, please contact:

Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading, Massachusetts 01867

Text printed on recycled and acid-free paper

ISBN 0-201-61585-1
1 2 3 4 5 6 7 8 9-MA-99989796
First Printing, June 1999

Please
Recycle

CONTENTS

Preface xix

Part I: Overview 1

Chapter 1: The Java Look and Feel 3

Fundamentals of the Java Look and Feel 3

Visual Tour of the Java Look and Feel 4

MetalEdit Application 5

Retirement Savings Calculator Applet 10

Chapter 2: The Java Foundation Classes 15

Java Development Kit 15

Java Foundation Classes 15

JDK 1.1 and the Java 2 SDK 16

Support for Accessibility 16

Support for Internationalization 17

User Interface Components of the Java Foundation Classes 17

Pluggable Look and Feel Architecture 17

Example Model and Interface 18

Client Properties 18

Major JFC User Interface Components 19

Look and Feel Options 23

Java Look and Feel—the Recommended Design 23

Alternative Approaches 23

Supplied Designs 24

Part II: Fundamental Java Application Design 25

Chapter 3: Design Considerations 27

Choosing an Application or an Applet 27

Distribution 28

Security Issues 28

Placement of Applets 29

Designing for Accessibility 30

Benefits of Accessibility 30

Contents vi

Accessible Design 30

Planning for Internationalization and Localization 33

Benefits of Global Planning 34

Global Design 34

Chapter 4: Visual Design 39

Themes 39

Colors 40

Fonts 45

Capitalization of Text in the Interface 46

Headline Capitalization in English 46

Sentence Capitalization in English 47

Layout and Visual Alignment 47

Between-Component Padding and Spacing Guidelines 48

Design Grids 49

Titled Borders for Panels 51

Text Layout 52

Animation 54

Progress and Delay Indication 54

System Status Animation 55

Chapter 5: Application Graphics 57

Working With Cross-Platform Color 57

Working With Available Colors 58

Choosing Graphic File Formats 58

Choosing Colors 59

Maximizing Color Quality 60

Designing Graphics in the Java Look and Feel Style 62

Designing Icons 63

Working With Icon Styles 63

Drawing Icons 64

Designing Button Graphics 66

Using Button Graphic Styles 67

Producing the Flush 3D Effect 67

Working With Button Borders 68

Determining the Primary Drawing Area 68

Drawing the Button Graphic 69

Designing Symbols 72

Designing Graphics for Corporate and Product Identity 73

Designing Installation Screens 73

Contents vii

Designing Splash Screens 73

Designing Login Splash Screens 75

Designing About Boxes 76

Chapter 6: Behavior 77

Mouse Operations 77

Pointer Feedback 78

Mouse-over Feedback 79

Clicking and Selecting Objects 80

Displaying Contextual Menus 80

Drag-and-Drop Operations 81

Typical Drag and Drop 81

Pointer and Destination Feedback 82

Keyboard Operations 82

Keyboard Focus 83

Keyboard Navigation and Activation 85

Keyboard Shortcuts 87

Mnemonics 88

Part III: The Components of the Java Foundation Classes 91

Chapter 7: Windows, Panes, and Frames 93

Anatomy of a Primary Window 95

Constructing Windows 97

Primary Windows 97

Secondary Windows 98

Plain Windows 99

Utility Windows 100

Organizing Windows 101

Panels 101

Scroll Panes 102

Tabbed Panes 104

Split Panes 106

Working With Multiple Document Interfaces 108

Internal Frames 108

Palettes 110

Chapter 8: Dialog Boxes 111

Modal and Modeless Dialog Boxes 112

Dialog Box Design 112

Tab Traversal Order 114

Contents viii

Spacing in Dialog Boxes 115

Command Buttons in Dialog Boxes 115

Default Command Buttons 118

Common Dialog Boxes 120

Find Dialog Boxes 120

Login Dialog Boxes 120

Preferences Dialog Boxes 120

Print Dialog Boxes 121

Progress Dialog Boxes 121

Alert Boxes 122

Info Alert Boxes 123

Warning Alert Boxes 124

Error Alert Boxes 124

Question Alert Boxes 125

Color Choosers 126

Chapter 9: Menus and Toolbars 129

Menu Elements 130

Menu Bars 130

Drop-down Menus 131

Submenus 132

Menu Items 132

Checkbox Menu Items 135

Radio Button Menu Items 135

Separators 136

Common Menus 136

Typical File Menu 137

Object Menu 137

Typical Edit Menu 138

Typical Format Menu 138

View Menu 139

Typical Help Menu 139

Contextual Menus 139

Toolbars 140

Toolbar Placement 141

Draggable Toolbars 141

Toolbar Buttons 142

Tool Tips 145

Contents ix

Chapter 10: Basic Controls 147

Command Buttons 148

Default Command Buttons 149

Combining Graphics With Text in Command Buttons 150

Using Ellipses in Command Buttons 150

Command Button Spacing 151

Command Button Padding 151

Toggle Buttons 152

Independent Choice 152

Exclusive Choice 153

Checkboxes 154

Checkbox Spacing 154

Radio Buttons 155

Radio Button Spacing 156

Combo Boxes 156

Noneditable Combo Boxes 157

Editable Combo Boxes 158

Sliders 159

Progress Bars 160

Chapter 11: Text Components 163

Labels 164

Labels That Identify Controls 164

Labels That Communicate Status and Other Information 166

Text Fields 167

Noneditable Text Fields 167

Editable Text Fields 167

Password Fields 168

Text Areas 169

Editor Panes 170

Default Editor Kit 170

Styled Text Editor Kit 170

RTF Editor Kit 171

HTML Editor Kit 172

Chapter 12: Lists, Tables, and Trees 173

Lists 173

Scrolling 174

Selection Models for Lists 174

Contents x

Tables 176

Table Appearance 177

Table Scrolling 177

Column Reordering 177

Column Resizing 178

Row Sorting 179

Selection Models for Tables 180

Tree Views 187

Lines in Tree Views 188

Graphics in Tree Views 189

Editing in Tree Views 189

Appendix A: Keyboard Navigation, Activation, and Selection 191

Checkboxes 192

Combo Boxes 192

Command Buttons 193

Desktop Panes and Internal Frames 193

Dialog Boxes 194

HTML Editor Kits 194

Lists 195

Menus 196

Radio Buttons 196

Scrollbars 197

Sliders 197

Split Panes 198

Tabbed Panes 198

Tables 199

Text Areas and Default and Styled Text Editor Kits 200

Text Fields 202

Toggle Buttons 202

Tool Tips 203

Toolbars 203

Tree Views 203

Glossary 205

Index 219

FIGURES

FIGURE 1

Consistent Use of the Flush 3D Style 3

FIGURE 2

Consistent Use of the Drag Texture 4

FIGURE 3

Role of the Color Model in Compatibility 4

FIGURE 4

Typical Desktop With Applications on the Microsoft Windows Platform 5

FIGURE 5

Document Window on Three Platforms 6

FIGURE 6

Example Menu Bar 6

FIGURE 7

Example Drop-down Menus 7

FIGURE 8

Example Toolbar 8

FIGURE 9

Example Editor Pane 8

FIGURE 10

Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE Platforms 9

FIGURE 11

Example Alert Boxes on CDE, Microsoft Windows, and Macintosh Platforms 10

FIGURE 12

Applet on an HTML Page in a Browser (Exploded View) 11

FIGURE 13

Retirement Savings Calculator Applet 12

FIGURE 14

Java Foundation Classes for JDK 1.1 and the Java 2 SDK 16

FIGURE 15

Structure of the JFC Components 17

FIGURE 16

Pluggable Look and Feel Architecture of a Slider 18

FIGURE 17

Environments for Applications and Applets 27

FIGURE 18

Mnemonics in a Dialog Box 32

FIGURE 19

English and Japanese Notification Dialog Boxes 34

FIGURE 20

Cancel Buttons in English, German, and Japanese 35

FIGURE 21

Correct Word Order in English But Not in French 36

FIGURE 22

Correct Word Order in Both English and French 36

FIGURE 23

Primary Colors in Default Color Theme 41

FIGURE 24

Secondary Colors in Default Color Theme 42

FIGURE 25

Green Color Theme 44

FIGURE 26

High-Contrast Color Theme 44

FIGURE 27

Perceived and Actual Spacing of Active and Inactive Components 48

FIGURE 28

Grid With Horizontal Divisions 49

FIGURE 29

Vertical Separation of Command Buttons 50

FIGURE 30

Vertical Separation of Component Groups 51

Figures xii

FIGURE 31

Spacing for a Panel With Titled Border 51

FIGURE 32

Label Orientation 53

FIGURE 33

Animation in a Progress Dialog Box 55

FIGURE 34

Adding a Pattern to Avoid Coarse Dithering Patterns 61

FIGURE 35

Two Families of Icons 63

FIGURE 36

Button Graphics for a Toolbar and a Tool Palette 67

FIGURE 37

Flush 3D Effect in a Button Graphic 67

FIGURE 38

Button Graphics With Borders 68

FIGURE 39

Primary Drawing Area in Buttons 68

FIGURE 40

Maximum-Size Button Graphics 69

FIGURE 41

Symbols 72

FIGURE 42

Splash Screen for MetalEdit 74

FIGURE 43

Login Splash Screen for MetalMail 75

FIGURE 44

About Box for MetalEdit 76

FIGURE 45

Cross-Platform Mouse Buttons and Their Default Assignments 78

FIGURE 46

Contextual Menu for a Text Selection 81

FIGURE 47

Keyboard Focus Indicated by Rectangular Border 84

FIGURE 48

Keyboard Focus Indicated by Blinking Bar at Insertion Point 84

FIGURE 49

Keyboard Focus Indicated by Colored Background 85

FIGURE 50

Keyboard Focus Indicated by Drag Texture 85

FIGURE 51

Edit Menu With Keyboard Shortcuts and Mnemonics 87

FIGURE 52

File Menu With Mnemonics and Keyboard Shortcuts 89

FIGURE 53

Primary, Utility, Plain, and Secondary Windows 93

FIGURE 54

Scroll Pane, Tabbed Pane, Split Pane, and Internal Frame 94

FIGURE 55

Components Contained in a Primary Window 95

FIGURE 56

Anatomy of a Primary Window 96

FIGURE 57

Top-Level Containers 97

FIGURE 58

Primary Window on the Microsoft Windows Platform 98

FIGURE 59

Alert Box on the Macintosh Platform 99

FIGURE 60

Plain Window Used as the Basis for a Splash Screen 99

FIGURE 61

Utility Window 100

FIGURE 62

Lower-Level Containers 101

FIGURE 63

Scroll Pane in a Document Window 102

FIGURE 64

Vertical and Horizontal Scrollbars 103

FIGURE 65

Swatches Content Pane in the JFC Color Chooser 105

FIGURE 66

RGB Content Pane in the JFC Color Chooser 105

Figures xiii

FIGURE 67

Split Pane (Horizontal Orientation) 106

FIGURE 68

Zoom Buttons in a Split Pane (Vertical Orientation) 107

FIGURE 69

Nested Split Panes 108

FIGURE 70

Internal Frames in an MDI Application 109

FIGURE 71

Minimized Internal Frame 109

FIGURE 72

Palette Window 110

FIGURE 73

Dialog Box and Alert Box 111

FIGURE 74

Sample Dialog Box 113

FIGURE 75

Tab Traversal Order in the Sample Dialog Box 114

FIGURE 76

Spacing Between the Border and Components of a Dialog Box 115

FIGURE 77

Dialog Box With a Close Button 116

FIGURE 78

Dialog Box With OK, Cancel, and Help Buttons 117

FIGURE 79

Dialog Box With Apply, Reset, and Close Buttons 118

FIGURE 80

Dialog Box With a Default Command Button 119

FIGURE 81

Alert Box Without a Default Button 119

FIGURE 82

Sample Find Dialog Box 120

FIGURE 83

Sample Login Dialog Box 120

FIGURE 84

Sample Preferences Dialog Box 121

FIGURE 85

Sample Progress Dialog Box 122

FIGURE 86

Standard Components in an Alert Box 123

FIGURE 87

Info Alert Box 123

FIGURE 88

Warning Alert Box 124

FIGURE 89

Error Alert Box 125

FIGURE 90

Question Alert Box 126

FIGURE 91

Standard Color Chooser 126

FIGURE 92

Drop-down Menu, Submenu, Contextual Menu, and Toolbar 129

FIGURE 93

Menu Elements 130

FIGURE 94

Menu Item With Its Submenu 132

FIGURE 95

Typical Menu Items 133

FIGURE 96

Checkbox Menu Items 135

FIGURE 97

Radio Button Menu Items 135

FIGURE 98

Separators in a Menu 136

FIGURE 99

Typical File Menu 137

FIGURE 100

Typical Edit Menu 138

FIGURE 101

Typical Format Menu 138

FIGURE 102 Typical Help Menu 139

Figures xiv

FIGURE 103 Contextual Menu 140

FIGURE 104 Horizontal Toolbar 140

FIGURE 105 Outline of a Toolbar Being Dragged 142

FIGURE 106 Toolbar in a Separate Window 142

FIGURE 107 Toolbar Button Spacing 143

FIGURE 108 Mouse-over Border on a Toolbar Button 144

FIGURE 109 Toolbar Button With a Drop-down Menu 144

FIGURE 110 Tool Tip for a Toolbar Button 145

FIGURE 111 Tool Tip for a Slider 145

FIGURE 112 Tool Tip on an Area Within a Graphic 146

FIGURE 113 Buttons, Combo Box, Slider, and Progress Bar 147

FIGURE 114 Command Buttons 148

FIGURE 115 Toolbar Buttons 148

FIGURE 116 Available, Pressed, and Unavailable Command Buttons 149

FIGURE 117 Default and Nondefault Command Buttons 149

FIGURE 118 Command Buttons Containing Both Text and Graphics 150

FIGURE 119 Command Button Text With Centered Text 151

FIGURE 120 Spacing in Command Button Groups 151

FIGURE 121 Independent Toggle Buttons in a Toolbar 152

FIGURE 122 Standard Separation of Exclusive Toggle Buttons 153

FIGURE 123 Grouped Toggle Buttons With a Label 153

FIGURE 124 Checkboxes 154

FIGURE 125 Checkbox Spacing 155

FIGURE 126 Radio Buttons 155

FIGURE 127 Radio Button Spacing 156

FIGURE 128 Combo Box Display 157

FIGURE 129 Noneditable Combo Box 158

FIGURE 130 Editable Combo Box 158

FIGURE 131 Nonfilling Slider 159

FIGURE 132 Filling Slider 160

FIGURE 133 Progress Bar 160

FIGURE 134 Text Inside a Progress Bar 161

FIGURE 135 Text Components 163

FIGURE 136 Label That Describes the Use of a Slider 164

FIGURE 137 Label That Describes a Radio Button Group 164

FIGURE 138 Active and Inactive Labels 165

Figures xv

FIGURE 139 Spacing Between a Label and a Component 165

FIGURE 140 Label With a Mnemonic 166

FIGURE 141 Labels That Clarify the Meaning of a Progress Bar 166

FIGURE 142 Noneditable Text Field 167

FIGURE 143 Editable Text Field With Blinking Bar 167

FIGURE 144 Editable Text Field With Selected Text 168

FIGURE 145 Password Field 169

FIGURE 146 Text Area 169

FIGURE 147 Text Area in a Scroll Pane 170

FIGURE 148 Styled Text Editor Kit 171

FIGURE 149 RTF Editor Kit 171

FIGURE 150 HTML Editor Kit 172

FIGURE 151 List, Table, and Tree View 173

FIGURE 152 Nonexclusive List 173

FIGURE 153 Single-Item Selection in a List 174

FIGURE 154 Range of Selected Items in a List 175

FIGURE 155 Multiple Ranges of Selected Items in a List 175

FIGURE 156 Table in a Scroll Pane 176

FIGURE 157 Reordering Columns by Dragging a Column Header 178

FIGURE 158 Row Sorting in an Email Application 179

FIGURE 159 Single-Cell Selection 181

FIGURE 160 Range of Selected Cells 181

FIGURE 161 Single-Row Selection 182

FIGURE 162 Range of Selected Rows 183

FIGURE 163 Multiple Ranges of Selected Rows 184

FIGURE 164 Single-Column Selection 185

FIGURE 165 Range of Selected Columns 185

FIGURE 166 Multiple Ranges of Selected Columns 186

FIGURE 167 Tree View With Top-Level Lines 187

FIGURE 168 Tree View With Hierarchy Lines 188

TABLES

TABLE 1 Names and Appearance of the JFC User Interface Components 19

TABLE 2 Colors of the Default Java Look and Feel Theme 43

TABLE 3 Type Styles Defined by the Java Look and Feel 45

TABLE 4 Remappings of a Blurred Graphic 60

TABLE 5 Variations in Reproduction of 8-Bit Color 61

TABLE 6 Examples of Application Graphics 62

TABLE 7 Pointer Types Available in JDK 1.1 and the Java 2 SDK 79

TABLE 8 Common Navigation and Activation Keys 86

TABLE 9 Common Keyboard Shortcuts 88

TABLE 10 Common Mnemonics 90

TABLE 11 Background Color of Table Cells 177

TABLE 12 Table Resize Options 178

TABLE 13 Keyboard Operation for Checkboxes 192

TABLE 14 Keyboard Operations for Combo Boxes 192

TABLE 15 Keyboard Operations for Command Buttons 193

TABLE 16 Keyboard Operations for Desktop Panes and Internal Frames 193

TABLE 17 Keyboard Operations for Dialog Boxes 194

TABLE 18 Keyboard Operations for HTML Panes 194

TABLE 19 Keyboard Operations for Lists 195

TABLE 20 Keyboard Operations for Menus 196

TABLE 21 Keyboard Operation for Radio Buttons 196

TABLE 22 Keyboard Operations for Scrollbars 197

TABLE 23 Keyboard Operations for Sliders 197

TABLE 24 Keyboard Operations for Split Panes 198

TABLE 25 Keyboard Operations for Tabbed Panes 198

TABLE 26 Keyboard Operations for Tables 199

TABLE 27 Keyboard Operations for Text Areas and Default and Styled Text Editor Kits 200

TABLE 28 Keyboard Operations for Text Fields 202

TABLE 29 Keyboard Operation for Toggle Buttons 202

TABLE 30 Keyboard Operations for Tool Tips 203

Tables xviii

TABLE 31 Keyboard Operations for Toolbars 203

TABLE 32 Keyboard Operations for Tree Views 203

PREFACE

Java Look and Feel Design Guidelines provides essential information for
anyone involved in creating cross-platform applications and applets in the
Javaª programming language. In particular, this book offers design
guidelines for software that uses the Javaª Foundation Classes (JFC) together
with the Java look and feel.

Who Should Use This Book Although the human interface designer
and the software developer might well be the same person, the two jobs
require different tasks, skills, and tools. Primarily, this book addresses the
designer who chooses the interface components, lays them out in a set of
views, and designs the user interaction model for an application. (Unless
specified otherwise, this book uses “application” to refer to both applets and
applications.) This book should also prove useful for developers, technical
writers, graphic artists, production and marketing specialists, and testers
who participate in the creation of Java applications and applets.

Java Look and Feel Design Guidelines focuses on design issues and human-
computer interaction in the context of the Java look and feel. It also attempts
to provide a common vocabulary for designers, developers, and other
professionals. If you require more information about technical aspects of the
Java Foundation Classes, visit the Java Technology and Swing Connection web
sites at http://java.sun.com and
http://java.sun.com/products/jfc.

The guidelines provided in this book are appropriate for applications and
applets that run on personal computers and network computers. They do not
address the needs of software that runs on consumer electronic devices.

What Is in This Book Java Look and Feel Design Guidelines includes the
following chapters:

Chapter 1, “The Java Look and Feel,” introduces key design concepts and
visual elements underlying the Java look and feel and offers a quick visual
tour of an application and an applet designed with the JFC components and
the Java look and feel.

http://java.sun.com
http://java.sun.com/products/jfc

Preface What Is in This Book xx

Chapter 2, “The Java Foundation Classes,” provides an overview of the Javaª
Development Kit and the Java Foundation Classes, introduces the JFC
components, discusses the concept of pluggable look and feel designs, and
describes the currently available look and feel options.

Chapter 3, “Design Considerations,” discusses some of the fundamental
challenges of designing Java look and feel applications and applets and of
providing for accessibility, internationalization, and localization.

Chapter 4, “Visual Design,” suggests ways to use the Java look and feel theme
mechanism to change colors and fonts, provides guidelines for the
capitalization of text in the interface, and gives recommendations for layout
and visual alignment.

Chapter 5, “Application Graphics,” discusses the use of cross-platform color,
the creation of graphics that suit the Java look and feel, and the use of
graphics to enhance corporate and product identity.

Chapter 6, “Behavior,” tells how users of Java look and feel applications
utilize the mouse, keyboard, and screen and provides guidelines regarding
user input and human-computer interaction, including drag-and-drop
operations.

Chapter 7, “Windows, Panes, and Frames,” discusses and makes
recommendations for the use of primary, secondary, plain, and utility
windows as well as panels, scroll panes, tabbed panes, split panes, and
internal frames.

Chapter 8, “Dialog Boxes,” describes dialog boxes and alert boxes, sets
standards for dialog box design, and provides examples of typical dialog
boxes in Java look and feel applications.

Chapter 9, “Menus and Toolbars,” defines and gives guidelines for the use of
drop-down menus, contextual menus, toolbars, and tool tips and provides
examples of typical menus in Java look and feel applications.

Chapter 10, “Basic Controls,” covers the use of controls such as command
buttons, toggle buttons, checkboxes, radio buttons, sliders, and combo
boxes; it also describes progress bars and provides suggestions for their use.

Chapter 11, “Text Components,” explains and makes recommendations for
the use of the JFC components that control the display and editing of text:
labels, text fields, text areas, and editor panes.

Chapter 12, “Lists, Tables, and Trees,” discusses and makes recommendations
for the use of lists, tables, and tree views.

Preface What Is Not in This Book xxi

Appendix A, “Keyboard Navigation, Activation, and Selection,” contains tables
that specify keyboard operations for the components of the Java Foundation
Classes.

Glossary defines important words and phrases found in this book. Glossary
terms appear in boldface throughout the book.

What Is Not in This Book This book does not provide detailed
discussions of human interface design principles or the design process, nor
does it present much general information about usability testing.

For authoritative explications of human interface design principles and the
design process, see Macintosh Human Interface Guidelines.

For the classic book on usability testing, see Jakob Nielsen’s Usability
Engineering.

For details on both of these valuable resources, see “Related Books and Web
Sites” on page xxii.

Graphic Conventions Screen shots in this book illustrate the use of JFC
components in applications with the Java look and feel. Because such
applications typically run inside windows provided and managed by the
native platform, the screen shots show assorted styles of windows and dialog
boxes from the Microsoft Windows, Macintosh, and CDE (Common Desktop
Environment) platforms.

Throughout the text, symbols are used to call your attention to design
guidelines. Each type of guideline is identified by a unique symbol.

 Java Look and Feel Standards Requirements for the consistent appearance
and compatible behavior of Java look and feel applications.

Java look and feel standards promote flexibility and ease of use in cross-
platform applications and support the creation of applications that are
accessible to all users, including users with physical and cognitive limitations.
These standards require you to take actions that go beyond the provided
appearance and behavior of the JFC components.

Occasionally, you might need to violate these standards. In such situations,
use your discretion to balance competing requirements. Be sure to engage in
user testing to validate your judgments.

Preface Related Books and Web Sites xxii

Cross-Platform Delivery Guidelines Recommendations for dealing with
colors, fonts, keyboard operations, and other issues that arise when you want
to deliver your application to a variety of computers running a range of
operating systems.

Internationalization Guidelines Advice for creating applications that can be
adapted to the global marketplace.

Implementation Tips Technical information and useful tips of particular
interest to the programmers who are implementing your application design.

Related Books and Web Sites Many excellent references are
available on topics such as fundamental principles of human interface design,
design issues for specific (or multiple) platforms, and issues relating to
accessibility, internationalization, and applet design.

Design Principles The resources in this section provide information on the
fundamental concepts underlying human-computer interaction and interface
design.

Baecker, Ronald M., William Buxton, and Jonathan Grudin, eds. Readings in
Human-Computer Interaction: Toward the Year 2000, 2d ed. Morgan
Kaufman, 1995. Based on research from graphic and industrial design and
studies of cognition and group process, this volume addresses the efficiency
and adequacy of human interfaces.

Hurlburt, Allen. The Grid: A Modular System for the Design and Production of
Newspapers, Magazines, and Books. John Wiley & Sons, 1997. This is an
excellent starting text. Although originally intended for print design, this
book contains many guidelines that are applicable to software design.

IBM Human-Computer Interaction Group. “IBM Ease of Use.” Available:
http://www.ibm.com/ibm/easy. This web site covers many fundamental
aspects of human interface design.

Laurel, Brenda, ed. Art of Human-Computer Interface Design. Addison-Wesley,
1990. Begun as a project inside Apple, this collection of essays explores the
reasoning behind human-computer interaction and looks at the future of the
relationship between humans and computers.

http://www.ibm.com/ibm/easy
http://www.ibm.com/ibm/easy

Preface Related Books and Web Sites xxiii

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication
Oriented Techniques. Prentice Hall, 1995. This volume covers fundamental
design principles, common mistakes, and step-by-step techniques for
handling the visual aspects of interface design.

Nielsen, Jakob. Usability Engineering. AP Professional, 1994. This classic
covers international user interfaces (including gestural interfaces),
international usability engineering, guidelines for internationalization,
resource separation, and interfaces for more than one locale.

Norman, Donald A. The Design of Everyday Things. Doubleday, 1990. A well-
liked, amusing, and discerning examination of why some products satisfy
while others only baffle or disappoint. Photographs and illustrations
throughout complement the analysis of psychology and design.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective
Human-Computer Interaction, 3d ed. Addison-Wesley, 1997. The third edition
of this best-seller adds new chapters on the World Wide Web, information
visualization, and cooperative work and expands earlier work on development
methodologies, evaluation techniques, and tools for building user interfaces.

Tognazzini, Bruce. Tog On Interface. Addison-Wesley, 1992. Based on a human
interface column that Tognazzini wrote for Apple developers, this book delves
into the pivotal challenges of user interface design, including the difficulties
inherent in multimedia software.

Tufte, Edward R. Envisioning Information. Graphics Press, 1990. One of the
best books on graphic design, this volume catalogues instances of superb
information design (with an emphasis on maps and cartography) and
analyzes the concepts behind their implementation.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics
Press, 1992. Tufte explores the presentation of statistical information in
charts and graphs with apt graphical examples and elegantly interwoven
text.

Tufte, Edward R. Visual Explanations: Images and Quantities, Evidence and
Narrative. Graphics Press, 1997. The third volume in Tufte’s series on
information display focuses on data that changes over time. Tufte explores
the depiction of action and cause and effect through such examples as the
explosion of the space shuttle Challenger, magic tricks, and a cholera
epidemic in 19th-century London.

Preface Related Books and Web Sites xxiv

Design for Specific Platforms The resources in this section cover application
design for the CDE, IBM, Java, Macintosh, and Microsoft Windows platforms.

CDE Three volumes address the needs of designers and related professionals
creating applications using CDE and Motif 2.1.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide and Glossary.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Reference.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Certification Check List.

They can be ordered from the Open Group at
http://www.opengroup.org/public/pubs/catalog/mo.htm.

IBM Object-Oriented Interface Design: IBM Common User Access Guidelines. Que
Corp, 1992. Available: http://www.ibm.com/ibm/hci/guidelines/
design/ui_design.html. This book is out of print but available from most
or all IBM branch offices. A small portion of the printed book is intertwined
with a modest amount of more current material at this IBM web site.

Java Campione, Mary, and Kathy Walrath. The Java Tutorial: Object-Oriented
Programming for the Internet, 2d ed. Addison-Wesley, 1998. Full of examples,
this task-oriented book introduces you to fundamental Java concepts and
applications. Walrath and Campione describe the Java language, applet
construction, and the fundamental Java classes and cover the use of multiple
threads and networking features.

Campione, Mary, et al. The Java Tutorial Continued: The Rest of the JDK.
Addison-Wesley, 1998. The experts describe features added to the original
core Java platform with many self-paced, hands-on examples. The book
focuses on Java 2 APIs but also contains the information you need to use the
JDK 1.1 versions of the APIs.

Chan, Patrick. The Java Developer’s Almanac, 1999. Addison-Wesley, 1999.
Organized to increase programming performance and speed, this book
provides a quick but comprehensive reference to the Javaª 2 Platform,
Standard Edition, v. 1.2.

Eckstein, Robert, Mark Loy, and Dave Wood. Java Swing. O’Reilly & Associates,
1998. An excellent introduction to the Swing components, this book
documents the Swing and Accessibility application programming interfaces.
An especially useful chapter explains how to create a custom look and feel.

Geary, David M. Graphic Java 2: Mastering the JFC. Volume 2, Swing. Prentice
Hall, 1998. This comprehensive volume describes the skills needed to build
professional, cross-platform applications that take full advantage of the Java

http://www.opengroup.org/public/pubs/catalog/mo.htm
http://www.ibm.com/ibm/hci/guidelines/design/ui_design.html
http://www.ibm.com/ibm/hci/guidelines/design/ui_design.html

Preface Related Books and Web Sites xxv

Foundation Classes. The volume includes chapters on drag and drop, graphics,
colors and fonts, image manipulation, double buffering, sprite animation,
and clipboard and data transfer.

Sun Microsystems, Inc. Java 2 Platform API Specification. Available:
http://java.sun.com/products/jdk/1.2/docs/api/overview-
summary.html. This web site provides up-to-date technical documentation
on the Java 2 API.

Sun Microsystems, Inc. Java Look and Feel Design Guidelines. Available:
http://java.sun.com/products/jlf. This web site contains an HTML
version of this book.

Sun Microsystems, Inc. The Java Tutorial: A Practical Guide for Programmers.
Available: http://java.sun.com/docs/books/tutorial/index.html.
This web site is divided into four trails: a getting started trail for those new to
the Java language; a trail introducing the Java language with sections on
writing applets, the essential Java classes, creating a GUI, and custom
networking; a specialized trail addressing such topics as internationalization,
2D graphics, and security; and a trail providing a comprehensive example.

Topley, Kim. Core Java Foundation Classes. Prentice Hall Computer Books,
1998. Topley explains how to build basic Swing applications, with an
emphasis on layout managers and basic graphics programming. The book
also describes the creation of multiple document interface (MDI) applications.

Walker, Will. “The Multiplexing Look and Feel.” Available:
http://java.sun.com/products/jfc/tsc/archive/archive.html.
This article describes a special look and feel that provides a way to extend the
features of a Swing GUI without having to create a new look and feel design.
Walker describes an example application that can simultaneously provide
audio output, Braille output, and the standard visual output of ordinary
Swing applications.

Macintosh Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-
Wesley, 1992. This volume is the official word on Macintosh user interface
principles. It includes a superb bibliography with titles on animation,
cognitive psychology, color, environmental design, graphic and information
design, human-computer design and interaction, language, accessibility,
visual thinking, and internationalization.

Apple Computer, Inc. Mac OS 8 Human Interface Guidelines. Available:
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-
2.html. This site offers a supplement to Macintosh Human Interface
Guidelines.

http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html
http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html
http://java.sun.com/products/jlf
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/products/jfc/tsc/archive/archive.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html

Preface Related Books and Web Sites xxvi

Microsoft Windows Windows Interface Guidelines for Software Design. Microsoft Press,
1995. Available: http://msdn.microsoft.com/library/. The official
book on Microsoft interface design contains specifications and guidelines for
designers who would like to enhance the usability of their programs. These
guidelines are available in print, and a modest portion of them is on the
World Wide Web. You can download an addendum to the book from
http://msdn.microsoft.com/developer/userexperience/
winuiguide.asp.

Design for Multiple Platforms The books in this section discuss the complex issues
that arise when designing software that runs on many platforms.

McFarland, Aland, and Tom Dayton (with others). Design Guide for
Multiplatform Graphical User Interfaces (LP-R13). Bellcore, 1995. (Available
only from Bellcore. Call 800-521-2673 from US & Canada, +1-908-699-5800
from elsewhere.) This is an object-oriented style guide with extensive
guidelines and a good explanation of object-oriented user interface style from
the user’s perspective.

Marcus, Aaron, Nick Smilonich, and Lynne Thompson. The Cross-GUI
Handbook: For Multiplatform User Interface Design. Addison-Wesley, 1995.
This source describes the graphical user interfaces of Microsoft Windows and
Windows NT, OSF/Motif, NeXTSTEP, IBM OS/2, and Apple Macintosh. The text
includes design guidelines for portability and migration and
recommendations for handling contradictory or inadequate human interface
guidelines.

Design for Internationalization The books in this section describe software design
for the global marketplace.

Fernandes, Tony. Global Interface Design: A Guide to Designing International
User Interfaces. AP Professional, 1995. Fernandes addresses developers of
Internet software designed for a global market. He explains cultural
differences, languages and their variations, taboos, aesthetics, ergonomic
standards, and other issues designers must research and understand.

Guide to Macintosh Software Localization. Addison-Wesley, 1992. A thorough
and thoughtful discussion of the internationalization and localization
processes that should prove helpful for developers on any platform.

Kano, Nadine. Developing International Software for Windows 95 and
Windows NT. Microsoft Press, 1993. Kano targets Microsoft’s guidelines for
creating international software to an audience with knowledge of Microsoft

http://msdn.microsoft.com/library
http://msdn.microsoft.com/developer/userexperience/winuiguide.asp
http://msdn.microsoft.com/developer/userexperience/winuiguide.asp

Preface Related Books and Web Sites xxvii

Windows coding techniques and C++. The work contains information on
punctuation, sort orders, locale-specific code-page data, DBCS/Unicode
mapping tables, and multilingual API functions and structures.

Luong, Tuoc V., James S.H. Lok, and Kevin Driscoll. Internationalization:
Developing Software for Global Markets. John Wiley & Sons, 1995. The
Borland internationalization team describes its procedures and methods with
a focus on testing and quality assurance for translated software. This hands-
on guide tells how to produce software that runs anywhere in the world
without requiring expensive recompiling of source code.

Nielsen, Jakob, and Elisa M. Del Galdo, eds. International User Interfaces.
John Wiley & Sons, 1996. This book discusses what user interfaces can and
must do to become commercially viable in the global marketplace.
Contributors discuss issues such as international usability engineering,
cultural models, multiple-language documents, and multilingual machine
translation.

O’Donnell, Sandra Martin. Programming for the World: A Guide to
Internationalization. Prentice Hall, 1994. This theoretical handbook explains
how to modify computer systems to accommodate the needs of international
users. O’Donnell describes many linguistic and cultural conventions used
throughout the world and discusses how to design with the flexibility needed
for the global marketplace.

Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software
Internationalization and Localization: An Introduction. Van Nostrand
Reinhold, 1993. This guide to software adaptation encourages developers to
aim at producing localized software with the same capabilities as the original
software while meeting local requirements and conventions.

Design for Accessibility These resources explore how to design software that
supports all users, including those with physical and cognitive limitations.

Bergman, Eric, and Earl Johnson. “Towards Accessible Human Interaction.” In
Advances in Human-Computer Interaction, edited by Jakob Nielsen, vol. 5.
Ablex Publishing, 1995. Available:
http://www.sun.com/tech/access/updt.HCI.advance.html. This
article discusses the relevance of accessibility to human interface designers
and explores the process of designing for ranges of user capabilities. It
provides design guidelines for accommodating physical disabilities such as
repetitive strain injuries (RSI), low vision, blindness, and hearing impairment.
It also contains an excellent list of additional sources on accessibility issues.

http://www.sun.com/tech/access/updt.HCI.advance.html

Preface Related Books and Web Sites xxviii

Schwerdtfeger, Richard S. IBM Guidelines for Writing Accessible Applications
Using 100% Pure Java. IBM Corporation, 1998. Available:
http://www.austin.ibm.com/sns/access.html. This web site presents
principles of accessibility, a checklist for software accessibility, and a list of
references and resources. In addition, it provides discussions of accessibility
for the web and for Java applications.

Schwerdtfeger, Richard S. Making the GUI Talk. BYTE, 1991. Available:
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt.
This speech deals with off-screen model technology and GUI screen readers.

Sun Microsystems, Inc. Accessibility Quick Reference Guide. Available: http:/
/www.sun.com/tech/access/access.quick.ref.html. This site defines
accessibility, lists steps to check and double-check your product for
accessibility, and offers tips for making applications more accessible.

Sun Microsystems, Inc. “Enabling Technologies.” Available:
http://www.sun.com/access. This web site includes a primer on the Java
platform and accessibility and describes the support for assistive technologies
now provided by the Swing components of the Java Foundation Classes.

Design for Applets These books provide a range of information on designing
applets.

Gulbransen, David, Kenrick Rawlings, and John December. Creating Web
Applets With Java. Sams Publishing, 1996. An introduction to Java applets,
this book addresses nonprogrammers who want to incorporate
preprogrammed Java applets into web pages.

Hopson, K.C., Stephen E. Ingram, and Patrick Chan. Designing Professional
Java Applets. Sams Publishing, 1996. An advanced reference to developing
Java applets for business, science, and research.

http://www.sun.com/tech/access/access.quick.ref.html
http://www.sun.com/tech/access/access.quick.ref.html
http://www.austin.ibm.com/sns/access.html
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt
http://www.sun.com/access

PART I: OVERVIEW

1: THE JAVA LOOK AND FEEL

As the Java platform has matured, designers and developers have recognized
the need for consistent, compatible, and easy-to-use Java applications. The
Java look and feel meets that need by providing a distinctive platform-
independent appearance and standard behavior. The use of this single look
and feel reduces design and development time and lowers training and
documentation costs for all users.

This book sets standards for the use of the Java look and feel. By following
these guidelines, you can create Java applications that effectively support all
users worldwide, including those with physical and cognitive limitations.

Fundamentals of the Java Look and Feel The Java look and
feel is the default interface for applications built with the Java Foundation
Classes. The Java look and feel is designed for cross-platform use and can
provide:

■ Consistency in the appearance and behavior of common design elements
■ Compatibility with industry-standard components and interaction styles
■ Aesthetic appeal that does not distract from application content

Three distinctive visual elements are the hallmarks of the Java look and feel
components: the flush 3D style, the drag texture, and the color model.

In the Java look and feel, component surfaces appear to be at the same level
as the surrounding canvas. This “flush 3D” style is illustrated in the following
figure.

FIGURE 1 Consistent Use of the Flush 3D Style (150%)

The clean, modern appearance reduces the visual noise associated with
beveled edges. Flush 3D components fit in with a variety of applications and
operating systems.

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 4

A textured pattern, used throughout the Java look and feel, indicates items
that users can drag. Such an indication cues cross-platform users in a reliable
way. The following figure demonstrates several uses of the drag texture.

FIGURE 2 Consistent Use of the Drag Texture (150%)

A simple and flexible color model ensures compatibility with platforms and
devices capable of displaying quite different color depths. The default colors
provide an aesthetically pleasing and comfortable scheme for interface
elements, as shown in the following figure.

FIGURE 3 Role of the Color Model in Compatibility (150%)

Visual Tour of the Java Look and Feel The Java look and feel
implements widely understood interface elements (windows, icons, menus,
and pointers) and works in the same way on any operating system that
supports the Java Foundation Classes (JFC). The visual tour in this section
shows off two JFC applications with the Java look and feel: MetalEdit and
Retirement Savings Calculator. MetalEdit is a standalone, text-editing
application; Retirement Savings Calculator is an applet displayed in a browser
window.

The following figure shows a Microsoft Windows desktop with MetalEdit and
Retirement Savings Calculator. MetalEdit has a menu bar and toolbar as well
as a text-editing area. Retirement Savings Calculator is displayed inside a web
browser. Other Microsoft Windows applications are also present; some are
represented by minimized windows.

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 5

Although the windows of many applications can be open on the desktop, only
one can be the active window. In the figure, MetalEdit is the active window
(indicated by the color of the title bar), whereas the Netscape Navigatorª
browser, which contains Retirement Savings Calculator, is inactive. As an
applet, Retirement Savings Calculator is displayed within an HTML page.

FIGURE 4 Typical Desktop With Applications on the Microsoft Windows
Platform (400%)

MetalEdit Application This section uses a hypothetical text-editing application
called “MetalEdit” to illustrate some of the most important visual
characteristics of the Java look and feel, including its windows, menus,
toolbars, editor panes, dialog boxes, and alert boxes.

Example Windows The windows in Java look and feel applications use the borders, title
bars, and window controls of the platform they are running on. For instance,
the MetalEdit document window shown in Figure 4 on page 5 is running on a
Microsoft Windows desktop and uses the standard Microsoft window frame
and title bar. As shown in the following figure, the contents of the document
window (menu bar, toolbar, and editor pane) use the Java look and feel.
However, the window borders, title bars, and window controls have a
platform-specific appearance.

Java applet

Active window running
standalone Java application

Inactive window running
browser with Java applet

Inactive window Minimized window

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 6

FIGURE 5 Document Window on Three Platforms (200%)

Example Menus The menu bar, which is the horizontal strip under the window title,
displays the titles of application menus, called “drop-down menus.” Drop-
down menus provide access to an application’s primary functions. They also
enable users to survey the features of the application by looking at the menu
items. Chapter 9 contains discussions of drop-down menus, submenus, and
contextual menus and provides guidelines for the creation of menus and
menu items for your application.

FIGURE 6 Example Menu Bar (150%)

Java look and feel
window contents—
menu bar, toolbar,
and editor pane

Platform-specific
borders, title bars,
and window
controls

Menu titles

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 7

The following figure shows the contents of the Edit and Format menus from
the MetalEdit menu bar. The menu items are divided into logical groupings by
menu separators (in the flush 3D style). For instance, in the Edit menu, the
Cut, Copy, and Paste commands, which are related to the clipboard, are
separated from Undo and Redo commands, which reverse or restore changes
in the document. For more information, see “Separators” on page 136.
Selected menu titles are highlighted in blue in the default Java look and feel
theme. For details, see “Themes” on page 39.

FIGURE 7 Example Drop-down Menus (150%)

Keyboard shortcuts offer an alternative to using the mouse to choose a menu
item. For instance, to copy a selection, users can press Control-C. For details,
see “Keyboard Shortcuts” on page 87.

Mnemonics provide yet another way to access menu items. For instance, to
view the contents of the Edit menu, users press Alt-E. Once the Edit menu has
keyboard focus, users can press C to copy a selection. These alternatives are
designated by underlining the “E” in Edit and the “C” in Copy. For details, see
“Mnemonics” on page 88.

Menu title

Menu item

Inactive menu item

Menu separator

Keyboard shortcut

Mnemonic

Checkbox
menu item

Radio button
menu item

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 8

The menus shown in Figure 7 on page 7 illustrate two commonly used menu
titles, menu items, and menu item arrangements for Java look and feel
applications. For details, see “Drop-down Menus” on page 131 and “Menu
Items” on page 132.

Example Toolbar A toolbar displays command and toggle buttons that offer immediate
access to the functions of many menu items. The MetalEdit toolbar is divided
into four areas for functions relating to file management, editing, font styles,
and alignment. Note the flush 3D style of the command and toggle buttons
and the textured drag area to the left of the toolbar. For details, see
“Toolbars” on page 140.

FIGURE 8 Example Toolbar (150%)

Example Editor Pane The document text in the following figure is displayed in an editor
pane with a styled text editor plug-in kit, which is embedded in a scroll pane.
(Note the use of the drag texture in the scroll box.) For more on styled text
editor plug-in kits, see “Editor Panes” on page 170. For details on scroll panes,
see “Scroll Panes” on page 102.

FIGURE 9 Example Editor Pane (200%)

Example Dialog Boxes In the Java look and feel, dialog boxes use the borders and title
bars of the platform they are running on. However, the dialog box contents
have the Java look and feel. Chapter 8 describes dialog boxes in the Java look
and feel and contains recommendations for their use.

Figure 10 on page 9 shows a preferences dialog box with the title bars,
borders, and window controls of several platforms. The dialog box enables
users to specify options in the MetalEdit application. Noneditable combo
boxes are used to select ruler units and a font. Text fields are used to specify
the margins. An editable combo box enables users to specify font size. Radio

Drag area Command buttons Toggle buttons

Drag texture in
scroll box

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 9

buttons and checkboxes are used to set other preferences. Clicking the
Browse command button displays a file chooser in which users can select a
stationery folder.

Note the flush 3D borders of the combo boxes, text fields, radio buttons,
checkboxes, and command buttons. Labels use the primary 1 color, one of
eight colors in the default Java look and feel theme. For a thorough treatment
of basic controls (including combo boxes, radio buttons, checkboxes, and
command buttons), see Chapter 10. For a detailed discussion of text fields
and labels, see Chapter 11.

MetalEdit provides mnemonics and keyboard navigation and activation
sequences for each of the interactive controls in the preferences dialog box.
The dialog box in the following figure illustrates two ways to create a
mnemonic: directly in a component, indicated by an underlined letter in the
component text, or in a label associated with the component, indicated by an
underlined letter in the label.

FIGURE 10 Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE
Platforms (200%)

Noneditable combo box

Editable text field

Checkboxes (with mnemonics)

Editable combo box

Command button row

Noneditable text field

Radio buttons

Label (with mnemonic)

Default button

Standalone command button

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 10

Example Alert Boxes The alert boxes in a Java look and feel application use the
borders, title bars, and window controls of the platform they are running on.
However, the symbols, messages, and command buttons supplied by the JFC
use the Java look and feel. (You provide the actual message and specify the
number of command buttons as well as the button text. The JFC provides
layouts for the symbol, the message, and the command buttons.)

When users try to close a window without saving changes, the Warning alert
box asks them if they would like to save changes. Of the three command
buttons in MetalEdit’s Warning alert box, shown in the following figure, the
default command button is Save. The Don’t Save button closes the window
without saving changes. The Cancel button closes the dialog box but leaves
the unsaved document open. For details, see “Alert Boxes” on page 122.

FIGURE 11 Example Alert Boxes on CDE, Microsoft Windows, and Macintosh
Platforms (200%)

Retirement Savings Calculator Applet The sample applet, Retirement Savings
Calculator, is part of a web page displayed in the Netscape Navigator
browser, as shown in the following figure. This human resources applet
enables employees of a fictitious company to determine their contributions to
a retirement savings plan. To make it easy for all employees to access
information on their retirement savings, the company provides the applet in a
web page. (Note the boundaries of the applet. The HTML page also includes a
banner in the GIF format as well as an HTML header with the title of the
page.) All the JFC components shown in the sample applet use the Java look
and feel.

Default command button

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 11

FIGURE 12 Applet on an HTML Page in a Browser (Exploded View) (200%)

Applet

HTML page
with banner
and applet title

HTML page
(continued)

Browser

Browser
(continued)

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 12

The applet obtains an employee’s current retirement savings contribution and
other salary data from a database and fills noneditable text fields with the
relevant data. The employee can drag a slider to specify a salary contribution
and click a radio button to specify whether new contributions go to a money
market, bond, or stock market fund. A row of command buttons offers a choice
of whether to save changes, reset the salary contribution, or display help.

Using the employee’s input, the applet calculates the employee’s weekly and
yearly gross salary, tax withholding, other deductions, retirement savings
contribution, net paycheck, and the company’s matching funds. Results are
displayed in a table. Finally, the employee can type an assumed appreciation
rate in an editable text field to see accumulated future savings or instruct the
applet to use the five-year fund history to project savings in the chart at the
bottom of the applet.

Chapter 1: The Java Look and Feel Visual Tour of the Java Look and Feel 13

FIGURE 13 Retirement Savings Calculator Applet (200%)

For more information on the components used in this applet, see “Text
Fields” on page 167, “Sliders” on page 159, “Radio Buttons” on page 155,
“Command Buttons” on page 148, and “Tables” on page 176.

Slider

Radio button group

Command button row

Table

Chart

Editable text field

Noneditable text field

Label

2: THE JAVA FOUNDATION CLASSES

This book assumes that you are designing software based on the Java
Foundation Classes and utilizing the Java look and feel. This chapter provides
an overview of that technology: the Java Development Kit and Javaª 2 SDK,
the user interface components of the Java Foundation Classes, the pluggable
look and feel architecture, and available look and feel designs.

Java Development Kit The APIs and tools that developers need to
write, compile, debug, and run Java applications are included in the Java
Development Kit (JDKª) and Java 2 SDK.

The guidelines in this book pertain to applications built with the Java 2 SDK,
Standard Edition, v. 1.2 (referred to hereafter as “Java 2 SDK”), or the Java
Development Kit versions 1.1.3 through 1.1.7 (referred to hereafter as
“JDK 1.1”). The Java Foundation Classes are available for use with JDK 1.1,
but they are an integral part of the Java 2 platform.

Java Foundation Classes The Java Foundation Classes (JFC) include the Swing
classes, which define a complete set of graphic interface components for JFC
applications. An extension to the original Abstract Window Toolkit, the JFC
includes the Swing classes, pluggable look and feel designs, and the Java
Accessibility API, which are all implemented without native code (code that
refers to the methods of a specific operating system or is compiled for a
specific processor). The JFC components include windows and frames, panels
and panes, dialog boxes, menus and toolbars, buttons, sliders, combo boxes,
text components, tables, lists, and trees.

All the components have look and feel designs that you can specify. The cross-
platform, default look and feel is the Java look and feel. For details on the
design principles and visual elements underlying the Java look and feel, see
Chapter 1.

In code, the Java look and feel is referred to as “Metal.”

Chapter 2: The Java Foundation Classes Java Development Kit 16

JDK 1.1 and the Java 2 SDK The following figure summarizes the differences in the
Java Foundation Classes in JDK 1.1 and the Java 2 SDK. Both development kits
contain the Abstract Window Toolkit (AWT), the class library that provides the
standard application programming interfaces for building graphical user
interfaces for Java programs. There is native code in the AWT code in both
kits, and in drag and drop and the Java 2Dª API in the Java 2 SDK.

FIGURE 14 Java Foundation Classes for JDK 1.1 and the Java 2 SDK

In the Java 2 SDK, the Java Foundation Classes also include the Java 2D API,
drag and drop, and other enhancements. The Java 2D API provides an
advanced two-dimensional imaging model for complex shapes, text, and
images. Features include enhanced font and color support and a single,
comprehensive rendering model.

Support for Accessibility Three features of JDK 1.1 and the Java 2 SDK support
people with special needs: the Java Accessibility API, the pluggable look and
feel architecture, and keyboard navigation.

The Java Accessibility API provides ways for an assistive technology to interact
and communicate with JFC components. A Java application that fully supports
the Java Accessibility API is compatible with technologies such as screen
readers and screen magnifiers. A separate package, Java Accessibility Utilities,
provides support in locating the objects that implement the Java Accessibility
API.

AWT (native code)
Applet
JavaBeansTM

RMI system
Security
SQL support

JDK 1.1

Java Accessibility API
Swing 1.1

Components with pluggable
look and feel

Utilities

JFC 1.1
(Must be utilized with JDK 1.1)

AWT (native code)
Applet
JavaBeans
RMI system
SQL support

Java 2 SDK

JFC (part of Java 2 platform)

Java Accessibility API
Java 2D API (native code)
Drag and drop (native code)
Swing

Components with pluggable
look and feel

Utilities

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 17

A pluggable look and feel architecture is used to build both visual and
nonvisual designs, such as audio and tactile user interfaces. For more on the
pluggable look and feel, see “Pluggable Look and Feel Architecture” on
page 17.

Keyboard navigation enables users to move between components, open
menus, highlight text, and so on. This support makes an application
accessible to people who do not use a mouse. For details on keyboard
operations, see Appendix A.

Support for Internationalization JDK 1.1 and the Java 2 SDK provide
internationalized text handling. This feature includes support for the
bidirectional display of text lines—important for displaying documents that
mix languages with a left-to-right text direction (for instance, English,
German, or Japanese) and languages with a right-to-left direction (for
instance, Arabic or Hebrew). JDK 1.1 and the Java 2 SDK also provide resource
bundles, locale-sensitive sorting, and support for localized numbers, dates,
times, and messages.

User Interface Components of the Java Foundation Classes
The Java Foundation Classes include Swing, a complete set of user interface
components, including windows, dialog boxes, alert boxes, panels and panes,
and basic controls. Each JFC component contains a model (the data structure)
and a user interface (the presentation and behavior of the component), as
shown in the following illustration.

FIGURE 15 Structure of the JFC Components

Pluggable Look and Feel Architecture Because both presentation and behavior are
separate and replaceable (“pluggable”), you can specify any of several look
and feel designs for your application—or you can create your own look and
feel. The separation of a component’s model (data structure) from its user
interface (display and interaction behavior) is the empowering principle
behind the pluggable look and feel architecture of the JFC. A single JFC
application can present a Java look and feel, a platform-specific look and feel,
or a customized interface (for example, an audio interface).

Model User Interface

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 18

Example Model and Interface Consider the slider in the following figure as a
simplified example. The slider’s model contains information about the slider’s
current value, the minimum and maximum values, and other properties. The
slider’s user interface determines how users see or interact with the slider.
The model knows almost nothing about the user interface—while the user
interface knows a great deal about the model.

FIGURE 16 Pluggable Look and Feel Architecture of a Slider

Client Properties You can use the client properties mechanism to display an
alternate form of a specific Java user interface component. If a look and feel
design does not support the property, it ignores the property and displays the
component as usual. You can set alternate appearances for sliders, toolbars,
trees, and internal frames. For instance, a nonfilling slider is displayed by
default. However, by using the client properties mechanism, you can display
a filling slider, as shown in Figure 16 on page 18.

minimum=1
maximum=100
value=57
major tick spacing=25
has focus=false

Shape and color of slider and channel
Response to drag of slider
Response to click in channel
Response to Page Down

Data Model

Look and Feel

JFC-supplied data
structure

Customizable user
interface elements

Filling slider

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 19

Major JFC User Interface Components The following table illustrates the major
user interface components in the JFC. Components are listed alphabetically by
their names in code. Their English names are provided, followed by the
location of more detailed information on each component.

TABLE 1 Names and Appearance of the JFC User Interface Components

Component Code Name Common Name For Details

JApplet Applet page 27

JButton Command button
and toolbar button

page 148 and
page 142

JCheckBox Checkbox page 154

JCheckBoxMenuItem Checkbox menu
item

page 135

JColorChooser Color chooser page 126

JComboBox Noneditable and
editable combo
boxes

page 156

JDesktopPane Desktop pane page 108

JDialog Dialog box,
secondary window,
and utility window

page 111, page 98,
and page 100

JEditorPane Editor pane page 170

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 20

JFrame Primary window page 95

JInternalFrame Internal frame,
minimized internal
frame, and palette
window

page 108,
page 109, and
page 110

JLabel Label page 164

JList List page 173

JMenu Drop-down menu
and submenu

page 131 and
page 132

JMenuBar Menu bar page 130

JMenuItem Menu item page 132

JOptionPane Alert box page 122

JPanel Panel page 101

JPasswordField Password field page 168

TABLE 1 Names and Appearance of the JFC User Interface Components (Continued)

Component Code Name Common Name For Details

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 21

JPopupMenu Contextual menu page 139

JProgressBar Progress bar page 160

JRadioButton Radio button page 155

JRadioButtonMenuItem Radio button menu
item

page 135

JScrollBar Scrollbar page 102

JScrollPane Scroll pane page 102

JSeparator Separator page 136

JSlider Slider page 159

JSplitPane Split pane page 106

JTabbedPane Tabbed pane page 104

TABLE 1 Names and Appearance of the JFC User Interface Components (Continued)

Component Code Name Common Name For Details

Chapter 2: The Java Foundation Classes User Interface Components of the Java Foundation Classes 22

In the JFC, the typical primary windows that users work with are based
on the JFrame component. Unadorned windows that consist of a rectangular
region without any title bar, close control, or other window controls are
based on the JWindow component. Designers and developers typically use
the JWindow component to create windows without title bars, such as splash
screens.

For details on the use of windows, frames, panels, and panes, see Chapter 7.

JTable Table page 176

JTextArea Plain text area page 169

JTextField Noneditable and
editable text fields
(single line)

page 167

JTextPane Editor pane with
the styled editor
kit plug-in

page 170

JToggleButton Toggle button and
toolbar button

page 152 and
page 142

JToolBar Toolbar page 140

JToolTip Tool tip page 145

JTree Tree view page 187

JWindow Plain (unadorned)
window

page 99

TABLE 1 Names and Appearance of the JFC User Interface Components (Continued)

Component Code Name Common Name For Details

Chapter 2: The Java Foundation Classes Look and Feel Options 23

Look and Feel Options You, the designer, have the first choice of a
look and feel design. You can determine the look and feel you want users to
receive on a specific platform, or you can choose a cross-platform look and
feel.

Java Look and Feel—the Recommended Design With a cross-platform look and
feel, your application will appear and perform the same everywhere,
simplifying the application’s development and documentation.

Specify the Java look and feel, which is a cross-platform look and feel,
explicitly. If you do not specify a look and feel or if an error occurs while
specifying the name of a look and feel, the Java look and feel is used by
default.

The following code can be used to specify the Java look and feel
explicitly:
UIManager.setLookAndFeel(
UIManager.getCrossPlatformLookAndFeelClassName());

Alternative Approaches If you do not specify the Java look and feel, you can
specify:

■ A particular look and feel—one that ships with the JFC or one that
someone else has made. Note, however, that not all look and feel
designs are available on every platform. For example, the Microsoft
Windows look and feel is available only on the Microsoft Windows
platform.

■ An auxiliary look and feel—one that is designed to be used in addition to
the primary look and feel. By combining look and feel designs, you can
target different ways of perceiving information.

Because there is far more to the design of an application than the look and
feel of components, it is unwise to give end users the ability to swap look and
feel designs while working in your application. Switching look and feel
designs in this way only swaps the look and feel designs of the components
from one platform to another. The layout and vocabulary used are platform-
specific and do not change. For instance, swapping look and feel designs does
not change the titles of the menus.

Make it possible for your users to specify an auxiliary look and feel
design, which provides alternative methods of information input and output
for people with special needs.

Chapter 2: The Java Foundation Classes Look and Feel Options 24

Supplied Designs The look and feel designs available in JDK 1.1 and the Java 2 SDK
are:

■ Java look and feel. (Called “Metal” in the code.) The Java look and feel is
designed for use on any platform that supports the JFC. This book
provides recommendations on the use of the Java look and feel.

■ Microsoft Windows. (Called “Windows” in the code.) The Microsoft
Windows style look and feel can be used only on Microsoft Windows
platforms. It follows the behavior of the components in applications that
ship with Windows NT 4.0. For details, see Windows Interface Guidelines
for Software Design.

■ CDE. (Called “CDE/Motif” in the code.) The CDE style look and feel is
designed for use on UNIX¨ platforms. It emulates OSF/Motif 1.2.5, which
ships with the Solarisª 2.6 operating system. It can run on any platform.
For details, see the CDE 2.1/Motif 2.1—Style Guide and Glossary.

In addition, you can download the Macintosh style look and feel (called “Mac
OS” in the code) separately. The Macintosh style look and feel can be used
only on Macintosh operating systems. It follows the specification for
components under Mac OS 8.1. For details, see the Mac OS 8 Human
Interface Guidelines.

PART II: FUNDAMENTAL JAVA
APPLICATION DESIGN

3: DESIGN CONSIDERATIONS

When you begin a software project, ask yourself these three questions:

■ How do I want to deliver my software to users?

■ How can I design an application that is accessible to all potential users?

■ How can I design an application that suits a global audience and requires
minimal effort to localize?

Choosing an Application or an Applet At the beginning of the
development process, you must decide if you want to create a standalone
application or an applet that is displayed in a web browser. The following
figure shows the different environments for running applications and applets.

FIGURE 17 Environments for Applications and Applets

Internet Explorer

Browsers

Netscape Navigator

HotJavaTM Browser

Microsoft Windows

Platforms

Macintosh

OS/2

UNIX
(Solaris, HP/UX, AIX, Linux)

ApplicationApplet

...

...

Chapter 3: Design Considerations Choosing an Application or an Applet 28

When deciding between an application and an applet, the two main issues
you need to consider are distribution and security, including read and write
permissions. If you decide to use an applet, you must also decide whether to
display your applet in the user’s current browser window or in a separate
browser window.

For an example of an application that uses the Java look and feel, see
“MetalEdit Application” on page 5. For an example of an applet, see
“Retirement Savings Calculator Applet” on page 10. For a list of additional
reading on applets, see “Design for Applets” on page xxviii.

Distribution When deciding how to distribute your software, weigh the needs of
both end users and administrators. Don’t forget to consider ease-of-use
issues for:

■ Initial distribution and installation of the software
■ Maintenance of the software
■ Updates to the software
■ Daily access to the software

At one extreme is the standalone application, distributed on a CD-ROM disc or
a floppy disk and installed on the end user’s local hard disk. Once the
application is installed, users can easily access it. In an enterprise
environment, however, maintenance can be complicated because separate
copies of the application exist on each user’s local computer. Distribution of
the original application and subsequent updates require shipment of the
software to, and installation by, multiple users.

In contrast, applets are simpler to distribute and maintain because they are
installed on a central web server. Using a web browser on their local
machines, users can access the latest version of the applet from anywhere on
the intranet or Internet. Users, however, must download the applet over the
network each time they start the applet.

If you are creating an applet, make sure that your users have a browser that
contains the JFC or that they are using Javaª Plug-In. That way, users will not
have to download the JFC every time they run the applet.

Security Issues Another issue to consider is whether your software needs to read
and write files. Standalone Java applications can read or write files on the
user’s hard disk just as other applications do. For example, the MetalEdit
application reads and writes documents on the user’s local disk.

Chapter 3: Design Considerations Choosing an Application or an Applet 29

In contrast, applets usually cannot access a user’s hard disk because they are
intended for display on a web page, which might come from an unknown
source. Applets are better suited for tasks that do not require access to a
user’s hard disk. For example, a web page for a bank might offer an applet
that calculates home mortgage payments and prints results, but does not
save files on the customer’s hard disk.

You can also use applets as a front end to a central database. For example,
the Retirement Savings Calculator applet enables company employees to
select funds for their retirement contribution and update the amount of their
contribution in the company database.

Placement of Applets If you decide to design an applet, you can display your
applet in the user’s current browser window or in a separate browser window.

Applets in the User’s Current Browser Window The current browser window is well suited
for displaying applets in which users perform a single task. This approach
enables users to perform the task and then resume other activities in the
browser, such as surfing the web.

An applet displayed in the current browser window should not include a
menu bar—having a menu bar in both the applet and the browser might
confuse users. The mnemonics assigned in the applet must also be different
from the mnemonics used to control the browser window; otherwise, the
mnemonics might conflict.

A disadvantage of using the current browser window is that the applet
terminates when users navigate to another web page. The current settings
and data in the applet are lost. To use the applet again, users must navigate
back to the page that contains the applet and reload the page.

Applets in Separate Browser Windows If your applet involves more than one task or if
users might visit other web pages before completing the task, launch a
separate browser window and display the applet there. This approach enables
users to interact with the applet and maintain the original browser window
for other activities. Navigating to another web page in the original browser
window does not affect the applet in the separate browser window.

Designing an applet for a separate browser window is simpler if you remove
the browser’s normal menu and navigation controls. Doing so avoids
confusion between the browser’s menu and controls and the applet’s menus
and controls. You also avoid potential conflicts between mnemonics in the
two windows.

Chapter 3: Design Considerations Designing for Accessibility 30

Designing for Accessibility Accessibility refers to the removal of
barriers that prevent people with disabilities from participating in social,
professional, and practical life activities. In software design, accessibility
requires taking into account the needs of people with functional differences:
for example, users who are unable to operate a conventional mouse or
keyboard or users who cannot process information using traditional output
methods.

Benefits of Accessibility Providing computer access to users with disabilities offers
social, economic, and legal benefits. Accessible software increases the
opportunities for employment, independence, and productivity for the
approximately 750 million people worldwide with disabilities.

Building accessibility into an application makes it easier to use for a wide
range of people, not only those with disabilities. For example, mnemonics,
which provide an alternate keyboard method for accomplishing tasks in an
application, aid users with physical disabilities as well as blind and low-vision
users. Mnemonics are also broadly employed by “power” users.

Many countries are instituting legislation that makes access to information,
products, and services mandatory for individuals with special needs. In these
countries, government and academic institutions are required to purchase
and support technologies that maximize accessibility. For example, in the
United States, Section 508 of the Federal Rehabilitation Act requires all
federal contracts to include solutions for employees with disabilities. The
international community of people with disabilities is also successfully
pressuring companies to sell accessible software.

Accessible Design Five steps will put you on a path to an accessible product:

■ Follow the standards in this book
■ Provide accessible names and descriptions for your components
■ Employ mnemonics and keyboard shortcuts throughout your application
■ Provide proper keyboard navigation and activation
■ Perform usability tests

For a list of additional reading, see “Design for Accessibility” on page xxvii.

Chapter 3: Design Considerations Designing for Accessibility 31

Java Look and Feel Standards The Java look and feel standards in this book take into
account the needs of users with functional limitations. The standards cover
how to use colors, fonts, animation, and graphics. By following these
standards, you will be able to meet the needs of most of your users.

Java look and feel standards are identified throughout the book by this
symbol.

Accessible Names and Descriptions You should provide an accessible name and
description for each component in your application. These properties enable
an assistive technology, such as a screen reader, to interact with the
component.

The accessibleName property provides a name for a component and
distinguishes it from other components of the same type.

The accessibleDescription property provides additional
information about a component, such as how it works. Setting a component’s
accessibleDescription property is equivalent to providing a tool tip for
the component.

The Ferret utility tool can be used to check that an accessibleName
and other API information are properly implemented in your application.
Ferret is part of the Java Accessibility Utilities package.

For more information on the Java Accessibility API and the Java Accessibility
Utilities package, see “Support for Accessibility” on page 16.

Mnemonics You should provide mnemonics throughout your application. A mnemonic
is an underlined letter that shows users which key to press (in conjunction
with the Alt key) to activate a command or navigate to a component. The
following dialog box shows the use of mnemonics for a text field, checkboxes,
radio buttons, and command buttons. For example, if keyboard focus is within
the dialog box, pressing Alt-W moves keyboard focus to the Whole Word
checkbox.

Chapter 3: Design Considerations Designing for Accessibility 32

FIGURE 18 Mnemonics in a Dialog Box (150%)

In cases where you can’t add a mnemonic to the component itself, as in the
text field in the preceding figure, you can place the mnemonic in the
component’s label. For more information on mnemonics, see “Mnemonics”
on page 88.

The labelFor property can be used to associate a label with another
component so that the component becomes active when the label’s
mnemonic is activated.

Keyboard Focus and Tab Traversal You can also assist users who navigate via the
keyboard by assigning initial keyboard focus and by specifying a tab traversal
order. Keyboard focus indicates where the next keystrokes will take effect. For
more information, see “Keyboard Focus” on page 83.

Tab traversal order is the sequence in which components receive keyboard
focus on successive presses of the Tab key. In most cases, the traversal order
follows the reading order of the users’ locale. For more information on tab
traversal order, see “Tab Traversal Order” on page 114.

Make sure you test your application to see if users can access all functions
and interactive components from the keyboard. Unplug the mouse and use
only the keyboard when you perform your test.

Usability Testing You should test the application with a variety of users to see how
well it provides for accessibility. Low-vision users, for example, are sensitive
to font sizes and color, as well as layout and context problems. Blind users
are affected by interface flow, tab order, layout, and terminology. Users with
mobility impairments can be sensitive to tasks that require an excessive
number of steps or a wide range of movement.

Mnemonics

Chapter 3: Design Considerations Planning for Internationalization and Localization 33

Planning for Internationalization and Localization
In software development, internationalization is the process of writing an
application that is suitable for the global marketplace, taking into account
variations in regions, languages, and cultures. A related term, localization,
refers to the process of customizing an application for a particular language
or region. The language, meaning, or format of the following types of data
can vary with locale:

■ Colors
■ Currency formats
■ Date and time formats
■ Graphics
■ Icons
■ Labels
■ Messages
■ Number formats
■ Online help
■ Page layouts
■ Personal titles
■ Phone numbers
■ Postal addresses
■ Sounds
■ Units of measurement

The following figure shows a notification dialog box in both English and
Japanese. Much of the localization of this dialog box involves the translation
of text. The Japanese dialog box is bigger than the English dialog box because
some text strings are longer. Note the differences in the way that mnemonics
are displayed. In English, the mnemonic for the Sound File text field is S. In
Japanese, the same mnemonic (S) is placed at the end of the label.

Chapter 3: Design Considerations Planning for Internationalization and Localization 34

FIGURE 19 English and Japanese Notification Dialog Boxes (150%)

Benefits of Global Planning The main benefit of designing an application for the
global marketplace is more customers. Many countries require that
companies purchase applications that support their language and culture.
Global planning ensures that your application is easier to translate and
maintain (because it has a single source file). A well-designed application will
function the same way in all locales.

Global Design You can incorporate support for localization into your design by
using JFC-supplied layout managers and resource bundles. In addition, you
should take into account that differences exist around the world in reading
order, text, mnemonics, graphics, formats, sorting orders, and fonts.

Mnemonics

Mnemonics

Chapter 3: Design Considerations Planning for Internationalization and Localization 35

Internationalization guidelines are identified throughout the book by
this symbol. For a list of additional reading, see “Design for
Internationalization” on page xxvi.

Layout Managers You can use a layout manager to control the size and location of the
components in your application. For example, Figure 19 on page 34 shows
that the Sound File label becomes longer when it is translated from English to
Japanese. The spacing between the Sound File label and its text field,
however, is the same in both dialog boxes. For more information on layout
managers, see The Java Tutorial at
http://java.sun.com/docs/books/tutorial.

Resource Bundles You should use resource bundles to store locale-specific data, such
as text, colors, graphics, fonts, and mnemonics. A resource bundle makes
your application easier to localize because it provides locale-specific data
without changing the application source code. If your application has a
Cancel button, for example, the resource bundles in English, German, and
Japanese would include the text shown in the following figure.

FIGURE 20 Cancel Buttons in English, German, and Japanese (150%)

For more information on creating resource bundles, see The Java Tutorial.

Reading Order When you lay out your application, place the components according to
your users’ reading order. This order will help users understand the
components quickly as they read through them. Reading orders vary among
locales. The reading order in English, for example, is left to right and top to
bottom. The reading order in Middle Eastern languages, on the other hand, is
from right to left and top to bottom.

In this book, you will find standards such as “put labels before the
component they describe.” The term “before” is determined by the reading
order of the user’s language. For example, in English, labels appear to the left
of the component they describe.

In the Java 2 SDK, the layout managers FlowLayout and
BorderLayout are sensitive to the reading order of the locale.

http://java.sun.com/docs/books/tutorial
http://java.sun.com/docs/books/tutorial

Chapter 3: Design Considerations Planning for Internationalization and Localization 36

Word Order Keep in mind that word order varies among languages, as shown in the
following figure. A noneditable combo box that appears in the middle of an
English sentence does not translate properly in French, where the adjective
should come after the noun. (The correct French sentence is “Utilisez une
Flèche Rouge.”)

FIGURE 21 Correct Word Order in English But Not in French (150%)

The following figure corrects the problem by using a label before the
noneditable combo box. This format works well in both English and French.

FIGURE 22 Correct Word Order in Both English and French (150%)

Mnemonics You must be careful when choosing mnemonics, which might change in
different languages. Make sure that the characters you choose for your
mnemonics are available on international keyboards. In addition, store
mnemonics in resource bundles with the rest of the application’s text.

Graphics You can make localization easier by using globally understood graphics
whenever possible. Many graphics that are easily understood in one locale
are puzzling in another locale. For example, using a mailbox to represent an
email application is problematic because the shape and size of mailboxes vary
by locale. Graphics that represent everyday objects, holidays, and seasons are
difficult to localize, as are graphics that include text.

Avoid using graphics that might be offensive in some locales. For example,
many hand positions are considered obscene gestures. Other graphics that
sometimes cause offense are pictures of animals and people. An example of a
symbol that works well in all cultures is the use of an airplane to denote an
airport.

Like text, you can place graphics in resource bundles so that the translators
can change them without changing the application source code. The ability
to change graphics also benefits users with visual impairments.

Adjective Noun Adjective Noun

Property Setting Property Setting

Chapter 3: Design Considerations Planning for Internationalization and Localization 37

Formats You can use the formatting classes provided in the Java 2 SDK to
automatically format numbers, currencies, dates, and times for a specific
locale. For example, in English, a date might appear as July 26, 1987, and the
time as 3:17 p.m. In German, the same date is written as 26 Juli 1987 and the
time is 15:17 Uhr.

For numbers and currencies, the class is NumberFormat; for dates and
times, the class is DateFormat; and for strings that contain variable data,
the class is MessageFormat. The formatting classes are part of the
java.text package.

Sort Order You can use the collator classes provided in the Java 2 SDK to enable the
sorting of strings by locale. For example, in Roman languages, sorting is
commonly based on alphabetical order (which might vary from one language
to another). In other languages, sorting might be based on phonetics,
character radicals, the number of character strokes, and so on.

The Collator class in the java.text package enables locale-
sensitive string sorting.

Fonts You can place fonts in resource bundles so that they can be changed by the
localizers. The ability to change fonts also benefits users with visual
impairments who read print with a magnifier or screen reader.

Usability Testing Two tests done early in the design process can show you how well
your application works in the global marketplace. First, you can send draft
designs of your application to your translators. Second, you can test your
application with users from the locales you are targeting (for example, test a
Japanese version of the application with Japanese users). This test will help
you to determine whether users understand how to use the product, if they
perceive the graphics and colors as you intended them, and if there is
anything offensive in the product.

4: VISUAL DESIGN

Visual design and aesthetics affect user confidence in and comfort with your
application. A polished and professional look without excess or
oversimplification is not easy to attain. This chapter discusses these high-
level, visual aspects of Java look and feel applications:

■ Use of themes to control and change the colors and fonts of components
to suit your requirements

■ Capitalization of text in interface elements to ensure consistency and
readability

■ Layout and alignment of interface elements to enhance clarity, ease of
use, and aesthetic appeal

■ Use of animation to provide progress and status feedback

Themes You can use the theme mechanism to control many of the
fundamental attributes of the Java look and feel design, including colors and
fonts. You might want to change the colors to match your corporate identity,
or you might increase color contrast and font size to enable users with visual
impairments to use your application. The theme mechanism enables you to
specify alternative colors and fonts across an entire Java look and feel
application.

The technical documentation for the class
javax.swing.plaf.metal.DefaultMetalTheme is available at the Swing
Connection web site at
http://java.sun.com/products/jfc/tsc.

http://java.sun.com/products/jfc/tsc
http://java.sun.com/products/jfc/tsc
http://java.sun.com/products/jfc/tsc

Chapter 4: Visual Design Themes 40

Colors If you want to change the color theme of your application, be sure that your
interface elements remain visually coherent. The Java look and feel uses a
simple color model so that it can run on a variety of platforms and on devices
capable of displaying various depths of color. Eight colors are defined for the
interface:

■ Three primary colors to give the theme a color identity and to emphasize
selected items

■ Three secondary colors, typically shades of gray, for neutral drawing and
inactive items

■ Two additional colors, usually defined as black and white, for the display
of text and highlights

Within the primary and secondary color groups in the default theme, there is
a gradation from dark (primary 1 and secondary 1) to lighter (primary 2 and
secondary 2) to lightest (primary 3 and secondary 3).

Primary Colors The visual elements of Java look and feel applications use the primary
colors as follows:

■ Primary 1 for active window borders, shadows of selected items, and
labels

■ Primary 2 for selected menu titles and items, active scroll boxes, and
progress bar fill

■ Primary 3 for large colored areas, such as the title bar of active internal
frames and selected text

The usage is illustrated in the following figure.

Chapter 4: Visual Design Themes 41

FIGURE 23 Primary Colors in Default Color Theme (150%)

Secondary Colors The visual elements of Java look and feel applications use the
secondary colors as follows:

■ Secondary 1 for the dark border that creates flush 3D effects for items
such as command buttons

■ Secondary 2 for inactive window borders, shadows, pressed buttons, and
dimmed command button text

■ Secondary 3 for the background canvas and inactive title bars for internal
frames

The usage is shown in the following figure.

Primary 1

Primary 3

Primary 2

Primary 1

Primary 2

Primary 1

Chapter 4: Visual Design Themes 42

FIGURE 24 Secondary Colors in Default Color Theme (150%)

Black and White Black and white have defined roles in the Java look and feel color
model. In particular, black appears in:

■ User text, such as the entry in an editable text field

■ Control text, such as menu titles and menu items

■ Title text in the internal frame as well as the button text in command
buttons

■ Tab text in tabbed panes

■ Text in noneditable text fields

White is used for:

■ Highlighting the flush 3D appearance of such components as command
buttons

■ Highlighting in menus

Default Java Look and Feel Theme The following table summarizes the eight colors
defined in the Java look and feel. It provides swatches and values
representing each color in the default theme. It also gives details about the
roles each color plays in basic drawing, three-dimensional effects, and text.

Secondary 2

Secondary 3

Secondary 2

Secondary 2

Secondary 1

Chapter 4: Visual Design Themes 43

Unless you are defining a reverse-video theme, maintain a dark-to-light
gradation like the one in the default theme so that interface objects are
properly rendered. To reproduce three-dimensional effects correctly, make
your secondary 1 color darker than secondary 3 (the background color); make
secondary 2 (used for highlights) lighter than the background color.

TABLE 2 Colors of the Default Java Look and Feel Theme

Name Basic Drawing 3D Effects Text

Primary 1

RGB 102-102-153
Hex #666699

Active window
borders

Shadows of
selected items

System text (for
example, labels)

Primary 2

RGB 153-153-204
Hex #9999CC

Highlighting and
selection (for
example, of menu
titles and menu
items); indication
of keyboard focus

Shadows (color)

Primary 3

RGB 204-204-255
Hex #CCCCFF

Large colored
areas (for example,
the active title bar)

Text selection

Secondary 1

RGB 102-102-102
Hex #666666

Dark border for
flush 3D style

Secondary 2

RGB 153-153-153
Hex #999999

Inactive window
borders

Shadows; button
mousedown

Dimmed text (for
example, inactive
menu items or
labels)

Secondary 3

RGB 204-204-204
Hex #CCCCCC

Canvas color (that
is, normal
background color);
inactive title bar

Black

RGB 000-000-000
Hex #000000

User text and
control text
(including items
such as menu
titles)

White

RGB 255-255-255
Hex #FFFFFF

Highlights Background for
user text entry
area

Chapter 4: Visual Design Themes 44

Ensure that primary 1 (used for labels) has enough contrast with the
background color (secondary 3) to make text labels easily readable.

Redefinition of Colors The simplest modification you can make to the color theme is to
redefine the primary colors. For instance, you can substitute greens for the
purple-blues used in the default theme, as shown in the following figure.

FIGURE 25 Green Color Theme (150%)

You can use the same value for more than one of the eight colors—for
instance, a high-contrast theme might use only black, white, and grays. The
following figure shows a theme that uses the same grays for primary 2 and
secondary 2. White functions as primary 3 and secondary 3 as well as in its
normal role.

FIGURE 26 High-Contrast Color Theme (150%)

Black

White

Primary 1

Primary 2

Primary 3

Secondary 1

Secondary 2

Secondary 3

Black

White

Primary 1

Primary 2

Primary 3

Secondary 1

Secondary 2

Secondary 3

Chapter 4: Visual Design Themes 45

Fonts As part of the theme mechanism and parallel to the color model, the Java
look and feel provides a default font style model for a consistent look. You
can use themes to redefine font typefaces, sizes, and styles in your
application. The default Java look and feel theme defines four type styles: the
control font, the system font, the user font, and the small font. The actual
fonts used vary across platforms.

The following table shows the mappings to Java look and feel components for
the default theme.

To ensure consistency, ease of use, and visual appeal, use the supplied
default fonts unless there is compelling reason for an application-wide
change (such as higher readability). Use the theme mechanism if you do
make modifications.

Do not write font sizes or styles directly into your application source
code. Some users might be able to read print only with a screen reader or a
magnifier.

Use the appropriate layout manager to ensure that the layout of your
application can handle different font sizes.

Ensure that the font settings you choose are legible and can be
rendered well on your target systems.

In the default theme, six methods are used to return references to the
four type styles. The getControlTextFont, getMenuTextFont, and
getWindowTitleFont methods return the control font;
getSystemTextFont returns the system font; getUserTextFont returns
the user font; and getSubTextFont returns the small font.

All fonts in the Java look and feel are defined in the default Java look
and feel theme as Dialog, which maps to a platform-specific font.

TABLE 3 Type Styles Defined by the Java Look and Feel

Type Style Default Theme Uses

Control 12-point bold Buttons, checkboxes, menu titles, and window titles

Small 10-point plain Keyboard shortcuts in menus and tool tips

System 12-point plain Tree views and tool tips

User 12-point plain Text fields and tables

Chapter 4: Visual Design Capitalization of Text in the Interface 46

Capitalization of Text in the Interface This section describes
standards for the capitalization of text in the Java look and feel. Text is an
important design element and appears throughout your application in such
components as command buttons, checkboxes, radio buttons, alert box
messages, and labels for groups of interface elements. Strive to be concise
and consistent with language.

For all text that appears in the interface elements of your application,
follow one of two capitalization conventions: headline capitalization or
sentence capitalization. Use headline capitalization for most names, titles,
labels, and short text. Use sentence capitalization for lengthy text messages.

Do not capitalize words automatically. You might encounter situations
in your interface when capitalization is not appropriate, as in window titles
for documents users have named without using capitalization.

Use standard typographical conventions for sentences and headlines in
your application components. Let translators determine the standards in your
target locales.

Place all text in resource bundles so that localization experts don’t have
to change your application’s source code to accommodate translation.

Headline Capitalization in English Most items in your application interface should
use headline capitalization, which is the style traditionally used for book
titles (and the section titles in this book). Capitalize every word except
articles (“a,” “an,” and “the”), coordinating conjunctions (for example, “and,”
“or,” “but,” “so,” “yet,” and “nor”), and prepositions with fewer than four
letters (like “in”). The first and last words are always capitalized, regardless of
what they are.

Use headline capitalization for the following interface elements (examples
are in parentheses):

■ Checkbox text (Automatic Save Every Five Minutes)
■ Combo box labels and text (Ruler Units:, Centimeters)
■ Command button text (Don’t Save)
■ Icon names (Trash Can)
■ Labels for groups of buttons or controls (New Contribution To:)
■ Menu items (Save As…)
■ Menu titles (View)

Chapter 4: Visual Design Layout and Visual Alignment 47

■ Radio button text (Start at Top)
■ Slider text (Left)
■ Tab names (RGB Color)
■ Text field labels (Appreciation Rate:)
■ Titles of windows, panes, and dialog boxes (Color Chooser)
■ Tool tips (Cut Selection)

If your tool tips are longer than a few words, sentence capitalization is
acceptable. Be consistent within your application.

Sentence Capitalization in English When text is in the form of full sentences,
capitalize only the first word of each sentence (unless the text contains
proper nouns, proper adjectives, or acronyms that are always capitalized).
Avoid the use of long phrases that are not full sentences.

Use sentence capitalization in the following interface elements (examples are
in parentheses):

■ Dialog box text (The document you are closing has unsaved changes.)
■ Error or help messages (The printer is out of paper.)
■ Labels that indicate changes in status (Operation is 75% complete.)

Layout and Visual Alignment Give careful consideration to the
layout of components in your windows and dialog boxes. A clear and
consistent layout streamlines the way users move through an application and
helps them utilize its features efficiently. The best designs are aesthetically
pleasing and easy to understand. They orient components in the direction in
which people read them, and they group together logically related
components.

NOTE – Throughout this book, the spacing illustrations for all user interface
elements use pixels as the unit of measurement. A screen at approximately
72 to 100 pixels per inch is assumed.

When you lay out your components, remember that users might use
the mouse, keyboard, or an assistive technology to navigate through them;
therefore, use a logical order (for instance, place the most important
elements within a dialog box first in reading order).

Chapter 4: Visual Design Layout and Visual Alignment 48

Between-Component Padding and Spacing Guidelines Use multiples of 6 pixels
for perceived spacing between components. If the measurement involves a
component edge with a white border, subtract 1 pixel to arrive at the actual
measurement between components (because the white border on active
components is less visually significant than the dark border). In these cases,
you should specify the actual measurement as 1 pixel less—that is, 5 pixels
between components within a group and 11 pixels between groups of
components.

NOTE – Exceptions to these spacing guidelines are noted in the relevant
component chapters in Part III. For instance, the perceived spacing between
toolbar buttons is 3 pixels, whereas the actual spacing is 2 pixels.

In the following figure, a perceived 6-pixel vertical space is actually 5 pixels
between checkbox components. The figure also shows how the perceived
spacing between inactive objects is preserved. Note that the dimensions of
inactive components are the same as active objects, although the white
border of active objects is replaced by an invisible 1-pixel border on the
bottom and right side of inactive objects.

FIGURE 27 Perceived and Actual Spacing of Active and Inactive
Components (200%)

Insert 5 pixels (6 minus 1) between closely related items such as
grouped checkboxes. Insert 11 pixels (12 minus 1) for greater separation
between sets of components (such as between a group of radio buttons and a

6 5

6 5

Actual
measurement

Actual
measurement

Perceived
measurement

Perceived
measurement

Chapter 4: Visual Design Layout and Visual Alignment 49

group of checkboxes). Insert 12 pixels between items that don’t have the
flush 3D border highlight (for instance, text labels, titled borders, and
padding at the top and left edges of a pane).

For guidelines on the spacing of individual JFC components with the Java look
and feel, see “Toolbar Button Spacing and Padding” on page 143, “Command
Button Spacing” on page 151, “Radio Button Spacing” on page 156, and
“Checkbox Spacing” on page 154.

Design Grids The most effective method of laying out user interface elements is to
use a design grid with blank space to set apart logically related sets of
components. A grid divides the available space into areas that can help you to
arrange and align components in a pleasing layout. Grids make it easy for
users to see the logical sequence of tasks and to understand the relationships
between sets of components.

The following illustration shows a sample grid that provides standard margins
and divides the remaining space into five columns. Horizontal divisions aid in
scanning and interpreting the components and sets of related options.

Use the appropriate layout manager to control horizontal space for the
variable width of internationalized text strings.

FIGURE 28 Grid With Horizontal Divisions (150%)

You can use the number and width of components and their associated labels
to determine the number of columns in a grid. At the beginning of the design
process, vertical divisions are more difficult to set because they depend on
the depth of components and sets of components, which are not yet placed.

Developing a grid is an ongoing process. If you know how much space is
available, you can start working with the components to determine the most
effective use of space. A grid can also help you to determine how much space

Horizontal division

Chapter 4: Visual Design Layout and Visual Alignment 50

to allocate to a given set of components. If you can define a grid that will
work for a number of layouts, your application will have a more consistent
appearance.

For spacing between rows and columns, use multiples of 6 pixels minus 1, to
allow for the flush 3D border (see “Between-Component Padding and Spacing
Guidelines” on page 48).

Design grids are not to be confused with the AWT Grid Layout
Manager.

Layout of a Simple Dialog Box The following illustrations show steps in the process of
using a grid to lay out a simple find dialog box.

First, determine the functional requirements. Then add the components
according to the Java look and feel placement and spacing standards. For
instance, you must right-align command buttons in dialog boxes at the
bottom and separate them vertically from the rest of the components by
17 pixels.

FIGURE 29 Vertical Separation of Command Buttons (150%)

Using the grid as a guide, add the rest of the components. Place the most
important options, or those you expect users to complete first, prior to others
in reading order.

In the following illustration, the most important option—the text field for the
search string—has been placed first. Related options are aligned with it
along one of the column guides. Spacing between components and groups of
components follows the Java look and feel standards.

17

Separate command buttons
vertically from rest of contents

Right-align buttons to right
column guide

Chapter 4: Visual Design Layout and Visual Alignment 51

FIGURE 30 Vertical Separation of Component Groups (150%)

Titled Borders for Panels The JFC enables you to specify a titled border for panels,
which you can use as containers for components inside your application’s
windows.

FIGURE 31 Spacing for a Panel With Titled Border (150%)

Since titled borders take up considerable space, do not use them to
supply titles for components; use labels instead.

Use a titled border in a panel to group two or more sets of related
components, but do not draw titled borders around a single set of checkboxes
or radio buttons.

Place most important option
near the top

17

11

Align related options
along column guides

12

12

11

12

12

12

12

11

Titled border

Chapter 4: Visual Design Layout and Visual Alignment 52

Use titled borders sparingly: they are best when you must emphasize
one group of components or separate one group of components from other
components in the same window. Do not use multiple rows and columns of
titled borders; they can be distracting and more confusing than simply
grouping the elements with a design grid.

Never nest titled borders. It becomes difficult to see the organizational
structure of the panel and too many lines cause distracting optical effects.

Insert 12 pixels between the edges of the panel and the titled border.
Insert 12 pixels between the bottom of the title and the top of the first label
(as well as between the label and the components) in the panel. Insert
11 pixels between component groups and between the bottom of the last
component and the lower border.

Allow for internationalized titles and labels in panels that use titled
borders.

A titled border can be created as follows:
myPanel.setBorder(new TitledBorder(new LineBorder
(MetalLookAndFeel.getControlShadow()),
"<< Your Text Here >>"));

Text Layout Text is an important design element in your layouts. The way you align
and lay out text is vital to the appearance and ease of use of your application.
The most significant layout issues with respect to text are label orientation
and alignment.

Use language that is clear, consistent, and concise throughout your
application text. Moreover, ensure that the wording of your labels,
component text, and instructions is legible and grammatically correct.

Label Orientation You indicate a label’s association with a component when you
specify its relative position. Hence, consistency and clarity are essential. In
the following figure, the label appears before and at the top of the list in
reading order.

Chapter 4: Visual Design Layout and Visual Alignment 53

FIGURE 32 Label Orientation (150%)

In general, orient labels before the component to which they refer, in
reading order for the current locale. For instance, in the U.S. locale, place
labels above or to the left of the component. Positioning to the left is
preferable, since it allows for separation of text and components into discrete
columns. This practice helps users read and understand the options.

Label Alignment Between components, alignment of multiple labels becomes an
issue. Aligning labels to a left margin can make them easier to scan and read.
It also helps to give visual structure to a block of components, particularly if
there is no immediate border (such as a window frame) surrounding them. If
labels vary greatly in length, the use of right alignment can make it easier to
determine the associated component; however, this practice also introduces
large areas of negative space, which can be unattractive. The use of concise
wording in labels can help to alleviate such difficulties. For an example of
right-aligned labels in an applet, see Figure 12 on page 11.

Align labels with the top of associated components.

Avoid the use of titled borders as organizing elements. They add clutter
reduce readability, and compound alignment problems by introducing the
title as an additional text label. Instead, use design grids and careful
alignment of labels to give visual structure to your layouts.

To accommodate differences in languages, decide on the behavior you
want to occur during resize operations. Be specific about layout, spacing, and
ordering. Use the layout managers to accommodate these differences.

Since the length and height of translated text varies, use layout
managers properly to allow for differences in labels.

Label

Chapter 4: Visual Design Animation 54

Animation If used appropriately, animation has great potential to be a useful
and attractive part of a user interface. You can use animation to let users
know that the system is busy with a task or to draw attention to important
events.

Do not overuse animation since it distracts users and draws attention
away from other elements of your application.

Screen readers, which are used by people with visual impairments, do
not recognize images that move. Use the accessibleDescription field to
describe what is represented by the animation.

Progress and Delay Indication Animation is especially useful when you want to
communicate that the system is busy. Progress indication shows users the
state of an operation; delay indication lets users know that an application or
a part of an application is not available until an operation is done.

Properly used, animation can be of minimal disruption to the user. Feedback
lets users know the application has received their input and is operating on it.

When the application is processing a long operation and users can
continue to work in other areas of the application, provide them with
information regarding the state of the process.

During a long operation, when users must wait until the operation is
complete, change the shape of the pointer.

For example, an application’s pointer might change to the wait pointer after
the user selects a file and before the file opens. For information on the JFC-
supplied pointer shapes available in the Java look and feel, see Table 7 on
page 79.

If you know the estimated length of an operation (for example, if the
user is copying files) or the number of operations, use the Java look and feel
progress bar. This bar fills from left to right as the operation progresses, as
shown in the following figure.

Chapter 4: Visual Design Animation 55

FIGURE 33 Animation in a Progress Dialog Box (150%)

For more on progress bars, see “Progress Bars” on page 160.

Another way to indicate delay is to use animated pointers, which are
supported by the Java 2 platform. Instead of just changing to a wait pointer,
you can go one step further by animating the pointer image while the system
is busy.

System Status Animation Animation is useful when you want to call attention to
events. For instance, in a mail application, you might use animation to
indicate that new mail has arrived. Another example is a monitoring system
that uses animation to alert users when failures occur.

When creating system status animation, consider the target users and
their environment. If the animation needs to be visible from across the room,
a bolder animation coupled with sound might be just the right thing. On the
other hand, that same animation viewed by a user sitting at the workstation
would be annoying.

When feasible, let users configure system status animation, so they can
adapt their systems to the environment.

Progress bar

5: APPLICATION GRAPHICS

This chapter provides details on:

■ The use of cross-platform color

■ The design of application graphics, such as button graphics, icons, and
symbols

■ The use of graphics to enhance your product and corporate identity

Because the quality of your graphics can affect user confidence and even the
perceived stability of your application, it is wise to seek the advice of a
professional visual designer.

Working With Cross-Platform Color In a cross-platform delivery
environment, you need to ensure that the visual components of your
application reproduce legibly and aesthetically on all your target systems. In
many cases, you might not know which platforms will be used to run your
software or what display capabilities they might have.

Online graphics consist of the visual representations of JFC components in the
Java look and feel, which are drawn for you by the toolkit, and application
graphics such as icons and splash screens, which you supply.

The Java look and feel components use a simple color model that reproduces
well even on displays with a relatively small number of available colors. You
can use the theme mechanism to change the colors of the components. For
details, see “Themes” on page 39.

Use themes to control the colors of Java look and feel components—for
instance, to provide support for display devices with minimal available colors
(fewer than 16 colors).

You need to supply icons, button graphics, pictures and logos for splash
screens, and About boxes. Since these graphics might be displayed on a
number of different platforms and configurations, you must develop a
strategy for ensuring a high quality of reproduction.

Use color only as a secondary means of representing important
information. Make use of other characteristics (shape, texture, size, or
intensity contrast) that do not require color vision or a color monitor.

Chapter 5: Application Graphics Working With Cross-Platform Color 58

The colors available on your users’ systems, along with graphic file formats,
determine how accurately the colors you choose are displayed on screen.
Judging color availability is difficult, especially when you are designing
applications to be delivered on multiple configurations or platforms.

Working With Available Colors The number of colors available on a system is
determined by the bit depth, which is the number of bits of information used
to represent a single pixel on the monitor. The lowest number of bits used for
modern desktop color monitors is usually 8 bits (256 colors); 16 bits provide
for thousands of colors (65,536, to be exact); and 24 bits, common on newer
systems, provide for millions of colors (16,777,216). The specific colors
available on a system are determined by the way in which the target platform
allocates colors. Available colors might differ from application to application.

Designers sometimes use predefined color palettes when producing images.
For example, some web designers work within a set of 216 “web-safe” colors.
These colors reproduce in many web browsers without dithering (as long as
the system is capable of displaying at least 256 colors). Dithering occurs when
a system or application attempts to simulate an unavailable color by using a
pattern of two or more colors or shades from the system palette.

Outside web browsers, available colors are not so predictable. Individual
platforms have different standard colors or deal with palettes in a dynamic
way. The web-safe colors might dither when running in a standalone
application, or even in an applet within a browser that usually does not
dither these colors. Since the colors available to a Java application can differ
each time it is run, especially across platforms, you cannot always avoid
dithering in your images.

Identify and understand the way that your target platforms handle
colors at different bit depths. To achieve your desired effect, test your
graphics on all target platforms at depths less than 16 bits.

Choosing Graphic File Formats You can use two graphic file formats for images on
the Java platform: GIF (Graphics Interchange Format) and JPEG (named after
its developers, the Joint Photographic Experts Group).

GIF is the common format for application graphics in the Java look and feel.
GIF files tend to be smaller on disk and in memory than JPEG files. Each GIF
image is limited to 256 colors, or 8 bits of color information per pixel. A GIF
file includes a list (or palette) of the colors (256 or fewer) used in the image.
The number of colors in the palette and the complexity of the image are two
factors that affect the size of the graphic file.

Chapter 5: Application Graphics Working With Cross-Platform Color 59

On 8-bit systems, some of the colors specified in a GIF file will be unavailable
if they are not part of the system’s current color palette. These unavailable
colors will be dithered by the system. On 16-bit and 24-bit systems, more
colors are available and different sets of colors can be used in different GIF
files. Each GIF image, however, is still restricted to a set of 256 colors.

JPEG graphics are generally better suited for photographs than for the more
symbolic style of icons, button graphics, and corporate type and logos. JPEG
graphics use a compression algorithm that yields varying image quality
depending on the compression setting, whereas GIF graphics use lossless
compression that preserves the appearance of the original 8-bit image.

Choosing Colors At monitor depths greater than 8 bits, most concerns about how
any particular color reproduces become less significant. Any system capable
of displaying thousands (16 bits) or millions (24 bits) of colors can find a color
very close to, or exactly the same as, each value defined in a given image.
Newer systems typically display a minimum of thousands of colors. Different
monitors and different platforms might display the same color differently,
however. For instance, a given color in one GIF file might look different to the
eye from one system to another.

Many monitors or systems still display only 256 colors. For users with these
systems, it might be advantageous to use colors known to exist in the system
palette of the target platforms. Most platforms include a small set of
“reserved” colors that are always available. Unfortunately, these reserved
colors are often not useful for visual design purposes or for interface
elements because they are highly saturated (the overpowering hues one
might expect to find in a basic box of magic markers). Furthermore, there is
little overlap between the reserved color sets of different platforms, so
reserved colors are not guaranteed to reproduce without dithering across
platforms.

Select colors that do not overwhelm the content of your application or
distract users from their tasks. Stay away from saturated hues. For the sake of
visual appeal and ease of use, choose groups of muted tones for your
interface elements.

Since there is no lowest-common-denominator solution for choosing common
colors across platforms (or even colors that are guaranteed to reproduce on a
single platform), some of the colors in your application graphics will dither
when running in 8-bit color. The best strategy is to design images that dither
gracefully, as described in the following section.

Chapter 5: Application Graphics Working With Cross-Platform Color 60

Maximizing Color Quality Images with fine color detail often reproduce better on
8-bit systems than those images that are mapped to a predefined palette
(such as the web-safe palette) and use large areas of solid colors. Dithering in
small areas is less noticeable than it is over larger areas, and, for isolated
pixels of a given color, dithering simply becomes color substitution. Often
colors in the system palette can provide a fair-to-good match with those
specified in a GIF file. The overall effect of color substitution in small areas
can be preferable to the dithering patterns produced for single colors, or to
the limited number of colors resulting from pre-mapping to a given color
palette.

The following table shows a graphic with a blur effect that contains a large
number of grays. Remapping this graphic to the web-safe palette reduces the
number of grays to two and results in an unpleasing approximation of the
original graphic. However, the original GIF file displays acceptably in a Java
application running in 8-bit color on various operating systems, even though
the systems might not have available the exact colors in the image.

There are no absolutely safe cross-platform colors. Areas of solid color often
dither, producing distracting patterns. One effective way to avoid coarse
dithering patterns is to “pre-dither” your artwork intentionally. This approach
minimizes obvious patterned dithering on 8-bit systems while still permitting
very pleasing effects on systems capable of displaying more than 256 colors.

To achieve this effect, overlay a semitransparent checkerboard pattern on
your graphics. The following figure shows how to build a graphic using this
technique.

TABLE 4 Remappings of a Blurred Graphic (200%)

Original
Graphic

Microsoft
Windows Macintosh CDE

Original colors

Remapped to
web-safe palette

Chapter 5: Application Graphics Working With Cross-Platform Color 61

FIGURE 34 Adding a Pattern to Avoid Coarse Dithering Patterns (150%)

To build the graphic:

1. Use a graphics application with layers.

2. Apply the pattern only to areas that might dither badly. Leave borders
and other detail lines as solid colors.

3. Play with the transparency setting for the pattern layer until the pattern
is dark enough to mix with the color detail without overwhelming it
visually. A 25% transparency with the default secondary 2 color (RGB 153-
153-153) produces a good result for most graphics.

4. Test your results on your target 8-bit platforms.

The following table shows the variable results of graphic reproduction in 8-bit
color, using different styles for various operating systems.

TABLE 5 Variations in Reproduction of 8-Bit Color (150%)

Styles
Original
Graphic

Windows 95
(8 bits)

Mac OS 8.5
(8 bits)

CDE
(8 bits)

Plain

Dithering added

Gradient

Dithering added
to gradient

Lines

Pattern

Color detail

Chapter 5: Application Graphics Designing Graphics in the Java Look and Feel Style 62

The plain graphic in the preceding table, which uses a large area of a single
web-safe color, dithers badly on Windows 95 and CDE. Adding a pattern to the
plain color improves the appearance only slightly. A gradient effect is added
to the graphic to add some visual interest; this produces a banding effect on
Mac OS 8.5. Adding the dithered pattern produces good results on all three
platforms with 8-bit color. In 16-bit and 24-bit color, the graphic reproduction
is very close to, or exactly the same as, the originals.

Designing Graphics in the Java Look and Feel Style
Application graphics that you design fall into three broad categories:

■ Icons, which represent objects that users can select, open, or drag

■ Button graphics, which identify actions, settings, and tools (modes of the
application)

■ Symbols, which are used for general identification and labeling (for
instance, as indicators of conditions or states)

Use the GIF file format for iconic and symbolic graphics. It usually
results in a smaller file size than the JPEG format and uses lossless
compression.

Put all application graphics in resource bundles.

Where possible, use globally understood icons, button graphics, and
symbols. Where none exist, create them with input from international
sources. If you can’t create a single symbol that works in all cultures, define
appropriate graphics for different locales (but try to minimize this task).

TABLE 6 Examples of Application Graphics (200%)

Graphic Type Examples Basic 3D Style Pre-Dithered

Icons

Button
graphics

Symbols

Chapter 5: Application Graphics Designing Icons 63

Designing Icons Icons typically represent containers, documents, network
objects, or other data that users can open or manipulate within an
application. An icon usually appears with identifying text.

The two standard sizes for icons are 16 x 16 pixels and 32 x 32 pixels. The
smaller size is more common and is used in JFC components such as the
internal frame (to identify the contents of the window or minimized internal
frame) and tree view (for container and leaf nodes). You can use 32 x 32 icons
for applications designed for users with visual impairments or for objects in a
diagram, such as a network topology.

Design icons to identify clearly the objects or concepts they represent.
Keep the drawing style symbolic, as opposed to photo-realistic. Too much
detail can make it more difficult for users to recognize what the icon
represents.

When designing large and small icons that represent the same object,
make sure that they have similar shape, color, and detail.

Specify values for the accessibleDescription and
accessibleName properties for each icon so that assistive technologies can
find out what it is and how to use it.

Working With Icon Styles The following figure shows sample 32 x 32 and 16 x 16
icons for files and folders drawn in two different styles. Note that many
objects are difficult to draw in a flush 3D style, particularly at the smaller
16 x 16 size. Three visual elements appear in the sample icons: an interior
highlight (to preserve the flush style used throughout the Java look and feel),
a pattern to minimize dithering (described in “Working With Available Colors”
on page 58), and a dark border.

FIGURE 35 Two Families of Icons (200%)

Use a single style to create a “family” of icons that utilize common
visual elements to reflect similar concepts, roles, and identity. Icons in
families might use a similar palette, size, and style.

3D style

Flat style

Chapter 5: Application Graphics Designing Icons 64

Don’t mix two- and three-dimensional styles in the same icon family.

For satisfactory display on a wide range of background colors and
textures, use a clear, dark exterior border and ensure that there is no anti-
aliasing or other detail around the perimeter of the graphic.

Drawing Icons The following section uses a simple folder as an example of how to
draw an icon. Before you start, decide on a general design for the object. In
this example, a hanging file folder is used to represent a directory.

1. Draw a basic outline shape first.

Icons can use as much of the
available space as possible, since
they are displayed without borders.
Icons should usually be centered
horizontally in the available space.
For vertical spacing, consider
aligning to the baseline of other
icons in the set, or aligning with text
(for instance, in a tree).

If both sizes are required, work on
them at the same time rather than
trying to scale down a detailed 32 x
32 icon later; both sizes then can
evolve into designs that are
recognizable as the same object.

2. Add some basic color (green is used
here).

Chapter 5: Application Graphics Designing Icons 65

3. Draw a highlight on the inside top
and left.

This practice creates the flush 3D
style of the Java look and feel.

4. Add some detail to the icon.

In this case, the crease or “fold”
mark in the hanging folder is drawn.

5. Try a gradient that produces a
“shining” effect instead of the flat
green.

Here a dark green has replaced the
black border on the right and
bottom; black is not a requirement
as long as there is a well-defined
border.

6. Add a pattern to prevent coarse
dithering. This technique minimizes
banding and dithering on displays
with 256 or fewer colors (see
“Maximizing Color Quality” on
page 60).

The first graphic is an exploded view
of an icon that shows how the
pattern is added.

Pattern

Color detail

Line

Chapter 5: Application Graphics Designing Button Graphics 66

Designing Button Graphics Button graphics appear inside buttons—
most often in toolbar buttons. Such graphics identify the action, setting,
mode, or other function represented by the button. For instance, clicking the
button might carry out an action (creating a new file) or set a state
(boldfaced text).

The two standard sizes for button graphics are 16 x 16 pixels and 24 x 24
pixels. Either size (but not both at the same time) can be used in toolbars or
tool palettes, depending on the amount of space available. For details on
toolbars, see “Toolbars” on page 140. For more on palette windows, see
“Palettes” on page 110.

If you include both text and graphics in a button, the size of the button will
exceed 16 x 16 or 24 x 24 pixels. If the button size is an issue, consider using
tool tips instead.

Do not include text as part of your button graphics (GIF files). Use button
text instead. Keep the button text in a resource bundle to facilitate
localization.

The next graphic shows an icon in
which a pattern has been added to
the color detail.

7. Define the empty area around the
icon graphic (in which you have not
drawn anything) as transparent
pixels in the GIF file.

This practice ensures that the
background color shows through; if
the icon is dragged to or displayed
on a different background, the area
surrounding it matches the color or
pattern of the rest of the
background.

Transparent pixels

Chapter 5: Application Graphics Designing Button Graphics 67

Note, however, that toolbar buttons can display text instead of graphics,
particularly if your usability testing establishes that the action, state, or
mode represented by the button graphic is difficult for users to comprehend.
Tool tips for toolbar buttons can help clarify the meaning of a button. For
details, see “Tool Tips for Toolbar Buttons” on page 144.

When designing your button graphics, clearly show the action, state, or
mode that the button initiates.

Keep the drawing style symbolic; too much detail can make it more
difficult for users to understand what a button does.

Use a flush 3D border to indicate that a button is clickable.

Draw a clear, dark border without anti-aliasing or other exterior detail
(except the flush 3D highlight) around the outside of a button graphic.

Using Button Graphic Styles The following figure shows sample button graphics
designed for toolbars and for the contents of a tool palette.

FIGURE 36 Button Graphics for a Toolbar and a Tool Palette (200%)

Use a single style to create a “family” of button graphics with common
visual elements. You might use a similar palette, size, and style for different
button groups, such as toolbar buttons, toggle buttons, or command buttons.
Review the graphics in context before finalizing them.

Producing the Flush 3D Effect To produce the flush 3D effect, add an exterior white
highlight on the outside right and bottom of the graphic and an interior
highlight on the inside left and top.

FIGURE 37 Flush 3D Effect in a Button Graphic (200%)

Exterior flush 3D border

Interior flush 3D border

Chapter 5: Application Graphics Designing Button Graphics 68

Working With Button Borders The size of a button graphic includes all the pixels
within the border. As shown in the following illustration, horizontal and
vertical dimensions are both either 24 or 16 pixels. The border abuts the
button graphic (that is, there are no pixels between the border and the
graphic).

FIGURE 38 Button Graphics With Borders (200%)

Determining the Primary Drawing Area Because the white pixels in both the
button border and the button graphic are less visually significant than the
darker borders, the area used for most of the drawing is offset within the
16 x 16 or 24 x 24 space. The following illustration shows the standard
drawing area for both button sizes. Note that the white highlight used to
produce the flush 3D style in the button graphic might fall outside this area.

FIGURE 39 Primary Drawing Area in Buttons (200%)

16

16 24

24

13

13 21

21

Chapter 5: Application Graphics Designing Button Graphics 69

The following illustrations show 16 x 16 and 24 x 24 button graphics that use
the maximum recommended drawing area. Notice that on all sides there are
2 pixels between the dark border of the button graphic and the dark portion
of the button border.

FIGURE 40 Maximum-Size Button Graphics (200%)

Drawing the Button Graphic When drawing a button graphic, first decide on a
general design that represents the action or setting activated by the button.
In the following examples, a clipboard suggests the Paste command.

1. Decide which size you
want to use for the
button or toolbar
graphic.

2

2 2

2

2 2

2

2

13

13 21

21

Chapter 5: Application Graphics Designing Button Graphics 70

2. Draw a basic outline
shape, taking care to
remain within the
primary drawing
area.

3. Add some basic color.

4. Add the flush 3D
effect by drawing
highlights on the
inside left and top,
and on the outside
bottom and right of
the outline.

This is a good basic
design, but because
of the large area
using a single color,
the graphic lacks
visual interest and
might not reproduce
well on some
systems.

13

13 21

21

Chapter 5: Application Graphics Designing Button Graphics 71

5. Try a gradient instead
of the flat color.

6. Add a pattern. This
technique minimizes
banding and
dithering on displays
with 256 or fewer
colors (see
“Maximizing Color
Quality” on page 60).

The first figure shows
an exploded view of
the button graphic
without flush 3D
highlights. The next
figure shows the
effect of the pattern
on the color detail of
the button graphic.

Color detail

Pattern

Lines

Chapter 5: Application Graphics Designing Symbols 72

Designing Symbols Symbols include any small graphic (typically 48 x 48
pixels or smaller) that stands for a state or a concept but has no directly
associated action or object. Symbols might appear within dialog boxes,
system status alert boxes, and event logs. Saturated colors might be useful
for status or warning symbols.

The examples in the following figure show the graphic from an Info alert box
and a caution symbol superimposed on a folder icon to indicate a
hypothetical state. The style for symbols is not as narrowly defined as that for
icons and button graphics. The examples in the following figure use a flush or
etched effect for interior detail but not for the border of the graphic.

FIGURE 41 Symbols (200%)

Ensure adequate contrast between a warning symbol and the icon or
background it appears against.

7. Define the empty
area around your
button graphic (in
which you have not
drawn anything) as
transparent pixels in
the GIF file.

This practice ensures
that the background
color shows through;
if the theme
changes, the area
around the button
graphic will match
the rest of the
background canvas in
the interface.

Transparent pixels

Information symbol Caution symbol

Chapter 5: Application Graphics Designing Graphics for Corporate and Product Identity 73

Designing Graphics for Corporate and Product Identity
Application graphics present an excellent opportunity for you to enhance your
corporate or product identity. This section presents information about
installation screens, splash screens, About boxes, and login splash screens.

NOTE – The examples presented in this section use the sample text-editing and
mail applications, MetalEdit and MetalMail. They are not appropriate for
third-party use.

Use the JPEG file format for any photographic elements in your
installation screens, splash screens, and About boxes.

Designing Installation Screens An installation screen is a window containing
images that are displayed in an application installer. Often the first glimpse
users have of your application is the installer. Consequently, an installation
screen introduces and reinforces your corporate and product identity. The
number of screens in an installer can vary.

Use a plain window for installation screens, and draw any desired
border inside the window.

Provide a clearcut way for your users to move through the steps
required to perform the installation, and enable them to cancel or stop the
installation at any point.

The JWindow component is typically used to implement plain
windows.

See “Layout and Visual Alignment” on page 47 for general guidelines on how
to arrange and align items.

Designing Splash Screens A splash screen is a plain window that appears briefly in
the time between the launch of a program and the appearance of its main
application window. Nothing other than a blank space is included with a JFC-
supplied plain window; you must provide the border and the contents of the
splash screen. For instance, the black border on the window in the following
figure is part of the GIF file supplied by the splash screen designer.

Chapter 5: Application Graphics Designing Graphics for Corporate and Product Identity 74

FIGURE 42 Splash Screen for MetalEdit (200%)

Although not required, splash screens are included in most commercial
products. Splash screens typically have the following elements:

■ Company logo
■ Product name (trademarked, if appropriate)
■ Visual identifier of the product or product logo

Check with your legal adviser about requirements for placing copyright
notices or other legal information in your splash screens.

To get the black border that is recommended for splash screens, you
must include a 1-pixel black border as part of the image you create.

The JWindow component, not the JFrame component, is typically
used to implement the plain window that provides the basis for splash
screens.

Company logo

Product name

Visual identifier of product

Chapter 5: Application Graphics Designing Graphics for Corporate and Product Identity 75

Designing Login Splash Screens If your application requires users to log in, you
might consider replacing the traditional splash screen with a login splash
screen.

FIGURE 43 Login Splash Screen for MetalMail (200%)

The elements of this screen might include:

■ Label and text field for a login user name
■ Label and password field
■ Label and editable combo box for any other information required by the system
■ Buttons for logging in and canceling the login splash screen

To save time and to increase the chance of users viewing a splash screen, it is
a good idea to combine your login screen and your splash screen.

Provide a way for users to exit the login splash screen without first
logging in.

The JDialog component, not the JWindow component, is typically
used to implement a login splash screen.

Login Name text field

Password field

Editable combo box for system-required data

Cancel button (to exit login)

Log In button

Chapter 5: Application Graphics Designing Graphics for Corporate and Product Identity 76

Designing About Boxes An About box is a dialog box that contains basic
information about your application.

FIGURE 44 About Box for MetalEdit (200%)

An About box might contain the following elements:

■ Product name (trademarked, if appropriate)
■ Version number
■ Company logo
■ Product logo or a visual reminder of the product logo
■ Copyright, trademarks, and other legal notices
■ Names of contributors to the product

Because users typically display About boxes by choosing the About
Application item from the Help menu, be sure that the About box is
accessible while your application is running.

Because the dialog box title bar may not include a Close button on all
platforms, include a Close button in your About boxes so that users can
dismiss them after reading them. Follow the guidelines for button placement
described in “Spacing in Dialog Boxes” on page 115.

Product name

Company logos

Close button

6: BEHAVIOR

Users interact with the computer via the mouse, the keyboard, and the
screen. Such interaction is the “feel” portion of the Java look and feel. This
chapter provides input guidelines and recommendations for interaction
techniques. It describes mouse operations, including information on pointers,
and drag-and-drop operations. It also discusses keyboard operations,
including the use of mnemonics, keyboard shortcuts, and keyboard focus in
Java look and feel applications.

Mouse Operations In Java look and feel applications, the following
common mouse operations are available to users:

■ Moving the mouse changes the position of the onscreen pointer (often
called the “cursor”).

■ Clicking (pressing and releasing a mouse button) selects or activates the
object beneath the pointer. The object is usually highlighted when the
mouse button is pressed and then selected or activated when the mouse
button is released. For example, a click is used to activate a command
button, to select an item from a list, or to set an insertion point in a text
area.

■ Double-clicking (clicking a mouse button twice in rapid succession
without moving the mouse) is used to select larger units (for example, to
select a word in a text field) or to select and open an object.

■ Triple-clicking (clicking a mouse button three times in rapid succession
without moving the mouse) is used to select even larger units (for
instance, to select an entire line in a text field).

■ Dragging (pressing a mouse button, moving the mouse, and releasing
the mouse button) is used to select a range of objects, to choose items
from drop-down menus, or to move objects in the interface.

In your design, assume a two-button mouse. Use mouse button 1
(usually the left button) for selection, activation of components, dragging,
and the display of drop-down menus. Use mouse button 2 (usually the right
button) to display contextual menus. Do not use the middle mouse button; it
is not available on most target platforms.

Chapter 6: Behavior Mouse Operations 78

Be aware that Macintosh systems usually have a one-button mouse,
other personal computers and network computers usually have a two-button
mouse, and UNIX systems usually have a three-button mouse.

Restrict interaction to the use of mouse button 1 and mouse button 2.
Macintosh users can simulate mouse button 2 by holding down the Control
key while using mouse button 1.

The following figure shows the relative placement of mouse buttons 1 and 2
on Macintosh, PC, and UNIX mouse devices.

FIGURE 45 Cross-Platform Mouse Buttons and Their Default Assignments

Pointer Feedback The pointer can assume a variety of shapes. For instance, in a
text-editing application, the pointer might assume an I-beam shape (called a
“text pointer” in the JDK) to indicate where the insertion point will be if the
user presses the mouse button. The insertion point is the location where
typed text or a dragged or pasted selection will appear. When the pointer
moves out of the editor pane, it returns to its initial appearance as a default
pointer.

The Java look and feel defines a set of pointer types that map to the
corresponding native platform pointers; therefore, the appearance of pointers
can vary from platform to platform, as shown in the following table. When no
corresponding pointer exists in the native platform toolkit, the pointer is
supplied by the JFC.

1 1 2 1 2

Macintosh PC UNIX

Chapter 6: Behavior Mouse Operations 79

In addition to the shapes in Table 7, a pointer graphic can be defined
as an image and created using Toolkit.createCustomCursor if you are
using the Java 2 platform.

Mouse-over Feedback Mouse-over feedback is a visual effect that occurs when
users move the pointer over an area of an application window.

In the Java look and feel, mouse-over feedback can be used to show borders
on toolbar buttons when the pointer moves over them. A slightly different
effect is used to display tool tips. For details, see “Toolbars” on page 140 and
“Tool Tips” on page 145.

TABLE 7 Pointer Types Available in JDK 1.1 and the Java 2 SDK (200%)

Pointer Macintosh Windows 95 CDE Usage in Java Look and Feel Applications

Default Pointing, selecting, or moving

Crosshair Interacting with graphic objects

Hand Panning objects by direct manipulation

Move Moving objects

Text Selecting or inserting text

Wait Indicating that an operation is in progress
and the user cannot do other tasks

S Resize Adjusting the lower (southern) border of
an object

N Resize Adjusting the upper (northern) border of
an object

E Resize Adjusting the right (eastern) border of an
object

W Resize Adjusting the left (western) border of an
object

NW Resize Adjusting the upper-left (northwest)
corner of an object

NE Resize Adjusting the upper-right (northeast)
corner of an object

SE Resize Adjusting the lower-right (southeast)
corner of an object

SW Resize Adjusting the lower-left (southwest)
corner of an object

Chapter 6: Behavior Mouse Operations 80

Clicking and Selecting Objects In the Java look and feel, the selection of objects
with the mouse is similar to the standard practice for other graphical user
interfaces. Users select an object by clicking it. Clicking an unselected object
also deselects any previous selection.

JFC-provided text selection follows these general rules:

■ A single click deselects any existing selection and sets the insertion
point.

■ A double click on a word deselects any existing selection and selects the
word.

■ A triple click in a line of text deselects any existing selection and selects
the line.

■ Dragging (that is, moving the mouse while holding down mouse
button 1) through a range of text deselects any existing selection and
selects the range.

JFC-provided selection in lists and tables follows these general rules:

■ A click on an object deselects any existing selection and selects the
object.

■ A Shift-click on an object extends the selection from the most recently
selected object to the current object.

■ A Control-click on an object toggles its selection without affecting the
selection of any other objects.

Displaying Contextual Menus It can be difficult for users to find and access desired
features given all the commands in the menus and submenus of a complex
application. Contextual menus (sometimes called “pop-up menus”) enable
you to make such functions available throughout the graphical interface and
to associate menu items with relevant objects.

Users can access contextual menus in two ways:

■ To pull down the menu, users can press and hold mouse button 2 over a
relevant object. Then they can drag to the desired menu item and release
the mouse button to choose the item.

■ To post the menu, users can click mouse button 2 over a relevant object.
Then they can click the desired menu item to choose it.

Chapter 6: Behavior Drag-and-Drop Operations 81

FIGURE 46 Contextual Menu for a Text Selection (150%)

Since users often have difficulty knowing whether contextual menus are
available and what is in them, ensure that the items in your contextual menu
also appear in the menu bar or toolbar of the primary windows in your
application.

Be sure that the commands in your contextual menu apply only to a
selected object or group of objects. For instance, a contextual menu might
include cut, copy, and paste commands limited to a selected text range, as
shown in the preceding figure.

Remember that users on the Microsoft Windows and UNIX platforms
display a contextual menu by clicking or pressing mouse button 2. Macintosh
users hold down the Control key while clicking.

Drag-and-Drop Operations Drag-and-drop operations include
moving, copying, or linking selected objects by dragging them from one
location and dropping them over another. These operations provide a
convenient and intuitive way to perform many tasks using direct
manipulation. Common examples of drag and drop in the user interface are
moving files by dragging file icons between folders or dragging selected text
from one document to another. The Java 2 platform supports drag and drop
between two Java applications or between a Java application and a native
application. For example, on a Microsoft Windows system, users can drag a
text selection from a Java application and drop it into a Microsoft Word
document.

Typical Drag and Drop Drag and drop in Java applications is similar to standard
behavior on other platforms. Users press mouse button 1 while the pointer is
over a source object and then drag the object by moving the pointer while
holding down the mouse button. To drop the object, users release the button
when the pointer is over a suitable destination. A successful drop triggers an

Chapter 6: Behavior Keyboard Operations 82

action that depends on the nature of the source and destination. If the drag
source is part of a range selection, the entire selection (for example, several
file icons or a range of text) is dragged.

Pointer and Destination Feedback During any drag-and-drop operation, your Java
look and feel application needs to give visual feedback using the pointer and
the destination.

Provide the user with feedback that a drag operation is in progress by
changing the shape of the pointer when the drag is initiated.

Provide destination feedback so users know where the dragged object
can be dropped. Use one or both of the following methods to provide
destination feedback:

■ Change the pointer shape to reflect whether the object is over a possible
drop target.

■ Highlight drop targets when the pointer is over them to indicate that
they can accept the target.

Java objects are specified by their MIME (Multipurpose Internet Mail
Extensions) types, and the Javaª runtime environment automatically
translates back and forth between MIME types and system-native types as
needed. As an object is dragged over potential targets, each potential target
can query the drag source to obtain a list of available data types and then
compare that with the list of data types that it can accept. For example,
when dragging a range of text, the source might be able to deliver the text in
a number of different encodings or as plain text, styled text, or HTML text. If
there is a match in data types, potential targets should be highlighted as the
pointer passes over them to indicate that they can accept the dragged object.

Keyboard Operations The Java look and feel assumes a PC-style
keyboard. The standard ASCII keys are used, along with the following modifier
keys: Shift, Control, and Alt (Option on the Macintosh); the function keys F1
through F12; the four arrow keys; Delete, Backspace, Home, End, Page Up,
and Page Down. Enter and Return are equivalent. (Return does not appear on
PC keyboards.)

A modifier key is a key that does not produce an alphanumeric character but
can be used in combination with other keys to alter an action. Typical
modifier keys in Java look and feel applications are Shift, Control, and Alt.

Chapter 6: Behavior Keyboard Operations 83

This section describes and provides recommendations for the use of keyboard
operations, which include keyboard shortcuts, mnemonics, and other forms of
navigation, selection, and activation that utilize the keyboard instead of the
mouse. A mnemonic is an underlined letter that typically appears in a menu
title, menu item, or the text of a button or other component. The underlined
letter reminds users how to activate the equivalent command by pressing the
Alt key and the character key that corresponds to the underlined letter. For
instance, you could use a mnemonic to give keyboard focus to a text area or
to activate a command button. A keyboard shortcut is a sequence of keys
(such as Control-A) that activates a menu command.

Keyboard Focus The keyboard focus (sometimes called “input focus”) designates
the active window or component where the user’s next keystrokes will take
effect. Focus typically moves when users click a component with a pointing
device, but users can also control focus from the keyboard. Either way, users
designate the window, or component within a window, that receives input.
(There are exceptions: for instance, a left-alignment button on a toolbar
should not take focus away from the text area where the actual work is
taking place.)

When a window is first opened, assign initial keyboard focus to the
component that would normally be used first. Often, this is the component
appearing in the upper-left portion of the window. If keyboard focus is not
assigned to a component in the active window, the keyboard navigation and
control mechanisms cannot be used. The assignment of initial keyboard focus
is especially important for people who use only a keyboard to navigate
through your application—for instance, those with visual or mobility
impairments.

In the Java look and feel, many components (including command buttons,
checkboxes, radio buttons, toggle buttons, lists, combo boxes, tabbed panes,
editable cells, and tree views) indicate keyboard focus by displaying a
rectangular border (blue, in the default color theme).

Chapter 6: Behavior Keyboard Operations 84

FIGURE 47 Keyboard Focus Indicated by Rectangular Border (150%)

Editable text components, such as text fields, indicate keyboard focus by
displaying a blinking bar at the insertion point.

FIGURE 48 Keyboard Focus Indicated by Blinking Bar at Insertion Point (150%)

Menus indicate focus with a colored background for menu titles or menu
items (blue, in the default color theme).

Noneditable combo box Radio button Command button

Tabbed pane List

Table Tree view

Blinking bar at insertion point

Chapter 6: Behavior Keyboard Operations 85

FIGURE 49 Keyboard Focus Indicated by Colored Background (150%)

Split panes and sliders indicate focus by darkening the drag-textured areas
(blue, in the default color theme).

FIGURE 50 Keyboard Focus Indicated by Drag Texture (150%)

Keyboard Navigation and Activation Keyboard navigation and activation enable
users to move keyboard focus from one user interface component to another
via the keyboard.

In general, pressing the Tab key moves focus through the major components;
Shift-Tab moves through the components in the reverse direction. Control-Tab
and Control-Shift-Tab work in a similar fashion and are particularly useful
when keyboard focus is in an element that accepts tabs, such as a text area
or a table. Arrow keys are often used to move within groups of components—
for example, Tab puts focus in a set of radio buttons and then the arrow keys
move focus among the radio buttons. However, the Tab key is used to move
among checkboxes.

Once an element has focus, pressing the spacebar typically activates it or
selects it. In a list, pressing Shift-spacebar extends the selection; pressing
Control-spacebar makes another selection without affecting the current
selections.

Drop-down menu

Split pane

Slider

Chapter 6: Behavior Keyboard Operations 86

Some components do not need explicit keyboard focus to be operated. For
example, the default button in a dialog box can be operated by pressing the
Enter or Return key without the default button having keyboard focus.
Similarly, scrollbars can be operated from the keyboard if focus is anywhere
within the scroll pane.

Keyboard navigation can be useful not only for accessibility purposes, but also
for power users, users who prefer the keyboard over the mouse, or users who
choose alternative input methods like voice input or onscreen keyboards.

Ensure that all application functions are accessible from the keyboard
by unplugging the mouse and testing the application’s keyboard operations.

Some of the keyboard operations in the tables in Appendix A are
temporarily incomplete or unimplemented. However, the key sequences
listed in this appendix should be reserved for future versions of the JFC and
the Java 2 platform.

The setNextFocusableComponent method from JComponent can
be used to set the order for tabbing by chaining components together—
specifying for each component what the next component in the sequence is.

The common operations for keyboard navigation and activation in the Java
look and feel are summarized in the following table. Within the table, the
term “group” refers to a group of toolbar buttons, menu titles, text, or table
cells.

TABLE 8 Common Navigation and Activation Keys

Action Keyboard Operation

Navigates in, navigates out Tab1

Navigates out of a component that accepts tabs Control-Tab1

Moves focus left one character or component within a
group

Left arrow

Moves focus right one character or component within
a group

Right arrow

Moves focus up one line or component within a group Up arrow

Moves focus down one line or component within a
group

Down arrow

Moves up one view Page Up

Moves down one view Page Down

Chapter 6: Behavior Keyboard Operations 87

Keyboard Shortcuts Keyboard shortcuts are keystroke combinations (consisting of a
modifier key and a character key, like Control-Z) that activate a menu item
from the keyboard even if the menu for that command is not currently
displayed. Unlike mnemonics, keyboard shortcuts do not post menus; rather,
they perform the indicated actions directly.

FIGURE 51 Edit Menu With Keyboard Shortcuts and Mnemonics (150%)

To use a keyboard shortcut in Java look and feel applications, users hold down
the Control key (and optionally, an additional modifier key, such as Shift) and
press the character key that is shown after the menu item. Typing the
keyboard shortcut has the same effect as choosing the menu item. For
instance, to undo an action, users can either choose the Undo item from the
Edit menu or hold down the Control key and press Z.

Do not use the Meta key (the Command key on the Macintosh
platform) for a keyboard shortcut, except as an alternate for Control. It is not
available on many target platforms.

Moves to the beginning of data; in a table, moves to
the beginning of a line

Home

Moves to the end of data; in a table, moves to the
last cell in a row

End

Activates the default command button Enter or Return

Dismisses a menu or dialog box without changes Escape

Activates or selects the component (with keyboard
focus)

Spacebar

1. With Shift key, reverses direction

TABLE 8 Common Navigation and Activation Keys (Continued)

Action Keyboard Operation

Press Ctrl-Z to Undo

Chapter 6: Behavior Keyboard Operations 88

Specify keyboard shortcuts for frequently used menu items to provide
an alternative to mouse operation. The Java look and feel displays keyboard
shortcuts using standard abbreviations for key names, separated by hyphens.

Be aware of and use the common shortcuts across platforms that are
summarized in the following table.

Since keyboard shortcuts are not always equivalent on different
platforms, ensure that any new keyboard shortcuts you have created are
compatible with existing shortcuts on all your target platforms.

Mnemonics Mnemonics provide yet another keyboard alternative to the mouse. A
mnemonic is an underlined letter in a menu title, menu item, or other
interface component. It reminds the user how to activate the equivalent
command by simultaneously pressing the Alt key and the character key that
corresponds to the underlined letter.

TABLE 9 Common Keyboard Shortcuts

Sequence Equivalent

Ctrl-N New (File menu)

Ctrl-O Open (File menu)

Ctrl-S Save (File menu)

Ctrl-P Print (File menu)

Ctrl-W Close (File menu)

Ctrl-Z Undo (Edit menu)

Ctrl-Y Redo (Edit menu)

Ctrl-X Cut (Edit menu)

Ctrl-C Copy (Edit menu)

Ctrl-V Paste (Edit menu)

Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)

Ctrl-A Select All (Edit menu)

Chapter 6: Behavior Keyboard Operations 89

FIGURE 52 File Menu With Mnemonics and Keyboard Shortcuts (150%)

When keyboard focus is not in a text element, the Alt modifier is not always
required. Menus are an example. For instance, to choose the Exit command
from the File menu, the user can hold down the Alt key and press F to post
the File menu, and then press X.

Once users have displayed a menu with a keyboard sequence, the subsequent
key they press will activate a command only from that menu. Hence, users
can press Alt-F to display the File menu and then type A to activate the Save
As command, or press Alt-E to display the Edit menu, and then type A to
activate the Select All command.

You can also provide mnemonics for components within the dialog boxes in
your applications. However, it is important to note that this situation requires
that you use a modifier key. For instance, within a dialog box, you might
want to provide a mnemonic for the Help button. Once keyboard focus has
moved within the dialog box, users press Alt, and then H to activate the Help
button.

Do not associate mnemonics with the default button or the Cancel
button in a dialog box. Use Enter or Return for the default button and Escape
for the Cancel button instead.

Choose mnemonics that avoid conflicts. For instance, you cannot use
the letter P as the mnemonic for both the Print and Page Setup commands.

Press Alt-F to display menu

Then press X to exit

Chapter 6: Behavior Keyboard Operations 90

When you assign mnemonics, follow these guidelines in the specified
order.

1. Use common mnemonics as they appear in Table 10 below.

2. If the mnemonic does not appear in the table of common mnemonics
(Table 10), choose the first letter of the menu item. (For instance, choose
J for Justify.)

3. If the first letter of the menu item conflicts with those of other items,
choose a prominent consonant. (For instance, the letter S may have
already been designated as the mnemonic for the Style command.
Therefore, choose the letter Z as the mnemonic for the Size command.)

4. If the first letter of the menu item and the prominent consonant conflict
with those of other menu items, choose a prominent vowel.

The setMnemonic method can be used to specify mnemonics on
buttons, checkboxes, radio buttons, toggle buttons, and menu titles. The
setDisplayedMnemonic method can be used for labels, and the
setAccelerator method for menu items.

TABLE 10 Common Mnemonics

Menu Titles Menu Items

File New, Open, Close, Save, Save As, Page Setup, Print,
Preferences, Exit

Edit Undo, Redo, Cut, Copy, Paste, Find, Find Again, Select All

Help Contents, Tutorial, Index, Search, About Application

PART III: THE COMPONENTS OF THE JAVA
FOUNDATION CLASSES

7: WINDOWS, PANES, AND FRAMES

Primary windows, secondary windows, utility windows, and plain windows
provide the top-level containers for your application. A primary window is a
window in which users’ main interaction with the data or document takes
place. An application can use any number of primary windows, which can be
opened, closed, minimized, or resized independently. A secondary window is
a supportive window that is dependent on a primary window (or another
secondary window). In the secondary window, users can view and provide
additional information about actions or objects in a primary window. A utility
window is a window whose contents affect an active primary window. Unlike
secondary windows, utility windows remain open when primary windows are
closed or minimized. An example of a utility window is a tool palette that is
used to select a graphic tool. A plain window is a window with no title bar or
window controls, typically used for splash screens.

FIGURE 53 Primary, Utility, Plain, and Secondary Windows (200%)

Primary

Secondary

Plain

Utility

Chapter 7: Windows, Panes, and Frames 94

Similarly, as a designer you can use panels, panes, and internal frames as
lower-level containers within primary and secondary windows. A panel is a

container for organizing the contents of a window, dialog box, or applet. (You can

place panels in panes or panes in panels.) A pane is a collective term for scroll

panes, split panes, and tabbed panes, which are described in this chapter. An

internal frame is a container used in MDI applications to create windows that

users cannot drag outside of the desktop pane.

FIGURE 54 Scroll Pane, Tabbed Pane, Split Pane, and Internal Frame (200%)

Scroll pane

Tabbed pane
displayed in a
dialog box

Split pane

Internal
frames

Chapter 7: Windows, Panes, and Frames Anatomy of a Primary Window 95

Anatomy of a Primary Window Primary windows act as top-level
containers for the user interface elements that appear inside them. A primary
window might hold a series of embedded containers. For example, a primary
window in your application could have this organization, as shown in the
following figure:

■ The window frame contains a menu bar and a panel
■ The menu bar contains menus
■ The panel contains a toolbar and a scroll pane and scrollbar
■ The toolbar contains toolbar buttons
■ The scroll pane contains an editor pane with a plug-in editor kit for styled text

FIGURE 55 Components Contained in a Primary Window

Note the appearance of the embedded containers in an actual primary
window and their relationship to the underlying structure, as shown in the
following figure:

Window frame

Menu bar Panel

Menus 1, 2, 3... Toolbar Scroll pane and scrollbar

Toolbar buttons
1, 2, 3...

Editor pane with styled text
plug-in kit

Chapter 7: Windows, Panes, and Frames Anatomy of a Primary Window 96

FIGURE 56 Anatomy of a Primary Window (200%)

Window frame

Menu bar and menus

Toolbar and toolbar buttons

Editor pane with styled
text plug-in kit

Menu bar and menus

Toolbar and toolbar buttons

Window frame

Panel

Scroll pane

Scrollbars in scroll pane

Editor pane

Scroll pane and scrollbars

Styled text plug-in kit

Chapter 7: Windows, Panes, and Frames Constructing Windows 97

Constructing Windows Primary windows, secondary windows, utility
windows, and plain windows serve as the top-level containers for all the
interface elements of your application.

FIGURE 57 Top-Level Containers (200%)

Primary windows are implemented using the JFrame component.
Secondary windows and utility windows are implemented using the JDialog
component. Plain windows are implemented using the JWindow component.

Primary Windows JFC applications display information such as documents inside
primary windows. Such windows are provided by the native operating system
of the platform on which the application is running—for instance, UNIX,
Microsoft Windows, OS/2, or Macintosh.

Specifically, you cannot alter the appearance of the window border and title
bar, including the window controls, which are provided by the native
operating system. Window behavior, such as resizing, dragging, minimizing,
positioning, and layering, is controlled by the native operating system.

The content provided by your application, however, assumes the Java look
and feel, as shown in the following illustration of a MetalEdit document
window as it appears on the Microsoft Windows platform.

Primary window

Secondary window

Plain window

Utility window

Chapter 7: Windows, Panes, and Frames Constructing Windows 98

FIGURE 58 Primary Window on the Microsoft Windows Platform (200%)

Typically, when users close or minimize a window, the operating system
closes any associated secondary windows as well. However, the operating
system does not take care of this behavior automatically for JFC applications.

Keep track of the secondary windows in your application; close them if
the primary window is closed or hide them if their primary window is
minimized.

Although native operating systems display a close control on the title
bar of typical windows, provide a Close item or Exit item in your File menu as
well.

In the JFC, primary windows are created using the JFrame component.
This component appears with the border, title bar, and window controls of
the platform on which it is running. This is the JFC component you are most
likely to use as the top-level container for a primary window.

Secondary Windows Secondary windows, such as dialog boxes and alert boxes, are
displayed in a window supplied by the native operating system. In the JFC,
this component is called JDialog. It appears with the border and title bar of
the platform on which it is running. Chapter 8 provides more guidelines for
the design of dialog boxes and alert boxes. The following figure shows a JFC-
supplied Warning alert box for the sample text-editing application, MetalEdit.

Border

Title bar Window
controls

Chapter 7: Windows, Panes, and Frames Constructing Windows 99

FIGURE 59 Alert Box on the Macintosh Platform (200%)

Dialog and alert box behavior, such as dragging and closing, is controlled by
the native operating system. For keyboard operations that are appropriate to
dialog and alert boxes, see Table 17 on page 194.

Keep in mind that some platforms do not provide close controls in the
title bar for dialog boxes. Always provide a way to close the window in the
dialog box or alert box itself.

The JOptionPane component is used to implement an alert box. If
the box supplied by the JFC does not suit your needs, you can use the
JDialog component.

Plain Windows You can create a window that is a blank plain rectangle. The
window contains no title bar or window controls, as shown in the following
figure. (Note that the black border shown around this plain window is not
provided by the JFC.)

FIGURE 60 Plain Window Used as the Basis for a Splash Screen (200%)

Title bar

Border

Chapter 7: Windows, Panes, and Frames Constructing Windows 100

A plain window does not provide dragging, closing, minimizing, or
maximizing. You can use a plain window as the container for a splash screen,
which appears and disappears without user interaction, as shown in the
preceding figure.

The JWindow component is used to implement plain windows. The
JFrame component is used to implement primary windows.

Utility Windows In a non-MDI application with the Java look and feel, a utility
window is often used to display a collection of tools, colors, or patterns.
Unlike the palette windows provided for MDI applications, utility windows do
not float above all the other windows. The following figure shows a utility
window that displays a collection of tools.

FIGURE 61 Utility Window (150%)

Unlike secondary windows, which should be closed automatically when their
associated windows are closed, utility windows should not be closed when
primary windows are closed.

User choices made in a utility window refer to and affect the active primary
window. A utility window remains on screen for an extended period of time
while users go back and forth between the utility window and primary
windows. In contrast, a secondary window is designed to enable users to
resolve an issue in an associated primary window and is usually dismissed
once users have resolved the issue.

For information on keyboard operations appropriate for utility windows, see
Table 17 on page 194.

Since utility windows are not dependent on a primary window, do not
automatically dismiss utility windows when primary windows are closed.

Utility windows in your application are implemented using the
JDialog component. Palettes to be used within MDI applications are
implemented as a form of the JInternalFrame component.

Platform-specific title bar and border

Java look and feel window contents

Chapter 7: Windows, Panes, and Frames Organizing Windows 101

Organizing Windows The JFC provides a number of user interface
elements you can use for the organization of windows: panels, tabbed panes,
split panes, and scroll panes. Panels and panes can be used to organize
windows into one or more viewing areas. A panel is a JFC component that you
can use for grouping other components inside windows or other panels. A
pane is a collective term for scroll panes, split panes, and tabbed panes.

FIGURE 62 Lower-Level Containers (200%)

Panels In contrast to scroll panes and tabbed panes, which typically play an
interactive role in an application, a panel simply groups components within a
window or another panel. Layout managers enable you to position
components visually within a panel. For a thorough treatment of the visual
layout and alignment of components, see “Layout and Visual Alignment” on
page 47. For more information on layout managers, see The Java Tutorial at
http://java.sun.com/docs/books/tutorial.

Panel

Scroll pane

Split pane

Tabbed pane

http://java.sun.com/docs/books/tutorial

Chapter 7: Windows, Panes, and Frames Organizing Windows 102

Scroll Panes A scroll pane is a specialized container offering vertical and horizontal
scrollbars that enable users to change the visible portion of the window
contents.

Here is an example of a scroll pane with a vertical scrollbar. The size of the
scroll box indicates the proportion of the content currently displayed.

FIGURE 63 Scroll Pane in a Document Window (200%)

You can choose whether scrollbars are always displayed in the scroll pane or
whether they appear only when needed.

Unless otherwise indicated, use the default setting for horizontal
scrollbars, which specifies that they appear only when needed.

If the data in a list is known and appears to fit in the available space
(for example, a predetermined set of colors), specify that a vertical scrollbar
should appear only if needed. For instance, if users change the font, the list
items might become too large to fit in the available space, and a vertical
scrollbar would be required.

If the data in a scroll pane sometimes requires a vertical scrollbar,
specify that the vertical scrollbar always be present. Otherwise, the data
must be reformatted whenever the vertical scrollbar appears or disappears.

Scrollbars are obtained by placing the component, such as a text area,
inside a scroll pane.

Scrollbars A scrollbar is a component that enables users to control what portion of a
document or list (or similar information) is visible on screen. In locales with
left-to-right writing systems, scrollbars appear along the bottom and the right
sides of a scroll pane, a list, a combo box, a text area, or an editor pane. In
locales with right-to-left writing systems, such as Hebrew and Arabic,
scrollbars appear along the bottom and left sides of the relevant component.

Chapter 7: Windows, Panes, and Frames Organizing Windows 103

By default, scrollbars appear only when needed to view information that is
not currently visible, although you can specify that the scrollbar is always
present.

The size of the scroll box represents the proportion of the window content
that is currently visible. The position of the scroll box within the scrollbar
represents the position of the visible material within the document. As users
move the scroll box, the view of the document changes accordingly. If the
entire document is visible, the scroll box fills the entire channel.

Both horizontal and vertical scroll boxes have a minimum size of 16 x 16
pixels so that users can still manipulate them when viewing very long
documents or lists.

At either end of the scrollbar is a scroll arrow, which is used for controlling
small movements of the data.

The following figure shows horizontal and vertical scrollbars. Each scrollbar is
a rectangle consisting of a textured scroll box, a recessed channel, and scroll
arrows.

FIGURE 64 Vertical and Horizontal Scrollbars (150%)

Do not confuse the scrollbar with a slider, which is used to select a value. For
details on sliders, see page 159.

Users drag the scroll box, click the scroll arrows, or click in the channel to
change the contents of the viewing area. When users click a scroll arrow,
more of the document or list scrolls into view. The contents of the pane or list
move in increments based on the type of data. When users hold down the
mouse button, the pane or list scrolls continuously.

Scroll arrow

Scroll channel

Scroll box

Vertical scrollbar

Horizontal scrollbar

Chapter 7: Windows, Panes, and Frames Organizing Windows 104

For a description of keyboard operations for scrollbars, see Table 22 on
page 197.

Scroll the content approximately one view at a time when users click in
the scrollbar’s channel. For instance, in a document, a view might represent
a page of text. Leave one small unit of overlap from the previous view to
provide context for the user. For instance, in scrolling through a long
document, help users become oriented to the new page by providing one line
of text from the previous page.

Scroll the content one small unit at a time when users click a scroll
arrow. (A small unit might be one line of text, one row in a table, or 10 to
20 pixels of a graphic.)

Display a horizontal scrollbar if the view cannot show everything that is
important—for instance, in a word-processing application that prepares
printed pages, users might want to look at the margins as well as the text.

If you are using the Java 2 SDK, place scrollbars in the orientation that is
suitable for the writing system of your target locale. For example, in the U.S.
locale, the scrollbars appear along the right side of the scroll pane or other
component. In other locales, they might appear along the left side of the
scroll pane.

Tabbed Panes A tabbed pane is a container that enables users to switch between
several content panes (usually JPanel components) that appear to share the
same space on screen.

The tabs themselves can contain text or images or both. A typical tabbed
pane appears with tabs displayed at the top. Alternatively, the tabs can be
displayed on one of the other three sides. If the tabs cannot fit in a single
row, additional rows are created automatically. Note that tabs do not change
position when they are selected. For the first row of tabs, there is no
separator line between the selected tab and the pane.

The following figure shows the initial content pane in the JFC-supplied color
chooser. Note that the tabbed pane is displayed within a dialog box that uses
the borders, title bar, and window controls of the platform on which its
associated application is running.

Chapter 7: Windows, Panes, and Frames Organizing Windows 105

FIGURE 65 Swatches Content Pane in the JFC Color Chooser (200%)

Users choose which content pane to view by clicking the corresponding tab.
The content pane changes accordingly, as shown in the following figure of
the content pane associated with the third tab in the color chooser.

For a list of keyboard operations appropriate for tabbed panes, see Table 25
on page 198.

FIGURE 66 RGB Content Pane in the JFC Color Chooser (200%)

You can use tabbed panes to good advantage in dialog boxes, such as a
preferences dialog box, that require you to fit a lot of information into a small
area.

Tabs (with mnemonics)

Swatches content pane

RGB content pane

Chapter 7: Windows, Panes, and Frames Organizing Windows 106

You can also use tabbed panes to provide a way for users to switch between
content panes that represent:

■ Different ways to view the same information, like a color chooser’s RGB
and HSB panes

■ Different parts of an informational unit, like worksheets that are part of a
workbook in a spreadsheet application

Use headline capitalization for tab names.

Provide mnemonics so users can navigate from tab to tab and from tabs
to associated content panes using keyboard operations.

Do not nest tabbed panes.

If your tabbed pane requires multiple rows of tabs, consider dividing
the content among several dialog boxes or components. Multiple rows of tabs
can be confusing.

Split Panes A split pane is a container that divides a pane into resizable panes. Split
panes enable users to adjust the relative sizes of two adjacent panes. The
Java look and feel drag texture (along with a pointer change) indicates that
users can resize split panes.

To adjust the size of the split panes, users drag the splitter bar, as shown in
the following figure.

FIGURE 67 Split Pane (Horizontal Orientation) (150%)

Splitter bar

Chapter 7: Windows, Panes, and Frames Organizing Windows 107

Users can also control the splitter bar by clicking one of the optional zoom
buttons shown in the following figure. Clicking a button moves the splitter
bar to its extreme upper or lower position. If the splitter bar is already at its
extreme, clicking restores the panes to the size they were before the zoom
operation (or before the user dragged the splitter bar to close one of the
panes).

For a list of keyboard operations appropriate for split panes, see Table 24 on
page 198.

FIGURE 68 Zoom Buttons in a Split Pane (Vertical Orientation) (150%)

Include zoom buttons in split panes because they are very convenient
for users.

Nested Split Panes In addition to splitting panes either horizontally or vertically, you
can nest one split pane inside another. The following figure portrays a mail
application in which the top pane of a vertically split pane has another split
pane embedded in it.

Zoom buttons

Chapter 7: Windows, Panes, and Frames Working With Multiple Document Interfaces 108

FIGURE 69 Nested Split Panes (200%)

Working With Multiple Document Interfaces A multiple
document interface (MDI) provides a way to manage multiple windows that
are confined inside a main window. A limitation to using the MDI application
model is that users cannot drag the application’s windows outside the main
window. To support MDI designers, the JFC provides the internal frame and
palette window.

If you are working with an MDI using the Java look and feel, the
JDialog component can be used to create secondary windows.

Internal Frames To get standard window features in an MDI, you must put an
internal frame inside the desktop pane. A desktop pane is a component
placed inside a window that holds internal frames for an MDI application.

The internal frame is a container used in MDI applications to create windows
that users cannot drag outside of the desktop pane. In an MDI application
that uses the Java look and feel, internal frames have a window border, title
bar, and standard window controls with the Java look and feel. However, the
window that contains the desktop pane is a native platform window with the
native look and feel, as shown in the following figure.

Vertically
split panes

Nested panes (split horizontally)

Chapter 7: Windows, Panes, and Frames Working With Multiple Document Interfaces 109

FIGURE 70 Internal Frames in an MDI Application (200%)

Users can use the mouse to:

■ Activate a window (and deactivate the previously activated window) by
clicking anywhere in the window

■ Adjust the size of a resizable internal frame by dragging from any side or
corner

■ Drag the internal frame by the title bar within the desktop pane

■ Minimize, maximize, restore, and close the internal frame by clicking the
appropriate window controls

For keyboard operations appropriate to internal frames, see Table 16 on
page 193.

A minimized internal frame is a horizontally oriented component (shown in
the following figure) that represents an internal frame that has been
minimized. The width of these minimized internal frames is sized to
accommodate the window title. Minimized internal frames consist of a drag
area followed by an area containing an application-specific icon and text,
which displays the name of the internal frame.

FIGURE 71 Minimized Internal Frame (150%)

Title bar for internal frame

Drag area

Minimize,
maximize, and
close controls

Application-specified icon

Resize from
any corner
or side

TextDrag area

Chapter 7: Windows, Panes, and Frames Working With Multiple Document Interfaces 110

Users can rearrange minimized internal frames by dragging the textured area.
Users can click the icon and text area in a minimized internal frame to restore
the frame to its previous location and size.

For details on the keyboard operations appropriate for minimized internal
frames, see Table 16 on page 193.

Palettes A palette window is a type of internal frame that can float above other
internal frames within the desktop pane for an MDI application. The close
control is optional.

The following figure shows a palette window from a hypothetical graphical
interface builder with a set of buttons that lets users construct menus.

FIGURE 72 Palette Window (150%)

Palette windows often contain toggle buttons; users can click the toggle
buttons to select them. However, palette windows can contain any
component. Users can close palette windows (if you provide a close control),
but they cannot resize, minimize, or maximize them.

For keyboard operations for palette windows, see Table 16 on page 193.

If you are writing a non-MDI application, use utility windows instead of
palette windows so that the user can drag them anywhere on the screen.

A palette window is a specific style of JInternalFrame and,
therefore, can be used only within a desktop pane. Use the client properties
mechanism to set the JInternalFrame.isPalette to true.

Close controlTitle bar

8: DIALOG BOXES

A dialog box is a temporary, secondary window in which users perform a task
that is supplemental to the task in the primary window. For example, a dialog
box might enable users to set preferences or choose a file from the hard disk.
A dialog box can contain panes and panels, text, graphics, controls (such as
checkboxes, radio buttons, or sliders), and one or more command buttons.
Dialog boxes use the native window frame of the platform on which they are
running.

An alert box is a dialog box that provides for brief interaction with users. Alert
boxes present error messages, warn of potentially harmful actions, obtain
information from users, and display informational messages. The basic alert
box has a symbol that identifies the type of the alert, a textual message, and
one or more command buttons. The layout of these components is supplied
by the Java look and feel.

FIGURE 73 Dialog Box and Alert Box (200%)

Dialog box

Alert box

Chapter 8: Dialog Boxes Modal and Modeless Dialog Boxes 112

If your application is based on a multiple document interface (MDI), use
the dialog boxes and alert boxes presented in this chapter. Because these
secondary windows use the platform’s native windows (and not the JFC-
supplied internal frame), they are free to move outside the desktop pane.

Modal and Modeless Dialog Boxes Dialog boxes can be modal
or modeless. A modal dialog box prevents users from interacting with the
application until the dialog box is dismissed. However, users can move a
modal dialog box and interact with other applications while the modal dialog
box is open. This behavior is sometimes called “application-modal.”

A modeless dialog box does not prevent users from interacting with the
application they are in or with any other application. Users can go back and
forth between a modeless dialog box and other application windows.

Use modeless dialog boxes whenever possible. The order in which users
perform tasks might vary, or users might want to check information in other
windows before dismissing the dialog box. Users might also want to go back
and forth between the dialog box and the primary window.

Use modal dialog boxes when interaction with the application cannot
proceed while the dialog box is displayed. For example, a progress dialog box
that appears while your application is loading its data should be a modal
dialog box.

Dialog Box Design The following figure illustrates dialog box design
guidelines for the Java look and feel. The dialog box has a title in the
window’s title bar, a series of user interface elements, and a row of command
buttons. The default command button is the OK button, indicated by its heavy
border. The underlined letters are mnemonics, which remind users how to
activate components by pressing the Alt key and the appropriate character
key. The noneditable Ruler Units combo box has initial keyboard focus,
indicating that the user’s next keystrokes will take effect in that component.

Chapter 8: Dialog Boxes Dialog Box Design 113

FIGURE 74 Sample Dialog Box (150%)

Use the form “Application Name: Title” for the title of the dialog box
(which is displayed in the title bar).

Include mnemonics for all user interface elements except the default
button and the Cancel button.

When opening a dialog box, provide initial keyboard focus to the
component that you expect users to operate first. This focus is especially
important for users who must use a keyboard to navigate your application
(for example, users with visual and mobility impairments).

Consider the effect of internationalization on your design. Use a layout
manager, which allows for text strings to become bigger or smaller when
translated to another language.

For more information on internationalization, see “Planning for
Internationalization and Localization” on page 33. For details on keyboard
support for navigating through dialog boxes, see Table 17 on page 194. For
information on how to capitalize text in dialog boxes, see “Capitalization of
Text in the Interface” on page 46.

User interface elements

Command button row

Default command button

Initial keyboard focus

Mnemonic

Standalone command button

Dialog box title

Application name

Chapter 8: Dialog Boxes Dialog Box Design 114

Tab Traversal Order The tab traversal order is the order in which the components in
the dialog box receive keyboard focus on successive presses of the Tab key. If
users press the Tab key when keyboard focus is on the last component in the
dialog box, you should return keyboard focus to the first component. The
following figure shows the tab traversal order that the designer has set for
this preferences dialog box.

FIGURE 75 Tab Traversal Order in the Sample Dialog Box (150%)

Specify a logical tab traversal order for the user interface elements. The
traversal order should match the reading order for your application’s specified
locale. For example, in English, the traversal order is left to right, top to
bottom. By default, the traversal order is the sequence in which you added
the components to the dialog box.

The setNextFocusableComponent method from JComponent can
be used to specify the next component to receive keyboard focus.

Keyboard focus returns to first
component

Tab traversal begins here

Chapter 8: Dialog Boxes Dialog Box Design 115

Spacing in Dialog Boxes The following figure shows the spacing you must provide
between the borders of the dialog box and the components in the dialog box.

FIGURE 76 Spacing Between the Border and Components of a Dialog Box (150%)

Include 12 pixels between the top and left borders of the dialog box and
its components. Include 11 pixels between the bottom and right borders of
the dialog box and its components. (To the eye, the 11-pixel spacing appears
to be 12 pixels because the white borders on the lower and right edges of the
components are not visually significant.)

See “Design Grids” on page 49 for a general description of how to place text
and components in a dialog box.

Command Buttons in Dialog Boxes In dialog boxes, you can place command
buttons alone or in a command button row at the bottom of the dialog box,
as shown in Figure 74 on page 113. The most common command buttons that
you might use in a command button row are the Help, Close, OK, Cancel,
Apply, and Reset buttons. If you use other command buttons, make sure their
labels describe the action they perform.

Place command buttons that apply to the dialog box as a whole in the
command button row at the bottom of the dialog box. This includes all
buttons that dismiss the dialog box as one of their actions.

Align buttons in the command button row along the lower-right edge of
the dialog box. (The alignment of the command button row in JFC-supplied
alert boxes is different from the alignment in dialog boxes.)

For consistency in the look and spacing of command buttons, follow the
guidelines on “Command Buttons” on page 148. For keyboard operations
appropriate to command buttons, see Table 15 on page 193.

11

12 pixels

11

12

Chapter 8: Dialog Boxes Dialog Box Design 116

Help Buttons You can use a Help button in any dialog box. A Help button enables
users to obtain additional information about the dialog box. For example,
when users click Help in the Error alert box on page 125, the application
opens a window with additional information on the cause of the error.

When users click the Help button, open a secondary or utility window
that displays the help information.

Place the Help button last in a group of command buttons. For
languages that read from left to right, the Help button should be the
rightmost button.

Close Buttons The Close button is commonly used to dismiss simple dialog boxes, such
as an Info alert box. The Close button is also commonly used to dismiss dialog
boxes in which user actions take effect immediately. In these dialog boxes,
users do not need to press an OK button for the settings to take effect. A
Close button is appropriate in both modal and modeless dialog boxes.

The following dialog box, which contains a schedule reminder, includes a
Close button that users can click to dismiss the dialog box.

FIGURE 77 Dialog Box With a Close Button (150%)

When users click the Close button, dismiss the dialog box and do not
make additional changes to the system.

OK and Cancel Buttons The OK and Cancel buttons work well in dialog boxes in which
users specify options or settings. OK enables users to save the settings,
whereas Cancel enables users to ignore any changed settings. In most cases,
OK is the default button. OK and Cancel are appropriate in both modal and
modeless dialog boxes. The following figure shows a preferences dialog box
with OK, Cancel, and Help buttons.

Chapter 8: Dialog Boxes Dialog Box Design 117

FIGURE 78 Dialog Box With OK, Cancel, and Help Buttons (150%)

When users click the OK button, save the settings or carry out the
commands specified in the dialog box and close the dialog box. Whenever
possible, use a command name that describes the action (such as Print or
Find) instead of OK.

When users click the Cancel button, close the dialog box and restore
the settings in the dialog box to the state they were in when the dialog box
was opened.

Activate the Cancel button when users press the Escape key. The Cancel
button does not need keyboard focus for this interaction; only the dialog box
must have focus. The Cancel button and its keyboard equivalent are not built
into the JFC; you must implement them yourself.

Do not add a mnemonic to the Cancel button.

Do not use the Cancel button in a dialog box where settings become
persistent before the dialog box is closed (for example, in a dialog box that
has an Apply button). Users might be confused about whether the changes
will be undone when they press Cancel. In dialog boxes where you want users
to be able to view changes without committing to them, use Preview, OK, and
Cancel buttons. Use Preview to show the effects of the changes in the
document window without dismissing the dialog box. Use OK to make the
changes persistent, and use Cancel to undo the changes. OK and Cancel
should dismiss the dialog box as usual.

Chapter 8: Dialog Boxes Dialog Box Design 118

Apply and Reset Buttons The Apply and Reset buttons work well in dialog boxes that
remain open for repeated use, as shown in the properties dialog box in the
following figure. Apply and Reset often appear together in modeless dialog
boxes.

FIGURE 79 Dialog Box With Apply, Reset, and Close Buttons (150%)

Use the Apply button to carry out the changes users specify in the
dialog box without closing the dialog box.

Use the Reset button to restore the values in the dialog box to the
values specified by the last Apply command. If users have not activated Apply,
restore the values in effect when the dialog box was opened. Do not close the
dialog box when users choose Reset.

If you include the Close button in a dialog box with Apply and Reset
buttons, make Close dismiss the dialog box without applying changes.

Default Command Buttons The default command button is the button that the
application activates when users press Enter or Return. The JFC gives the
default command button a heavier border than other command buttons. In
most cases, you should assign the default button the action that users are
most likely to perform, as shown with the OK button in the following figure.
The default button does not need to have keyboard focus when users press
Enter or Return.

Chapter 8: Dialog Boxes Dialog Box Design 119

FIGURE 80 Dialog Box With a Default Command Button (150%)

In cases where keyboard focus is on a component that accepts the Enter or
Return key, such as a multiline text area, the default button is not activated
when users press the key. Instead, the insertion point moves to the beginning
of a new line. To operate the default button, users must move focus to a
component that does not accept Enter or Return.

If the dialog box has a default button, make it the first command
button in the group. For example, in languages that read from left to right,
the default button is the leftmost button.

Do not add a mnemonic for the default command button.

You are not required to have a default command button in every dialog box
and alert box. A command that might cause users to lose data should never
be the default button, even if it is the action that users are most likely to
perform. The following alert box asks users if they want to replace an existing
file. The alert box has Replace and Cancel buttons, neither of which is the
default command button.

FIGURE 81 Alert Box Without a Default Button (150%)

Default command
button

Chapter 8: Dialog Boxes Common Dialog Boxes 120

Common Dialog Boxes The find, login, preferences, print, and
progress dialog boxes are common in many applications. These dialog boxes
are not supplied by the Java Foundation Classes. The following sections show
simple versions of these dialog boxes that are consistent with the Java look
and feel. You can adapt the designs for these dialog boxes to suit your needs.

Find Dialog Boxes A find dialog box enables users to search for a specified text
string. In most cases, you should make this dialog box modeless. An example
is shown in the following figure.

FIGURE 82 Sample Find Dialog Box (150%)

Login Dialog Boxes A login dialog box (shown in the following figure) enables users
to identify themselves and enter a password. Depending on where you use
this dialog box in your application, you can make it modal or modeless.

FIGURE 83 Sample Login Dialog Box (150%)

Preferences Dialog Boxes A preferences dialog box (shown in the following figure)
enables users to view and modify the characteristics of an application. In
most cases, you should make this dialog box modeless.

Editable text field

Password field with default
masking character

Chapter 8: Dialog Boxes Common Dialog Boxes 121

FIGURE 84 Sample Preferences Dialog Box (150%)

If your preferences dialog box is very complex, you can simplify it by using a
tabbed pane to organize the options, as shown in Figure 78 on page 117.

Print Dialog Boxes A print dialog box enables users to print and to specify print
settings (such as the number of copies).

Use the print dialog box available from the AWT. On Microsoft Windows
and Macintosh platforms, the AWT uses the native print dialog box. For other
environments, the AWT uses the print dialog box supplied with the JDK.

Progress Dialog Boxes A progress dialog box provides feedback for long operations
and lets users know that the system is working on the previous command.
The following progress dialog box monitors the progress of a file copy
operation. The dialog box includes the JFC progress bar, a command button
that users can click to stop the process, and labels to further explain the
progress of the operation. In most cases, you should make a progress dialog
box modeless.

Chapter 8: Dialog Boxes Alert Boxes 122

FIGURE 85 Sample Progress Dialog Box (150%)

Display a progress dialog box (or supply a progress bar elsewhere in
your application) if an operation takes longer than two seconds.

If you include a button to stop the process, place it after the progress
bar. (In languages that read from left to right, the button appears to the right
of the progress bar.) If the state will remain as it was before the process
started, use a Cancel button. If the process might alter the state as it
progresses (for example, deleted records will not be restored), use a Stop
button. If stopping the process could lead to data loss, give users a chance to
confirm the Stop command by displaying a Warning alert box.

Close the progress dialog box automatically when the operation is
complete.

If delays are a common occurrence in your application (for example, in
a web browser), build a progress bar into the primary window so that you
don’t have to keep displaying a progress dialog box.

Because translation of the word “Stop” can result in words with subtly
different meanings, point out to your translators the specialized meaning of
the Stop button in a progress dialog box. Stop indicates that the process
might leave the system in an altered state.

Alert Boxes An alert box, which conveys a message or warning to users,
provides an easy way for you to create a dialog box. The JFC provides four
types of alert boxes: Info, Warning, Error, and Question. Each alert box is
provided with a symbol that indicates its type. You provide the title, the
message, and the command buttons and their labels.

The layout of an alert box is provided in the JFC, so you don’t have to worry
about the spacing and alignment of the message, symbol, and command
buttons. If you provide additional components, such as a text field, follow the
layout guidelines for that component. You can make an alert box modal or
modeless.

Labels
Command button

Progress bar

Chapter 8: Dialog Boxes Alert Boxes 123

FIGURE 86 Standard Components in an Alert Box (150%)

In an alert box, begin your message with a brief heading in boldface.
Start the body of the message on a separate line.

In the message for an alert box, the ... tags can be used to
render a heading in boldface. The
 tag can be used to create a line break
between the heading and the message body.

An alert box is created using the JOptionPane component.

Info Alert Boxes An Info alert box presents general information to users. The
symbol in the Info alert box is a blue circle with the letter i. The following
Info alert box from an encyclopedia application provides information about a
sponge.

FIGURE 87 Info Alert Box (150%)

Provide a Close button to dismiss the Info alert box. Provide additional
command buttons, such as a Help button, if needed.

Symbol that indicates
alert box type

Message with bold
heading

Command buttons
aligned with left edge of
message text

Chapter 8: Dialog Boxes Alert Boxes 124

Warning Alert Boxes A Warning alert box warns users about the possible
consequences of an action and asks users for a response. The symbol in the
Warning alert box is a yellow triangle with an exclamation point. The
following alert box warns users that a file save operation will replace an
existing file.

FIGURE 88 Warning Alert Box (150%)

Keep the message in the Warning alert box brief, and use terms that are
familiar to users.

Include at least two buttons in a Warning alert box: one button to
perform the action and the other to cancel the action. Provide the command
buttons with labels that describe the action they perform.

If appropriate, provide a Help button that opens a secondary or utility
window that gives background information about the warning. Do not close
the alert box when users click the Help button.

Do not make a command button whose action might cause loss of data
the default button. Users might press the Enter or Return key without reading
the message. In such a case, you might not provide a default button.

Error Alert Boxes An Error alert box reports system and application errors to users.
The symbol in the Error alert box is a red octagon with a rectangle. The
following Error alert box reports that a printer is out of paper and provides
users with three options. Clicking the Continue button resumes printing and
dismisses the alert box. Clicking the Cancel button terminates the print job
and dismisses the alert box. Clicking the Help button opens a secondary
window that gives background information about the error.

Chapter 8: Dialog Boxes Alert Boxes 125

FIGURE 89 Error Alert Box (150%)

Include an error number in the title bar of an Error alert box. The error
number is helpful for users in obtaining technical assistance, especially if the
error message is localized in a language not spoken by the technical support
personnel.

In the message of an Error alert box, explain what happened, the cause
of the problem, and what the user can do about it. Keep the message brief
and use terms that are familiar to users.

If appropriate, provide a Help button to open a separate online help
window that gives background information about the error. Do not close the
alert box when users click the Help button.

If possible, provide buttons or other controls to resolve the error noted
in the Error alert box. Label the buttons according to the action they perform.
If users cannot resolve the error from the alert box, provide a Close button.

Question Alert Boxes A Question alert box requests information from users. You
can add components to this alert box (for example, a text field, list, or combo
box) in which users can type a value or make a selection. The layout of the
standard components (the symbol, message, and command buttons) is
provided by the JFC. If you add components, follow the layout guidelines for
that component. The symbol in the Question alert box is a green rectangle
with a question mark.

The following Question alert box includes a label and text field in addition to
the standard components.

Error number
in title

Chapter 8: Dialog Boxes Color Choosers 126

FIGURE 90 Question Alert Box (150%)

When you add components to a Question alert box, align them with the
leading edge of the message. For languages that read from left to right, the
leading edge is the left edge.

Color Choosers A color chooser provides one or more content panes from
which users can select colors and a preview panel from which users can view
the selected colors in context. You can display a color chooser in a dialog box,
as shown in the following figure. The three command buttons (OK, Cancel,
and Help) are part of the dialog box, not the color chooser.

FIGURE 91 Standard Color Chooser (200%)

Text field

Label

Dialog box title bar

Content
panel

Preview
panel

Color chooser

Command button row
(part of dialog box)

Chapter 8: Dialog Boxes Color Choosers 127

As supplied by the JFC, the color chooser offers users three methods for
selecting a color:

■ Swatches. Users can select a color from a palette (as shown in the
preceding figure).

■ HSB. Users can choose the hue, saturation, and brightness values for a
color.

■ RGB. Users can choose the red, green, and blue values for a color.

If your application requires a different method for choosing colors, you can
add a content pane with that feature. You can also remove existing content
panes. If you use only one content pane, the tab disappears. In addition, you
can specify your own preview panel.

The color chooser is a panel. The color panel can be inserted in a
dialog box by using the JDialog container.

9: MENUS AND TOOLBARS

A menu displays a list of choices (menu items) for users to choose or browse
through. Typically, menus are logically grouped and displayed by an
application so that a user need not memorize all available commands or
options. Menus in the Java look and feel are “sticky”—that is, they remain
posted on screen after users click the menu title. Usually the primary means
to access your application’s features, menus also provide a quick way for
users to see what those features are.

A toolbar is a collection of frequently used commands or options that appear
as a row of toolbar buttons. Toolbars normally appear horizontally beneath a
primary window’s menu bar, but they can be dragged anywhere in the
window or into a separate window. Toolbars typically contain buttons, but
you can provide other components (such as text fields and combo boxes) as
well.

In Java look and feel applications, you can provide three kinds of menus: drop-
down menus, submenus, and contextual menus. A drop-down menu is a
menu whose titles appear in the menu bar. A submenu appears adjacent to a
menu item in a drop-down menu; its presence is indicated by an arrow next
to the item. A contextual menu displays lists of commands, settings, or
attributes that apply to the item or selected items under the pointer.

FIGURE 92 Drop-down Menu, Submenu, Contextual Menu, and
Toolbar (200%)

Contextual menuSubmenuDrop-down menu

Toolbar

Chapter 9: Menus and Toolbars Menu Elements 130

Menu Elements In the Java look and feel, menus use a highlight color
(primary 2) for the background of selected menu titles and menu items. The
following figure shows an example of a drop-down menu that is selected and
displayed. Within the Text menu, the Style item is selected; a submenu
appears that includes the Bold, Italic, and Underline checkbox menu items.
(The Italic checkbox menu item is highlighted.)

A separator divides the menu items for specifying font, style, and size from
the alignment radio button items. Keyboard shortcuts appear to the right of
the frequently used menu items, and mnemonics are included for each menu
title and menu item.

FIGURE 93 Menu Elements (150%)

Menu Bars The menu bar appears at the top of a primary window and contains
menu titles, which describe the content of each menu. Menu titles usually
appear as text; however, it is possible to use a graphic or a graphic with text
as a menu title. Menu titles in the Java look and feel contain mnemonics only
if they are explicitly set by the developer. See “Mnemonics” on page 88 for
details.

A drop-down menu appears when users choose a menu title in the menu bar.

If the primary window has a menu bar, display it as a single line across
the top of the window.

Do not display menu bars in secondary windows unless you have a
compelling reason to do so (such as a complex set of activities in the
secondary window).

Be sure to include mnemonics for every menu title in your menu bar.

Menu item

Separator

Radio button
menu item

Checkbox menu item

Keyboard shortcut
Mnemonic

Unavailable
menu item

Menu title

Menu bar

Chapter 9: Menus and Toolbars Menu Elements 131

If your applet runs in the user’s current browser window (with the
browser menu bar), do not display your own menu bar in the applet.
Although applets displayed inside a browser window can theoretically have
their own menu bars, users are often confused when both the browser
window and the applet have menu bars. If your applet requires a menu bar,
display the applet in a separate browser window without its own menu bar or
navigation controls.

Even on Macintosh systems, which ordinarily place a menu bar only at
the top of the screen, display menu bars in windows for a Java look and feel
application. On the Macintosh, the screen-top menu bar remains, but, since
all the application menus are in the windows, the only command in the
screen-top menu bar should be Quit in the File menu.

Drop-down Menus The menu bar contains all of the drop-down menus and
submenus in your application. Each menu in the menu bar is represented by
its menu title. The titles describe the content of each menu. (The title for a
submenu is its menu item in the drop-down menu.)

Users can display menus in two ways:

■ To post a menu (that is, to display it and have it stay up until the next
click even though the mouse button has been released), users click the
menu title. Users can then move the pointer over other menu titles to
view other menus.

■ To pull down a menu, users press the mouse button over the menu title.
The menu title is highlighted, and the menu drops down. When users
choose a command and release the mouse button, the menu closes.

For details on keyboard navigation, selection, and activation in menus, see
Table 20 on page 196.

Use single words for your menu titles.

Use menu titles that help users guess which menu contains the item of
particular interest at a given moment. For example, the Edit menu typically
contains commands that enable users to change or edit the contents of their
documents or data.

Include mnemonics in all your menu titles.

Chapter 9: Menus and Toolbars Menu Elements 132

Submenus A submenu is a menu that users open by highlighting a menu item in a
higher-level menu. Sometimes you can shorten a menu by moving related
choices to a submenu. Submenus (such as the Style submenu shown in the
following figure) appear adjacent to the submenu indicator. For instance, the
Style item opens a submenu consisting of three items: Bold, Italic, and
Underline. Note that the items in the Style submenu include both keyboard
shortcuts and mnemonics.

Users display submenus by clicking or by dragging over the corresponding
menu item. The first item in the submenu aligns with the submenu indicator,
slightly overlapping the main menu. Just as in other menus, items in the
submenu are highlighted when the user moves the pointer over them.

For a list of keyboard operations in submenus, see Table 20 on page 196.

FIGURE 94 Menu Item With Its Submenu (150%)

Since many people find submenus difficult to use, avoid the use of a
second level of submenus. If you want to present a large or complex set of
choices, display them in a dialog box.

Submenus are created using the JMenu component.

Menu Items A simple menu item consists of the command name, such as Undo.
When a menu item is available for use, its text is displayed in black, as shown
in the following figure.

Submenu title

Keyboard shortcut

Submenu

Mnemonic

Submenu indicator

Chapter 9: Menus and Toolbars Menu Elements 133

FIGURE 95 Typical Menu Items (150%)

When users position the pointer over an individual item within a menu, the
menu item (if available) is highlighted.

Users can choose menu items in two ways:

■ In a posted menu, users click a menu item to choose it and close the
menu.

■ In a pulled-down menu, users drag over a menu item to highlight it.
Releasing the mouse button chooses the command and closes the menu.

For a list of keyboard operations for menu items, see Table 20 on page 196.

Available and Unavailable Items Here are some guidelines for handling available and
unavailable menu items in your application.

If an application feature is not currently available in a window, but
users can do something to make it available, make the corresponding menu
item unavailable and dim its text. For example, the Undo command might
not be available until the user has made a change in a document window.

If all the items in a menu are unavailable, do not make the menu
unavailable. In this way, users can still display the menu and view all its
(inactive) items. Similarly, if all the items in a submenu are currently not
available, do not make the original menu item unavailable.

If there is nothing users can do to make a menu item available, omit
the item entirely rather than just making it unavailable. Making an item
unavailable implies that users can do something to make the item available.
A similar rule applies to submenu items and contextual menus.

Available item

Highlighted item

Unavailable item

Chapter 9: Menus and Toolbars Menu Elements 134

Composition and Construction of Items Here are some recommendations for the use of
concise language, consistent capitalization, and keyboard operations in menu
items.

Make your menu items brief, and confine them to a single line.

Use headline capitalization in menu titles and menu items.

Include mnemonics for all menu items.

Offer keyboard shortcuts for frequently used menu items.

Use the same keyboard shortcut if a menu item appears in several
menus—for instance, if a Cut item appears in a contextual menu as well as in
a drop-down Edit menu, use Ctrl-X for both.

Commonly used keyboard shortcuts are described in “Typical File Menu” on
page 137, “Typical Edit Menu” on page 138, and “Typical Help Menu” on
page 139.

Ellipses in Items Ellipses (...) are punctuation marks that indicate the omission of one
or more words that must be supplied in order to make a construction
complete. In your menus, you can use ellipses in a similar way: to indicate
that the command issued by a menu item needs more specification in order
to make it complete.

If a menu item does not fully specify a command and users need a
dialog box to finish the specification, use an ellipsis after the menu item. For
example, after choosing Save As..., users are presented with a file chooser to
specify a file name and location.

Do not use an ellipsis mark simply to indicate that a secondary or utility
window will appear. For example, choosing Preferences displays a dialog box;
because that display is the entire effect of the command, however,
Preferences is not followed by an ellipsis.

Organization of Items You can group menu items with separators or, in the case of
lengthy extensible menus, with a grid layout. Here are the guidelines:

Use separators to group similar menu items in a way that helps users
find items and better understand their range of choices. For instance, in a
typical File menu, the commands that affect saving are separated from those
that are relevant to printing.

If a menu is or has the potential to become very long (for instance, in
menus that present lists of bookmarks or email recipients), a grid layout
should be used to display the menu choices in multiple columns.

Chapter 9: Menus and Toolbars Menu Elements 135

Checkbox Menu Items A checkbox menu item is a menu item that appears with a
checkbox next to it to represent an on or off setting. A check mark in the
adjacent checkbox graphic indicates that the value associated with that menu
item is selected. A dimmed checkbox menu item shows a gray box (checked or
unchecked) that indicates that the setting cannot be changed. The following
figure shows checked, unchecked, and unavailable menu items.

FIGURE 96 Checkbox Menu Items (150%)

You can use checkbox menu items to present users with a nonexclusive
choice.

For a list of keyboard operations for checkbox menu items, see Table 20 on
page 196.

For consistency, use the standard checkbox graphic for checkbox menu
items.

As with all menu items, after users choose a checkbox menu item, the
menu is dismissed. To choose another item, users must reopen the menu.
Therefore, use checkbox menu items with restraint. If users must set more
than one or two related preferences, place the checkboxes in a dialog box (or
provide a palette or toolbar buttons for the preferences).

Radio Button Menu Items A radio button menu item is a menu item that appears
with a radio button next to it to represent an off or on setting. Each radio
button menu item offers users a single choice within a set of radio button
menu items, as illustrated in the following set of alignment options.

FIGURE 97 Radio Button Menu Items (150%)

For a list of keyboard operations for radio button menu items, see Table 20 on
page 196.

Checked item

Unchecked item

Unavailable item

On item

Off item

Unavailable item

Chapter 9: Menus and Toolbars Common Menus 136

To indicate that the radio button items are part of a set, group them
and use separators to distinguish them from other menu items.

As with all menu items, after users choose a radio button menu item,
the menu is dismissed. To choose another item, users must reopen the menu.
Therefore, use radio button menu items with restraint. If users must set more
than one or two related preferences, place the radio buttons in a dialog box
(or provide a palette or toolbar buttons for the preferences).

Separators A separator is a line graphic that is used to divide menu items into
logical groupings, as shown in the following figure.

FIGURE 98 Separators in a Menu (150%)

Users can never choose a separator.

You can use separators to make lengthy menus easier to read.

While separators serve important functions on menus, avoid using them
elsewhere in your application. Instead, use blank space or an occasional
titled border to delineate areas in dialog boxes or other components.

Common Menus Several drop-down menus, such as File, Edit, and Help,
occur in many applications. These menus are not supplied by the Java
Foundation Classes. The following sections show simple versions of these
menus that are consistent with the Java look and feel. You can adapt these
menus to suit your needs.

If your application needs these commonly used menus, place the menu
titles in this order: File, Object, Edit, Format, View, and Help. If needed, insert
other menus between the View and Help menus.

Separators

Chapter 9: Menus and Toolbars Common Menus 137

Typical File Menu The first menu displays commands that apply to an entire
document or the application as a whole. Typically, this is called the File
menu, but in some cases another title might be more appropriate. The
following figure illustrates common File menu items in order, with
mnemonics and keyboard shortcuts.

You can add or remove menu items as needed.

FIGURE 99 Typical File Menu (150%)

Place commands that apply to the document (or another object) or
application as a whole in the File menu.

If your application manipulates objects that your users might not think
of as “files,” give the first menu another name. Ensure that the name
corresponds to the type of object or procedure represented by the entire
window in your application. For example, a project management application
could have Project as its first menu, or a mail application could have a
Mailbox menu.

Since the Close item dismisses the active window, close any dependent
windows at the same time.

If you provide an Exit item, have it close all associated windows and
terminate the application. (Be sure to use the term Exit, not Quit.)

Object Menu Object menu items provide actions that users can perform on an
object or objects. An object might be almost anything—for instance, an icon
representing a person for whom you want to add an email alias.

Chapter 9: Menus and Toolbars Common Menus 138

Typical Edit Menu The Edit menu displays items that enable users to change or edit
the contents of their documents or other data. These items give users typical
text-editing features. The following figure shows common Edit menu items in
order, with mnemonics and keyboard shortcuts.

FIGURE 100 Typical Edit Menu (150%)

Place commands that modify the contents of documents or other data
in the Edit menu, including Undo, Redo, Cut, Copy, Paste, and Find.

The Swing Undo package can be used to provide the Undo and Redo
commands.

Typical Format Menu The Format menu displays items that enable users to change
such formatting elements in their documents as font, size, styles, characters,
and paragraphs. The following figure shows common Format menu items
with their mnemonics.

FIGURE 101 Typical Format Menu (150%)

Chapter 9: Menus and Toolbars Contextual Menus 139

View Menu View menu items provide ways for users to adjust the view of data in
the active window. For instance, the View menu in a network management
application might have items that enable users to view large or small icons
for network objects.

Typical Help Menu Help menu items provide access to online information about
the features of an application. This menu also provides access to the
application’s About box, which displays basic information about the
application. For details, see “Designing About Boxes” on page 76. The
following figure shows common Help menu items (in the typical order) with
their mnemonics.

These menu items will vary according to the needs of your application.

FIGURE 102 Typical Help Menu (150%)

In your Help menu, allow access to online information about the
features of the application.

Place a separator before an About Application item that displays a
dialog box with the product name, version number, company logo, product
logo, legal notices, and names of contributors to the product.

JavaHelpª, a standard extension to the Java Development Kit and the
Java 2 SDK, can be used to build a help system for your applications.

Contextual Menus Sometimes called a “pop-up menu,” a contextual
menu offers only menu items that are applicable or relevant to the object or
region at the location of the pointer. The appearance of contextual menus in
the Java look and feel is similar to that of drop-down menus, including the
display of mnemonics and keyboard shortcuts. Contextual menus do not have
a menu title. The following figure shows a contextual menu offering editing
commands.

Chapter 9: Menus and Toolbars Toolbars 140

FIGURE 103 Contextual Menu (150%)

Users can display a contextual menu by clicking or pressing mouse button 2
while the pointer is over an object or area that is associated with that menu.
(On the Macintosh platform, users click while holding down the Control key.)

For keyboard operations appropriate to contextual menus, see Table 20 on
page 196.

Ensure that any features you present in contextual menus are also
available in more visible and accessible places, like drop-down menus. Users
might not know contextual menus are available, especially if your application
does not use this kind of menu consistently throughout the application.

Display keyboard shortcuts and mnemonics in contextual menus that
are consistent with their usage in corresponding drop-down menus.

Contextual menus are created using the JPopupMenu component.

Toolbars A toolbar provides quick and convenient access to a set of frequently
used commands or options. Toolbars typically contain buttons, but other
components (such as text fields and combo boxes) can be placed in the
toolbar as well. An optional, textured “drag area” on the toolbar indicates
that users can drag the toolbar anywhere in the window or into a separate
window. The drag area is on the leading edge when the toolbar is horizontal
and on the top when it is vertical.

The following figure shows a toolbar with a drag area on the leading edge.
For another example, see Figure 8 on page 8.

FIGURE 104 Horizontal Toolbar (150%)

Users typically access the components in the toolbar by clicking. For
information on the keyboard operations that are appropriate for toolbars, see
Table 31 on page 203.

Drag area

Chapter 9: Menus and Toolbars Toolbars 141

Include commonly used menu items as buttons or components in your
toolbar.

Make special provisions for toolbar accessibility if your window does not
have menus. Such provisions might include a text identifier, either as button
text or in text below the button. Be sure to provide a mnemonic for such text.

Toolbar Placement In general, a toolbar is located at the edge of the window or
area on which it operates.

If your window has a menu bar, place the toolbar horizontally
immediately under the menu bar.

Limit your window to a single toolbar with a single row of buttons or
components. Multiple toolbar rows create clutter and make the features
harder to find.

Draggable Toolbars You can specify that your toolbar be draggable. Users can then
move it or display it in a separate window. Users drag the toolbar by holding
the mouse button down over the drag area. An outline of the toolbar moves
as the user moves the pointer. The outline provides an indication of where
the toolbar will appear when the user releases the mouse button. When the
pointer is over a “hot spot,” the outline has a dark border, indicating the
toolbar will anchor to an edge of the container, as shown in the following
figure. The toolbar automatically changes its orientation between horizontal
and vertical depending on the edge of the window where it anchors.

Chapter 9: Menus and Toolbars Toolbars 142

FIGURE 105 Outline of a Toolbar Being Dragged (150%)

If the pointer is outside a hot spot, the outline has a light border, indicating
that the toolbar will be displayed in a separate window. The following figure
shows the toolbar in a separate window. When the user closes the window,
the toolbar returns to its original location.

FIGURE 106 Toolbar in a Separate Window (150%)

A toolbar can dock (attach) along the top, bottom, left, or right edge
of a container.

Toolbar Buttons A toolbar button is a command button or toggle button that
appears in a toolbar, typically as part of a set of such buttons. Toolbar
buttons can also act as titles to display menus. In other contexts, command
buttons typically use text to specify the operation or state they represent, but
toolbar buttons typically use graphics.

Toolbar graphics can be difficult for users to understand. Weigh the
comprehensibility of your graphics against the space taken up by button text
before deciding whether to use button text in addition to the button
graphics.

Current location of toolbar

Black border around toolbar outline indicates that
toolbar will dock along this edge if dropped

Chapter 9: Menus and Toolbars Toolbars 143

Use button graphics that are either 16 x 16 or 24 x 24 pixels (but not
both in the same toolbar), depending on the space available in your
application.

If you use text on the toolbar buttons, provide a user setting to display
only the graphics. Using this mode, you can conserve space and display more
commands and settings in the toolbar.

To facilitate keyboard access, define a mnemonic for each toolbar
button (or other component) that has text.

Toolbar Button Spacing and Padding This section contains the vertical (padding) and
horizontal (spacing) measurements for toolbar buttons in toolbars. The
following figure shows the padding and spacing between individual toolbar
buttons and groups of toolbar buttons.

Space individual toolbar buttons 2 pixels apart. Space groups of toolbar
buttons 11 pixels apart.

Include 3 pixels of padding above and below toolbar buttons. This
actually means 2 pixels of padding below the toolbar because of the white
border on the buttons.

FIGURE 107 Toolbar Button Spacing (150%)

The inset on toolbar buttons should be 0.

Mouse-over Borders To conserve space, you can use mouse-over borders (also called
“rollover borders”) on toolbar buttons. This border appears around a button
when users move the pointer over it; otherwise, the border is invisible.

The following figure shows a toolbar button with a mouse-over border
activated for the Open button.

2 11

3

2

Chapter 9: Menus and Toolbars Toolbars 144

FIGURE 108 Mouse-over Border on a Toolbar Button (150%)

When you use mouse-over borders, space individual toolbar buttons
zero pixels apart within a group.

The JToolBar.isRollover client property is set to true to enable
mouse-over borders.

Drop-down Menus in Toolbar Buttons You can attach a drop-down menu to a toolbar
button. The menu appears when the user clicks (or presses and holds the
mouse button over) the toolbar button. The following figure shows a drop-
down menu indicated by a drop-down arrow on the Open button. The menu
provides a list of files to open.

FIGURE 109 Toolbar Button With a Drop-down Menu (150%)

Provide a drop-down arrow in the graphic for any toolbar button that
has a drop-down menu.

Tool Tips for Toolbar Buttons You can provide tool tips for the toolbar components. The
tool tip displays information about the component when the user rests the
pointer on it. If you specify a keyboard shortcut for a toolbar component, the
JFC displays it in the tool tip. The following figure shows a tool tip that
describes the Cut button.

No spacing between individual buttons

Mouse-over border

Button with drop-down arrow

Chapter 9: Menus and Toolbars Tool Tips 145

FIGURE 110 Tool Tip for a Toolbar Button (150%)

Keyboard shortcuts for toolbar buttons should match the keyboard
shortcuts for the corresponding menu items.

Attach tool tips to all toolbar components that do not include text
identifiers. Tool tips are valuable for all toolbar components because they
display keyboard shortcuts.

If your application does not have menus, attach tool tips to the toolbar
buttons in order to display keyboard shortcuts.

Tool Tips A tool tip provides information about a component or area when the
user rests the pointer on it (and does not press a mouse button). These small
rectangles of text can be used anywhere in your application. A tool tip is
commonly associated with an interface element, where it provides a short
description of the component’s function. If a component has a keyboard
shortcut, the shortcut is automatically displayed in the tool tip.

The following figure shows a tool tip that describes a slider.

FIGURE 111 Tool Tip for a Slider (150%)

You can also use tool tips with graphics. A graphic might have one tool tip
that provides the name and size of the graphic or several tool tips that
describe different areas of the graphic.

The following figure shows a tool tip on an area of the bar chart in the
sample applet, Retirement Savings Calculator.

Tool tip

Tool tip

Chapter 9: Menus and Toolbars Tool Tips 146

FIGURE 112 Tool Tip on an Area Within a Graphic (150%)

You can adjust the timing of the tool tips in your application. By default, a
tool tip appears after the user rests the pointer on the component or area for
750 milliseconds. It disappears after four seconds or when the user activates
the component or moves the pointer off the component.

For keyboard operations in tool tips, see Table 30 on page 203.

Make tool tips active by default, but provide users a way to turn them
off. For example, you might provide a checkbox in either a menu or in a
preferences dialog box.

A tool tip is specified in its associated component (and not by calling
the JToolTip class directly).

All components need to have an AccessibleName set. However,
interactive components that provide a descriptive tool tip don’t need to have
an AccessibleDescription set.

For details on the Java 2 Accessibility API, see “Support for Accessibility” on
page 16.

Tool tip

10: BASIC CONTROLS

Buttons, combo boxes, and sliders are examples of controls—interface
elements users can manipulate to perform an action, select an option, or set
a value. A button is a control that users click to perform an action, set or
toggle a state, or set an option. In the Java look and feel, buttons include
command and toggle buttons, toolbar buttons, checkboxes, and radio
buttons. A combo box is a control that enables users to select one option
from an associated list; users can also type a choice into an editable combo
box. A slider is a control that enables users to set a value in a range.

A progress bar is an interface element that indicates one or more operations
are in progress and shows users what proportion of the operation has been
completed. In contrast to the other components in this chapter, no user
manipulation is involved.

FIGURE 113 Buttons, Combo Box, Slider, and Progress Bar (150%)

Editable combo box

Command buttons

Radio buttons

Checkboxes

Slider

Progress bar

Command buttons in toolbar

Toggle buttons in toolbar

Chapter 10: Basic Controls Command Buttons 148

For text in buttons, sliders, and combo boxes, use headline
capitalization.

Make sure you use the appropriate layout manager to lay out your
controls so they allow for the longer text strings frequently associated with
localization.

Command Buttons A command button is a button with a rectangular
border that contains text, a graphic, or both. These buttons typically use
button text, often a single word, to identify the action or setting that the
button represents. See “Command Buttons in Dialog Boxes” on page 115 for a
list of commonly used command button names and their recommended
usage.

Command buttons can stand alone or appear in a row, as shown in the
following illustration.

FIGURE 114 Command Buttons (150%)

Command buttons that appear in toolbars are called “toolbar buttons.” The
following figure shows toolbar buttons for a text-editing application. See
“Toolbar Buttons” on page 142 for details.

FIGURE 115 Toolbar Buttons (150%)

When a command button is unavailable, the dimmed appearance indicates
that it cannot be used. The following figure shows the appearance of
available, pressed, and dimmed command buttons.

Command button row

Standalone command button

Button border

Button text

Chapter 10: Basic Controls Command Buttons 149

FIGURE 116 Available, Pressed, and Unavailable Command Buttons (150%)

Users can click command buttons to specify a command or initiate an action,
such as Save, Cancel, or Submit Changes.

For a list of keyboard operations for the activation of command buttons, see
Table 15 on page 193.

Display mnemonics in button text, with the exception of default
command buttons and the Cancel button in dialog boxes. To make command
buttons without text more accessible, set tool tips that describe or name the
functions of the buttons.

For general details on keyboard operations and mnemonics, see “Keyboard
Operations” on page 82 and “Mnemonics” on page 88. For details on
displaying a command button’s tool tip, see Table 30 on page 203.

For details on layout and spacing of command buttons, see “Command
Button Spacing” on page 151.

Default Command Buttons One of the buttons in any window can be the default
command button. The JFC gives default command buttons a heavier border.

Default command buttons typically appear in dialog boxes. The default
command button is activated when users press Return or Enter. A default
command button (such as Save in the following figure) should represent the
action most often performed, assuming that the action will not lead to loss of
user data.

FIGURE 117 Default and Nondefault Command Buttons (150%)

The Enter and Return equivalents work unless keyboard focus is currently on a
component that accepts the Enter or Return key. For instance, if the insertion
point is in a multiline text area and the user presses Return, the insertion
point moves to the beginning of a new line rather than activating a default
button. Keyboard focus must be moved to another component before the
default button can be activated with the keyboard.

Chapter 10: Basic Controls Command Buttons 150

The JFC does not automatically implement the Escape key as the keyboard
equivalent for the Cancel button, so you must implement this behavior. As
with the Enter and Return keys for the default command button, the Cancel
button should not require keyboard focus to be activated by the Escape key.

Since you are not required to have a default button in every circumstance,
you can use discretion about including them in your interface elements.

Never make an unsafe choice the default button. For instance, a button
that would result in discarding unsaved changes should not be the default
command button.

Do not supply mnemonics for the default and Cancel buttons.

Combining Graphics With Text in Command Buttons In some circumstances, you
might use a graphic along with text to identify the action or setting
represented by a command button.

FIGURE 118 Command Buttons Containing Both Text and Graphics (150%)

Place the text after or below the image in command buttons containing
both text and graphics.

Include mnemonics in your command button text—with the exception
of the default and Cancel buttons.

For a list of commonly used mnemonics, see Table 10 on page 90.

Using Ellipses in Command Buttons In circumstances in which a command button
does not fully specify an action or operation and a dialog box finishes the
specification, you can notify the user that this situation is about to occur by
placing an ellipsis mark after the button text. For example, after clicking a
Print… button, users are presented with a dialog box in which to specify
printer location, how many copies to print, and so forth. By contrast, a Print
command that prints one copy to the default printer without displaying a
dialog box would not require an ellipsis mark.

When users must view a dialog box to finish the specification of a
command initiated in a command button, use an ellipsis mark (…) after the
button text. When a full specification of the command is made in the button
text, do not use ellipses.

Chapter 10: Basic Controls Command Buttons 151

Command Button Spacing For a consistent appearance, follow the guidelines
described in this section to create padding within and space between
command buttons. The following figure shows button text (Help) centered in
a command button.

Center the button text within buttons.

FIGURE 119 Command Button Text With Centered Text (150%)

Since the length and height of translated text varies, use layout
managers properly to allow for differences.

Command Button Padding The blank space between the button text and the
button border is referred to as “command button padding.” Often command
buttons appear in groups within a dialog box or an applet. In such a case, the
button in the group with the widest text determines the inner padding, as
shown in the following figure. Here the Cancel button has the widest text.
The padding is 12 pixels on either side of the button text. The other buttons
in the group (OK and Help) have the same width as the Cancel button.

Determine which button has the widest button text, and insert 12 pixels
of padding on either side of the text. Make all the remaining buttons in the
group the same size as the button with the longest text.

Space buttons in a group 5 pixels apart. (Because of the white border
on the right side of a button, the apparent spacing will be 6 pixels.)

FIGURE 120 Spacing in Command Button Groups (150%)

5 5

12 12

Chapter 10: Basic Controls Toggle Buttons 152

Toggle Buttons A toggle button is a button that represents a setting with
two states—on and off. Toggle buttons look similar to command buttons and
display a graphic or text that identifies the button. The graphic or button text
should remain the same whether the button is in the on or off state.

Users can click toggle buttons to turn a setting on or off—for instance, to
toggle between italic and plain style in selected text.

You can use toggle buttons to represent an independent choice, like
checkboxes (see page 154), or an exclusive choice within a set, like radio
buttons (see page 155).

Toggle buttons can be placed in a button group to get radio button
behavior.

Independent Choice An independent toggle button behaves like a checkbox.
Whether it appears alone or with other buttons, its setting is independent of
other controls. An example of an independent toggle button is a Bold button
on a toolbar, as shown in the following illustration.

FIGURE 121 Independent Toggle Buttons in a Toolbar (150%)

When users click the Bold button, it is highlighted to indicate that the bold
style has been applied to the selection or that text to be entered will be bold.
If the button is clicked again, it reverts to the normal button appearance and
the bold style is removed from the selection.

Although checkboxes and independent toggle buttons have the same
function, as a general rule, use checkboxes in dialog boxes and toggle
buttons with a graphic in toolbars.

When toggle buttons are independent (like checkboxes) and used
outside a toolbar, separate them with 5 pixels. Within a toolbar, separate
independent toggle buttons by 2 pixels.

Highlighted background indicates “on” setting

2

Normal background indicates “off” setting

Chapter 10: Basic Controls Toggle Buttons 153

For details on the spacing of toggle buttons, see “Command Button Spacing”
on page 151.

Exclusive Choice A toggle button can also work as part of a group to represent an
exclusive choice within the set. A common example is a set of toolbar toggle
buttons representing left, centered, and right text alignment along with
justification, as shown in the following figure.

FIGURE 122 Standard Separation of Exclusive Toggle Buttons (150%)

If users click the button representing left alignment, the button is highlighted
to indicate that text is aligned flush with the left border of the document. If
users then click the button representing centered alignment, the appearance
of the Align Left button reverts to the normal button appearance and the
Center button is highlighted to indicate centered alignment of the selected
text.

You can use grouped toggle buttons with labels equally well in toolbars or
dialog boxes. In the following example, the label identifies the abbreviations
in the button text in a dialog box.

FIGURE 123 Grouped Toggle Buttons With a Label (150%)

When toggle buttons form a radio set, separate them with 2 pixels.

2

2

Label

Chapter 10: Basic Controls Checkboxes 154

Checkboxes A checkbox is a control that represents a setting or value with
an on or off choice. The setting of an individual checkbox is independent of
other checkboxes—that is, more than one checkbox in a set can be checked
at any given time.

A check mark within the checkbox indicates that the setting is selected. The
following figure shows both active and inactive checkboxes in selected and
nonselected states.

FIGURE 124 Checkboxes (150%)

When the user clicks a checkbox, its setting toggles between off and on.
When a checkbox is disabled, the user cannot change its setting.

For a list of keyboard operations for checkboxes, see Table 13 on page 192.

Use the checkbox graphic that is supplied with the component (the
square box with the check mark inside).

Display checkbox text to the right of the graphic unless the application is
designed for locales with right-to-left writing systems, such as Arabic and
Hebrew. In this case, display the text to the left of the graphic.

Although checkboxes and independent toggle buttons have the same
function, use checkboxes in dialog boxes and use toggle buttons with a
graphic in toolbars.

The setMnemonic method can be used to specify mnemonics in
checkboxes.

In addition to standard checkboxes, the JFC includes a component that is the
functional equivalent of the checkbox for use in menus. See “Checkbox Menu
Items” on page 135 for more information.

Checkbox Spacing This section provides the spacing guidelines for checkbox
components. As shown in the following figure, the height of the checkbox
square doesn’t change in an inactive checkbox even though the white
highlight border is not drawn. Hence, while the checkbox is the same size,

Check mark

Checkbox graphic

Checkbox text

Inactive checkboxes

Chapter 10: Basic Controls Radio Buttons 155

the last row and column of pixels on the bottom and right are the same color
as the background canvas. The apparent spacing is 6 pixels between
components; however, the actual spacing is 5 pixels.

FIGURE 125 Checkbox Spacing (150%)

Space checkboxes 5 pixels apart.

Use the appropriate layout manager to achieve consistent spacing in
checkbox button groups.

Radio Buttons A radio button represents an exclusive choice within a set of
related options. Within a set of radio buttons, only one button can be on at
any given time. The following figure shows active radio buttons and inactive
radio buttons in both on and off states.

FIGURE 126 Radio Buttons (150%)

When users click a radio button, its setting is always set to on. An inner filled
circle within the round button indicates that the setting is selected. If
another button in the set has previously been selected, its state changes to
off. When a radio button is inactive, users cannot change its setting.

For a list of keyboard operations for radio buttons, see Table 21 on page 196.

Use the supplied radio button graphics (the open buttons with inner
filled circles).

Display radio button text to the right of the graphic unless the
application is designed for locales with right-to-left writing systems, such as
Arabic and Hebrew. In those locales, place the text to the left of the graphic.

5

5

Radio button graphic
“On” indicator

Radio button text

Inactive radio buttons

Chapter 10: Basic Controls Combo Boxes 156

Although radio buttons and toggle buttons in a radio set have the same
function, use radio buttons in dialog boxes and use grouped toggle buttons
with graphics in toolbars. Grouped toggle buttons with text identifiers work
well in either situation.

The JFC includes a component that is the functional equivalent of the radio
button for use in menus. See “Radio Button Menu Items” on page 135 for
more information.

Radio Button Spacing This section provides guidelines for the spacing of radio
buttons. The height of the radio button is 12 pixels, not counting the white
highlight border. Inactive radio buttons do not have white borders. Hence,
while the radio button is the same size, the last row and column of pixels on
the bottom and right are the same color as the background canvas. As shown
in the following figure, the apparent spacing is 6 pixels between components;
however, the actual spacing is 5 pixels.

FIGURE 127 Radio Button Spacing (150%)

Space radio buttons 5 pixels apart, as shown in the preceding figure.

Use the appropriate layout manager to achieve consistent spacing in
radio button groups.

Combo Boxes A combo box is a component with a drop-down arrow that
users click to display an associated list of choices. If the list is too long to
display fully, a vertical scrollbar appears.

The currently selected item appears in the combo box. As users move the
pointer over the list, each option under the pointer is highlighted. An option
chosen from the list will replace the current selection. In the following figure,
the currently selected option is Vanilla, and the Guanabana option will
replace Vanilla when the combo box is closed.

5

5

Chapter 10: Basic Controls Combo Boxes 157

FIGURE 128 Combo Box Display (150%)

Users can close either editable or noneditable combo boxes by clicking the
drop-down arrow in the combo box again, choosing an item from the list, or
clicking anywhere outside the combo box.

For a list of keyboard operations appropriate for combo boxes, see Table 14 on
page 192.

You can use combo boxes to provide a way for users to indicate a choice from
a set of mutually exclusive options. Noneditable combo boxes enable users to
choose one item from a limited set of items. Editable combo boxes provide
users the additional option of typing in an item.

Use headline capitalization for the text in the items in the combo box
list.

To facilitate keyboard access, provide labels with mnemonics for combo
boxes.

In the JFC, the term “combo box” includes both of what Microsoft
Windows applications call “list boxes” and “combo boxes.”

Noneditable Combo Boxes Noneditable combo boxes (sometimes called “list
boxes” or “pop-up menus”) display a list from which users can select one
item.

The following figure shows a noneditable combo box with a drop-down arrow
to the right of the currently selected item. (Note the gray background in the
default Java look and feel theme, indicating that users cannot edit text.)

Combo box
Label with mnemonic

List of options

Chapter 10: Basic Controls Combo Boxes 158

FIGURE 129 Noneditable Combo Box (150%)

To make a selection, users have two options:

■ They can click the combo box to display the list, position the pointer over
the desired option to highlight it, and click.

■ They can drag through the combo box to the desired choice and release
the mouse button.

In either case, the currently selected item changes to reflects the choice.

You can use a noneditable combo box instead of a group of radio buttons or a
list if space is limited in your application.

Editable Combo Boxes Editable combo boxes combine a text field with a drop-
down arrow that users click to display an associated list of options. As shown
in the following figure, editable combo boxes initially appear as editable text
fields with a drop-down arrow. The white background of the editable combo
box indicates that users can type, select, and edit text.

FIGURE 130 Editable Combo Box (150%)

Highlighted item

Drop-down arrow

Currently selected item

Text field

Chapter 10: Basic Controls Sliders 159

To make a choice, users have three options:

■ They can click the drop-down arrow to display the list, position the
pointer over the desired option to highlight it, and click.

■ They can drag from the drop-down arrow to the desired choice and
release the mouse button.

■ To make a customized choice, they can type text in the field and press
Enter or Return or move focus to another component. If the list is open,
it will close.

You can use an editable combo box to save users time by making the most
likely menu choices available while still enabling users to type other values in
the text field. An example might be the specification of a font size. The
combo box might initially display the current size, say 12. Users could select
from a list of standard sizes (10, 12, 14, 18, or 24 points) or type in their own
values—for instance, 22 points.

Whenever possible, interpret user input into an editable combo box in a
case-insensitive way. For example, it should not matter whether the user
types Blue, blue, or BLUE.

You can specify the maximum number of items to be displayed before
a scrollbar appears.

Sliders A slider is a control that is used to select a value from a continuous or
discontinuous range. The position of the indicator reflects the current value.
Major tick marks indicate large divisions along the range of values (for
instance, every ten units); minor tick marks indicate smaller divisions (for
instance, every five units).

The default slider in the Java look and feel is a nonfilling slider. An example is
a slider that adjusts left-right balance in a stereo speaker system, as shown in
the following figure.

FIGURE 131 Nonfilling Slider (150%)

Channel

Major tick mark

Associated textIndicator (without keyboard focus)

Chapter 10: Basic Controls Progress Bars 160

A filling slider is also available. The filled portion of the channel, shown in
the following figure, represents the range of values below the current value.

FIGURE 132 Filling Slider (150%)

Users can drag the indicator to set a specific value or click the channel to
move back and forth by one unit. Sliders can represent a series of discrete
values, in which case the indicator snaps to the value closest to the end point
of the drag operation.

For a list of keyboard operations for sliders, see Table 23 on page 197.

You can:

■ Indicate values along the slider with major and minor tick marks, which
can also have associated text

■ Choose a filling or nonfilling slider

If the slider represents a continuous range or a large number of discrete
values and the exact value that is chosen is important, provide a text field
where the chosen value can be displayed. For instance, a user might want to
specify an annual retirement savings contribution of 2.35%. In such a
situation, consider making the text field editable to give users the option of
typing in the value directly.

The JSlider.isFilled client property can be used to enable the
optional filling slider.

Progress Bars A progress bar indicates that one or more operations is
under way and shows users what proportion of the operation has been
completed. The progress bar consists of a rectangular bar that fills as the
operation progresses, as shown in the following figure.

FIGURE 133 Progress Bar (150%)

Unfilled portion of channel

Indicator (with keyboard focus)

Filled portion of channel

Chapter 10: Basic Controls Progress Bars 161

Users cannot interact with a progress bar. If you would like to enable users to
set a value in a range, use the slider component, described on page 159.

You can orient the progress bar horizontally, so it fills from left to right, or
vertically, so it fills from bottom to top. Within the bounds of the progress
bar, you can display a text message that is updated as the bar fills. By
default, the message shows the percentage of the process completed—for
example, 25%.

The following figure shows another use of the progress bar. In this example of
a process control application, the progress bar is not used to track the
progress of an operation; rather, it is used as a gauge to show the
temperature of a vat in a candy factory. The temperature indicates the
proportion of the maximum temperature that has been reached (more than
three-quarters), and the text message within the progress bar specifies the
exact value (114 degrees).

FIGURE 134 Text Inside a Progress Bar (150%)

If you create your own message to display inside the progress bar, make
it concise.

11: TEXT COMPONENTS

Text components enable users to view and edit text in an application. The
simplest text component you can provide is a label, which presents read-only
information. A label is usually associated with another component and
describes its function. A text field is a rectangular area that displays a single
line of text, which can be editable or noneditable. A password field is an
editable text field that displays masking characters in place of the characters
that the user types.

Other text components display multiple lines of text. A text area displays text
in a single font, size, and style. You can configure an editor pane to display
different types of text through the use of a plug-in editor. These editors
include a plain text editor, a styled text editor, an RTF (rich text format)
editor, and an HTML (Hypertext Markup Language) editor.

FIGURE 135 Text Components (200%)

Editor pane with plug-in
HTML editor kit

Text area

Label

Editable text field

Password field

Noneditable text field

Chapter 11: Text Components Labels 164

Make your text easier to localize by using resource bundles. A resource
bundle stores text separately so that localizers don’t have to change the
application’s source code to accommodate translation.

For guidelines on translating text, see “Planning for Internationalization and
Localization” on page 33.

Labels A label consists of read-only text, graphics, or both. Labels serve two
functions in an application: to identify components and to communicate
status and other information. Users cannot select a label.

Labels That Identify Controls You can associate a label with a component (such as
a text field, slider, or checkbox) to describe the use of the component. In the
following figure, the Salary Contribution: label lets users know they can use
the slider to adjust their salary contribution.

FIGURE 136 Label That Describes the Use of a Slider (150%)

You can also use a label to describe a group of components. In the following
figure, the Color: label describes a group of three radio buttons. The text
(Red, Yellow, and Blue) is part of the radio buttons and not a separate
component, as is the Color: label.

FIGURE 137 Label That Describes a Radio Button Group (150%)

Keep the text of the label brief, and use terminology that is familiar to
users.

SliderLabel

Radio button text
Label

Chapter 11: Text Components Labels 165

Active and Inactive Labels You can make a label active or inactive so that its state is the
same as the component it describes. Active labels are drawn in the primary 1
color defined in the application’s color theme. Inactive labels are drawn in
the secondary 2 color defined in the application’s color theme. The following
figure shows an active and inactive label.

FIGURE 138 Active and Inactive Labels (150%)

Make a label inactive when the component it describes is inactive.

Spacing, Position, and Capitalization of Labels The following figure shows the
recommended spacing, position, and capitalization of labels.

FIGURE 139 Spacing Between a Label and a Component (150%)

Insert 12 pixels between a label and the component it describes when
labels are right aligned. When labels are left aligned, insert 12 pixels
between the longest label and its associated component.

Display a label before or above the component it describes. For
languages that read from left to right, “before” is to the left of the
component.

Use headline capitalization in the label text and place a colon at the
end of the text.

For more information on aligning labels in the user interface, see “Text
Layout” on page 52. For more information on capitalization, see
“Capitalization of Text in the Interface” on page 46.

Active

Inactive

12

Chapter 11: Text Components Labels 166

Mnemonics in Labels You can specify a mnemonic for a label. When the mnemonic is
activated, it gives focus to the component that the label describes. This
technique is often used with a label that accompanies an editable text field.
In the following figure, the text field gets focus when users press Alt-N.

FIGURE 140 Label With a Mnemonic (150%)

If you can’t add a mnemonic directly to the component that requires
one, as in the case of an editable text field, place the mnemonic in the
component’s label.

The displayedMnemonic property can be used to specify the
mnemonic in a label.

The labelFor property can be used to associate a label with another
component so that the component gains focus when the label’s mnemonic is
activated.

Labels That Communicate Status and Other Information You can use a label to
communicate status or give instructions to users. In addition, you can
instruct your application to alter a label to show a change in state. The
progress bar in the following figure uses two labels that change as the
operation progresses. The application changes the top label to reflect the file
currently being copied, and it updates the bottom label as the progress bar
fills.

FIGURE 141 Labels That Clarify the Meaning of a Progress Bar (150%)

Use sentence capitalization in the text of a label that communicates
status.

Mnemonic

File being copied

Estimated time to completion

Chapter 11: Text Components Text Fields 167

Text Fields A text field is a rectangular area that displays a single line of text.
A text field can be editable or noneditable.

Noneditable Text Fields In a noneditable text field, users can select and copy text,
but they cannot change it. Only the application can change the contents of a
noneditable text field. The background of a noneditable text field is the
secondary 3 color defined in the application’s color theme. In the default
theme, the background color is gray, as shown in the following figure.

FIGURE 142 Noneditable Text Field (150%)

Editable Text Fields In an editable text field, users can type or edit a single line of
text. For example, a find dialog box has a text field in which users type a
string for which they want to search. A text field has keyboard focus when it
displays a blinking bar that indicates the insertion point. When users type in
text that is too long to fit in the field, the text scrolls horizontally. By default,
the background of an editable text field is white.

The following figure shows an editable text field with keyboard focus. The
Language: label is a separate component from the text field.

FIGURE 143 Editable Text Field With Blinking Bar (150%)

In an editable text field, users can:

■ Set the insertion point by single-clicking

■ Select a word by double-clicking

■ Select the entire line of text by triple-clicking

■ Select a range of characters by dragging

■ Insert characters and replace selected text by typing at the insertion
point

■ Cut, copy, and paste text by using menu commands or keyboard
shortcuts (Ctrl-X for cut, Ctrl-C for copy, and Ctrl-V for paste)

Blinking bar at insertion pointLabel

Chapter 11: Text Components Password Fields 168

The following figure shows a text field with the letters Jeffer selected. The
insertion point is at the end of the selected text and indicates that the text
field has keyboard focus. The selected text is overwritten when the user types
or pastes new text.

FIGURE 144 Editable Text Field With Selected Text (150%)

To associate a mnemonic with a text field, you must give the text field a
label. You can then assign a mnemonic to the label, and make the mnemonic
give focus to the text field. For details, see “Mnemonics in Labels” on
page 166. For keyboard operations appropriate to text fields, see Table 28 on
page 202.

Depending on the type of data, you might be able to check individual
characters for errors as they are typed—for example, if users try to type a
letter into a text field that should contain only numbers. In this case, do not
display the character in the field. Instead, sound the system beep. If the user
types three illegal characters in a row, post an Error alert box that explains
the legal entries for the text field.

If you plan an action based on the string in the text field (such as
searching for the string or performing a calculation) do so when users signify
that they have completed the entry by typing Enter or Return or by moving
keyboard focus outside the text field.

Password Fields The password field is an editable text field that displays a
masking character instead of the characters that users type. Asterisks are
displayed in the password field by default. You can designate any Unicode
character as the masking character (but make sure the character is available
in the current font).

The password field is commonly used in a login dialog box, as shown in the
following figure. The Password: label is a separate component from the
password field.

Chapter 11: Text Components Text Areas 169

FIGURE 145 Password Field (150%)

A password field provides users some of the same editing capabilities as an
editable text field, but not the cut and copy operations. For keyboard
operations appropriate to password fields, see Table 28 on page 202.

The setEchoChar method can be used to change the masking
character—for example, from asterisks to pound signs.

Text Areas A text area provides a rectangular space in which users can view,
type, and edit multiple lines of text. The JFC renders such text in a single font,
size, and style, as shown in the following figure.

FIGURE 146 Text Area (150%)

Users can type and replace text in a text area. See “Text Fields” on page 167
for a description of text-editing features supplied by the JFC. For keyboard
operations appropriate to text areas, see Table 27 on page 200.

You can enable word wrap so that the text wraps to the next line when it
reaches the edge of the text area, as shown in the preceding figure. You can
enable scrolling by placing the text area inside a scroll pane. In this case, the
text scrolls horizontally and vertically when it is too long to fit in the text
area.

Password field with asterisks
as masking characters

Editable text field

Label

Single font, size,
and style

Chapter 11: Text Components Editor Panes 170

The following figure shows a text area inside a scroll pane. For information on
scrolling, see “Scroll Panes” on page 102.

FIGURE 147 Text Area in a Scroll Pane (150%)

The lineWrap and wrapStyleWord properties of the text area can
be set to true to enable word wrap on word boundaries.

Editor Panes An editor pane is a multiline text pane that uses a plug-in
editor kit to display a specific type of text, such as RTF (rich text format) or
HTML (Hypertext Markup Language). An editor kit is capable of displaying all
fonts provided in the AWT. The JFC provides four kits that you can plug into an
editor pane:

■ Default editor kit
■ Styled text editor kit
■ RTF editor kit
■ HTML editor kit

You can also create your own editor kit or use a third-party editor kit. For an
example of how to create an editor kit, see Java Swing by Robert Eckstein,
Marc Loy, and Dave Wood.

The setEditable method can be used to turn text editing on or off
in an editor kit.

Default Editor Kit You can use the default editor kit to display text in a single font,
size, and style. This kit is functionally equivalent to a text area.

Styled Text Editor Kit You can use a styled text editor kit to display multiple fonts,
sizes, and styles, as shown in the following figure. You can also embed
images and components (such as tables) in a styled text editor kit.

Chapter 11: Text Components Editor Panes 171

FIGURE 148 Styled Text Editor Kit (150%)

RTF Editor Kit You can use an RTF editor kit to read, write, and display RTF text, as
shown in the following figure. The RTF editor kit also provides the capabilities
provided by the styled editor kit.

FIGURE 149 RTF Editor Kit (150%)

Multiple font sizes and styles

Chapter 11: Text Components Editor Panes 172

HTML Editor Kit You can use an HTML editor kit to display text in HTML 3.2. Users
can click a link on the HTML page to generate an event, which you can use to
replace the contents in the pane.

FIGURE 150 HTML Editor Kit (150%)

Links

12: LISTS, TABLES, AND TREES

Lists, tables, and trees provide a way to organize related information so users
can easily make comparisons of the data. A list is a one-dimensional
arrangement of data, and a table is a two-dimensional arrangement of data.
A tree view is an outline of hierarchical relationships.

FIGURE 151 List, Table, and Tree View (200%)

Lists A list displays a set of items, which can be text, graphics, or both. You can
use a list to present users with a set of exclusive or nonexclusive choices. For
example, you might use a list to present the days of the week, from which
users could choose one day on which to start their calendars. Or, you might
use a list to display pizza toppings, from which users could make several
selections, as shown in the following figure.

FIGURE 152 Nonexclusive List (150%)

TableList Tree view

Selected items

Chapter 12: Lists, Tables, and Trees Lists 174

For other components that enable users to select one item from a limited set
of items, see “Noneditable Combo Boxes” on page 157 and “Radio Buttons”
on page 155. For a component that enables users to select one item from a
limited set of items or type in an alternative item, see “Editable Combo
Boxes” on page 158. For a component that enables users to select one value
from a continuous or discontinuous range of values, see “Sliders” on
page 159.

For the keyboard operations appropriate for lists, see Table 19 on page 195.

When resizing a list, be sure that it always displays a whole number of
lines.

Scrolling You can provide vertical and horizontal scrolling of the items in a list by
placing the list inside a scroll pane. Users can then scroll the list as described
in “Scroll Panes” on page 102.

If you place a list in a scroll pane, make the vertical and horizontal
scrollbars appear only when needed. This behavior is the default behavior of
scroll panes.

Selection Models for Lists The JFC provides three selection models that you can
use to enable users to select list items: single item, single range, and
multiple ranges. Single-item selection provides users with an exclusive
choice. Single-range and multiple-range selection provide users with
nonexclusive choices.

Single Item You can enable users to select a single item by clicking it. The item gets
keyboard focus. The prior selection, if any, is deselected. In the following
figure, the user has selected Pepperoni.

FIGURE 153 Single-Item Selection in a List (150%)

Clicking here selects this item

Chapter 12: Lists, Tables, and Trees Lists 175

Single Range of Items You can enable users to select a single item or a range of items.
Users select an item by clicking it. The item gets keyboard focus and becomes
the anchor point of the selection. Users extend the selection by moving the
pointer to another item and Shift-clicking. In the following figure, the user
first clicked Sausage and then Shift-clicked Pineapple.

FIGURE 154 Range of Selected Items in a List (150%)

Multiple Ranges of Items You can enable users to select a single item, a range of items,
or multiple ranges of items (also known as “discontinuous,” “discontiguous,”
or “disjoint” ranges). Users select a single item by clicking it and extend the
selection by Shift-clicking. To start another range, users Control-click an item.
That item gets keyboard focus and becomes the anchor point of the new
range. In addition, the selection of the item is toggled—if the item was
initially selected, it is deselected, and vice versa. Shift-clicking extends the
new range.

In the following figure, the user selected the first range by clicking Bell
Pepper and then Shift-clicking Pineapple. The user selected additional ranges
by Control-clicking Pepperoni and Sausage.

FIGURE 155 Multiple Ranges of Selected Items in a List (150%)

Clicking here selects this item and sets the anchor point
Shift-clicking here extends the selection

Control-clicking here selects the item and moves the anchor point

Shift-clicking here extends the selection

Clicking here selects this item and sets the anchor point

Control-clicking here selects the item and moves the anchor point again

Chapter 12: Lists, Tables, and Trees Tables 176

Tables A table organizes related information into a series of rows and columns.
Each field in the table is called a “cell.” By default, a cell contains a text field,
but you can replace it with graphics and other components, such as a
checkbox or combo box. The cell with keyboard focus has an inner border,
which is drawn in the primary 1 color in the application’s color theme.

The following figure illustrates the use of a table to display the records of
employees in a company database. The cell with the value 377 is selected and
has keyboard focus.

FIGURE 156 Table in a Scroll Pane (150%)

The background color of a cell depends on whether the cell is selected,
whether the cell is editable, and the background color of the table. The
following table shows how a cell gets its background color.

Column header

Column

Scrollbar

Row

Noneditable cell with
keyboard focus

Chapter 12: Lists, Tables, and Trees Tables 177

Users can select and edit a cell if the component in that cell supports editing.
For example, if a cell contains a text field, users can type, cut, copy, and
paste text. For more information on editing text in a table, see “Editable Text
Fields” on page 167. For the keyboard operations that are appropriate for
tables, see Table 26 on page 199.

Table Appearance The JFC provides several options that enable you to define the
appearance of your table. You can turn on the display of horizontal and
vertical lines that define the table cells, as shown in Figure 156 on page 176.
You can set the horizontal and vertical padding around the content of a cell.
You can also set the width of the columns.

When resizing a table vertically, make sure that it always displays a
whole number of lines.

Table Scrolling You can provide scrolling of your table by placing the table inside a
scroll pane. A table has column headers only when it is in a scroll pane. For
information on scrolling, see “Scroll Panes” on page 102.

Column Reordering You can enable users to rearrange the columns in the table.
When users drag the column header to the right or left, the entire column
moves. Releasing the mouse button places the column at the new location.

The following figure shows the Last Name column being dragged to the right.
In this case, the column is selected (although users can also drag an
unselected column).

TABLE 11 Background Color of Table Cells

Type of Cell Background Color Example

An unselected cell
(editable or noneditable)

The background color of the table,
which is white by default.

A selected cell that is
editable and currently
has keyboard focus

White. The inner border is drawn in
the primary 1 color to indicate that
the cell has keyboard focus. (For
information on color themes in the
Java look and feel, see “Colors” on
page 40.)

Any other selected cell The primary 3 color, which is light
blue in the default color theme.

Chapter 12: Lists, Tables, and Trees Tables 178

FIGURE 157 Reordering Columns by Dragging a Column Header (150%)

Column Resizing You can enable users to resize the columns in a table. Users drag
the right border of the column header to the right to make the column wider,
and to the left to make the column narrower. When users resize a column,
you must decide whether to change the width of the entire table or adjust
the other columns so the overall width is preserved. The JFC-supplied resize
options are described in the following table.

TABLE 12 Table Resize Options (150%)

The original table. The double arrow
shows the west resize pointer before
the columns are resized.

Resize next
Resizes the columns on either side of
the border being moved. One column
becomes bigger, while the other
becomes smaller.

Resize subsequent
Resizes the column whose border was
moved and all columns to its right.
This option is the default option.

Chapter 12: Lists, Tables, and Trees Tables 179

Row Sorting You can give users the ability to sort the rows in a table by clicking the
column headers. An email application, which displays a list of messages in a
table, is well suited for row sorting. As shown in the following figure, users
can sort the messages by date, sender, or subject. The header of the From
column appears in bold to indicate that the messages are currently sorted
alphabetically by sender.

FIGURE 158 Row Sorting in an Email Application (150%)

Resize last
Resizes the column whose border was
moved and the last (rightmost)
column.

Resize all
Resizes all other columns, distributing
the remaining space proportionately.

Resize off
Resizes the column whose border was
moved, and makes the table wider or
narrower to adjust the space added or
removed from the column. This is the
only option that changes the overall
width of the table.

TABLE 12 Table Resize Options (Continued) (150%)

Bold column header indicates sort order

Chapter 12: Lists, Tables, and Trees Tables 180

Provide a visual indicator for the table column that currently
determines the sort order. For example, put the column header text in bold.

If your application has a menu bar, provide row sorting as a set of menu
items as well (for example, include “Sort by Sender” in the View menu).

Row sorting is not included with the table component. However, the
JFC contains sample code that can be used to implement row sorting. See The
Java Tutorial for more information.

Selection Models for Tables When designing a table, you must decide which
objects (cells, rows, or columns) users can select. The JFC provides 24 models
for selecting objects in tables, but they are not all distinct.

The following nine selection models are recommended for use in the
Java look and feel:

■ No selection
■ Single cell
■ Single range of cells
■ Single row
■ Single range of rows
■ Multiple ranges of rows
■ Single column
■ Single range of columns
■ Multiple ranges of columns

No Selection You can turn off selection in a table. Nothing is selected when users click
in a cell.

SIngle Cell You can enable users to select a cell by clicking it. The cell gets keyboard
focus, which is indicated by an inner border. Any previous selection is
deselected.

In the following figure, the cell containing 377 is selected and has keyboard
focus. The cell cannot be edited, as indicated by the primary 3 background
color.

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/docs/books/tutorial/

Chapter 12: Lists, Tables, and Trees Tables 181

FIGURE 159 Single-Cell Selection (150%)

Range of Cells You can enable users to select a single cell or a rectangular range of
cells. Users select a cell by clicking it. That cell gets keyboard focus and
becomes the anchor point of the selection. Users extend the selection by
moving the pointer to a new cell and Shift-clicking. Users can also select a
range of cells by dragging through the range.

In the following figure, the user has selected the range by clicking Sophia and
then Shift-clicking 1273. The cell containing Sophia is editable, as indicated
by its white background.

FIGURE 160 Range of Selected Cells (150%)

Clicking here selects this cell

Clicking here selects the cell and sets the anchor point

Shift-clicking here extends the selection

Chapter 12: Lists, Tables, and Trees Tables 182

In range selection, the selection always extends from the cell with the anchor
point to the cell where the user Shift-clicked. If users move the pointer within
the selection and Shift-click, the selection becomes smaller. For example, if
the user Shift-clicks Stewart in the preceding figure, the selection is reduced
to four cells (Sophia, Amann, Samuel, and Stewart).

Single Row You can enable users to select an entire row by clicking any cell in the
row. The clicked cell gets keyboard focus, which is indicated by an inner
border. Any previous selection is deselected.

In the following figure, the user has clicked the cell containing 811. This cell
is not editable, as indicated by its background color.

FIGURE 161 Single-Row Selection (150%)

Single Range of Rows You can enable users to select one row or a range of rows. Users
select a row by clicking any cell in the row. The cell that has been clicked gets
keyboard focus and becomes the anchor point of the selection. Users extend
the selection by moving the pointer to a new row and Shift-clicking. Users can
also select a range of rows by dragging through the range.

In the following figure, the user has clicked Amann and then Shift-clicked
Dole. The cell containing Amann is editable, as indicated by its white
background.

Clicking here selects the row

Chapter 12: Lists, Tables, and Trees Tables 183

FIGURE 162 Range of Selected Rows (150%)

In range selection, the selection always extends from the row with the anchor
point to the row where the user has Shift-clicked. If users Shift-click within an
existing selection, the selection becomes smaller. For example, if the user
Shift-clicks Stewart in the preceding figure, the selection is reduced to the
two rows containing Amann and Stewart.

Multiple Ranges of Rows You can enable users to select a single row, a range of rows,
or multiple row ranges (also known as “discontinuous,” “discontiguous,” or
“disjoint” ranges). Users select a single row by clicking any cell in the row and
extend the selection by Shift-clicking. To start another range, users Control-
click any cell in a row. The cell gets keyboard focus and becomes the anchor
point of the new range. The selection of the row toggles as follows:

■ If the row is not already selected, it is selected. A subsequent Shift-click
selects all rows from the anchor point to the row where the user has
Shift-clicked.

■ If the row is within an existing selection, the row is deselected. A
subsequent Shift-click deselects all rows from the anchor point to the
row where the user has Shift-clicked.

Users can also select another range by dragging through the range while
holding down the Control key.

Clicking here selects the row and sets the
anchor point

Shift-clicking here extends the selection

Chapter 12: Lists, Tables, and Trees Tables 184

In the following figure, the user has selected the first range by clicking Winter
and then Shift-clicking Amann. The user has created another range by
Control-clicking Mary and then Shift-clicking Roscoe. The cell containing Mary
has keyboard focus and is editable.

FIGURE 163 Multiple Ranges of Selected Rows (150%)

Multiple-range selection is well suited for an email application that uses a
table to display message headers, as shown in Figure 158 on page 179. Users
can select one or more message headers (especially useful for deleting
messages).

Single Column Only You can enable users to select an entire column by clicking any
cell in the column. The cell that was clicked gets keyboard focus, which is
indicated by an inner border. Any previous selection is deselected.

In the following figure, the user has clicked Amann in the Last Name column.
The white background indicates that the cell can be edited.

Shift-clicking here extends the selection

Control-clicking here selects the row and moves the anchor point

Clicking here selects the row and sets the anchor point

Shift-clicking here extends the selection

Chapter 12: Lists, Tables, and Trees Tables 185

FIGURE 164 Single-Column Selection (150%)

Single Range of Columns You can enable users to select one column or a range of
columns. Users select a column by clicking any cell in the column. The cell
that was clicked gets keyboard focus and becomes the anchor point of the
selection. Users extend the selection by moving the pointer to a new column
and Shift-clicking. Users can also select a range of columns by dragging
through the range.

In the following figure, the user has clicked 1273 and then Shift-clicked
Amann. The cell containing 1273 cannot be edited, as indicated by its
background color.

FIGURE 165 Range of Selected Columns (150%)

Clicking here selects the column

Clicking here selects the row and sets the anchor point

Shift-clicking here extends the selection

Chapter 12: Lists, Tables, and Trees Tables 186

In range selection, the selection always extends from the column with the
anchor point to the column where the user has Shift-clicked. If users Shift-
click within an existing selection, the selection becomes smaller.

Multiple Ranges of Columns You can enable users to select a single column, a range of
columns, or multiple-column ranges (also known as “discontinuous,”
“discontiguous,” or “disjoint” ranges). Users select a single column by clicking
any cell in the column and extend the selection by Shift-clicking. To start
another range, users Control-click any cell in the column. The cell gets
keyboard focus and becomes the anchor point of the range. The selection of
the column toggles as follows:

■ If the column is not already selected, it is selected. A subsequent Shift-
click selects all columns from the anchor point to the column where the
user Shift-clicked.

■ If the column is within an existing selection, the column is deselected. A
subsequent Shift-click deselects all columns from the anchor point to the
column where the user Shift-clicked.

Users can also select another range by dragging through the range while
holding down the Control key.

In the following figure, the user has clicked Peter and then Shift-clicked
Amann. The user has selected another range by Control-clicking Krakatoa,
which has keyboard focus and can be edited, as indicated by its white
background.

FIGURE 166 Multiple Ranges of Selected Columns (150%)

Shift-clicking here extends the selection

Control-clicking here
selects the column and
moves the anchor point

Clicking here selects the column and sets the anchor point

Chapter 12: Lists, Tables, and Trees Tree Views 187

Tree Views A tree view represents a set of hierarchical data in the form of an
indented outline, which users can expand and collapse. Tree views are useful
for displaying data such as the folders and files in a file system or the table of
contents in a help system.

A tree view consists of nodes. The top-level node, from which all other nodes
branch, is the root node. Nodes that might have subnodes are called
“containers.” All other nodes are called “leaves.” The default icon for a
container is a folder, and the default icon for a leaf is a file. Each node is
accompanied by text.

Turners appear next to each container in the tree view. The turner points right
when the container is collapsed and down when the container is expanded.

In the following figure, the Projects, Fire station, First floor, and Landscaping
nodes are expanded containers; all the other containers are collapsed.
Landscaping is a container without subnodes. Communications, Garage, and
Shop are leaves. The turner, container, and leaf graphics shown in this figure
are the default graphics provided by the JFC.

FIGURE 167 Tree View With Top-Level Lines (150%)

Users can click the right-pointing turner to expand a container so that its
contents are visible in the tree view. The turner rotates to point downward.
Clicking the downward-pointing turner collapses a container so that its
contents are no longer visible. For the keyboard operations that are
appropriate for tree views, see Table 32 on page 203.

Top-level line

Expanded container

Turner

Collapsed container

Leaf

Expanded container
without subnodes

Chapter 12: Lists, Tables, and Trees Tree Views 188

In most tree views, display the second level of the hierarchy as your
highest level. Your outline will be easier to use if you do not display the root
node.

Display turners for all containers in the tree view, including the
containers at the highest level. Turners remind users that they can expand
and collapse the node.

Setting the rootVisible property of the tree view to false turns off
the display of the root node.

Setting the showsRootHandles of the tree view to true turns on the
display of turners for the highest-level containers.

Lines in Tree Views The JFC provides you three options for including lines in a tree
view. The first option is not to include any lines. The second option is to draw
lines that separate the top-level nodes, as shown in Figure 167 on page 187.
The third option is to draw lines that define the hierarchical relationships of
the nodes, as shown in the following figure.

FIGURE 168 Tree View With Hierarchy Lines (150%)

The client property JTree.lineStyle can be set to None to display
no lines, to Horizontal to display top-level lines, and to Angled to display
hierarchy lines.

Hierarchy
line

Custom graphic
for leaf node

Chapter 12: Lists, Tables, and Trees Tree Views 189

Graphics in Tree Views You can substitute your own graphics for the JFC-supplied
container and leaf node graphics. For example, if your hierarchy represents
the clients and servers in a network, you might include graphic
representations of the clients and servers. In Figure 168 on page 188, a
custom music graphic is used for the leaf nodes. You might also use separate
graphics to show when a container is expanded and when it is collapsed.

Editing in Tree Views You can enable users to edit the text in a tree view. When
editing is enabled, users can change text using the same editing commands
that they use for text fields. These commands are described in “Editable Text
Fields” on page 167.

Setting the editable property to true enables editing of all nodes in
the tree.

A: KEYBOARD NAVIGATION, ACTIVATION,
AND SELECTION

This appendix defines the keyboard operations that enable users to navigate
through, activate, or select the JFC user interface components. (Navigating
means to move the input focus from one user interface component to
another; activating refers to operating the component; selecting means to
choose one or more components, typically for a subsequent action.) For an
overview of these concepts, see “Keyboard Navigation and Activation” on
page 85.

In general, navigating between components uses these keys:

■ Tab. Moves keyboard focus to the next component or to the first member
of the next group of components.

■ Ctrl-Tab. Moves keyboard focus to the next component or to the first
member of a group of components when the current component accepts
a tab (as in text fields, tables, and tabbed panes).

■ Shift-Tab. Moves keyboard focus to the previous component or to the first
component in the previous group of components.

■ Arrow keys. Move keyboard focus within the individual components of a
group of components—for example, within menu items in a menu or
within tabs in a tabbed pane.

This appendix presents the JFC-supplied keyboard navigation, activation, and
selection operations in a series of tables, arranged alphabetically by
component. The left column of each table describes an action (for example,
moving focus to the left) and the right column describes its keyboard
operation (for example, left arrow key).

Some actions in the table list several possible keyboard operations, separated
by a comma. For example, both Home and Ctrl-Home move focus to the
beginning of a list. Multiple operations take into account the differences
between the Microsoft Windows and CDE operating environments. If you are
using an environment other than the Microsoft Windows or CDE operating
environment, implement the keyboard operation that is most appropriate for
your environment.

Appendix A: Keyboard Navigation, Activation, and Selection Checkboxes 192

Some of the keyboard operations described in the following tables
might be temporarily incomplete or not implemented. However, these key
sequences should be reserved for future versions of the JFC and the Java 2
platform.

Checkboxes The following table lists the keyboard operation for checkboxes.
For more information on this component, see “Checkboxes” on page 154.

Combo Boxes The following table lists the keyboard operations for combo
boxes. For details on this component, see “Combo Boxes” on page 156.

TABLE 13 Keyboard Operation for Checkboxes

Action Keyboard Operation

Selects or deselects checkbox Spacebar

TABLE 14 Keyboard Operations for Combo Boxes

Action Keyboard Operation

Posts associated list Spacebar, down arrow,
Alt-down arrow

Closes associated list Escape

Selects highlighted item and closes list Enter, Return, spacebar

Moves highlight within list when menu is
posted

Up arrow, down arrow

Appendix A: Keyboard Navigation, Activation, and Selection Command Buttons 193

Command Buttons The following table lists the keyboard operations for
command buttons. For more information on this component, see “Command
Buttons” on page 148.

Desktop Panes and Internal Frames The following table lists
the keyboard operations for desktop panes and internal frames. For details on
internal frames and desktop panes, see “Working With Multiple Document
Interfaces” on page 108.

TABLE 15 Keyboard Operations for Command Buttons

Action Keyboard Operation

Activates command button Spacebar

Activates default button (does not require
keyboard focus)

Enter, Return

Activates Cancel button (does not require
keyboard focus)

Escape

TABLE 16 Keyboard Operations for Desktop Panes and Internal Frames

Action Keyboard Operation

Opens internal frame Ctrl-F5

Closes internal frame Ctrl-F4

Moves internal frame Ctrl-F7

Resizes internal frame Ctrl-F8

Minimizes internal frame Ctrl-F9

Navigates first between open internal
frames, then among minimized
internal frames

Ctrl-Esc, Ctrl-Tab, Shift-Esc,
Shift-Tab

Opens minimized internal frame that has
keyboard focus

Ctrl-F5, Enter, Return

Appendix A: Keyboard Navigation, Activation, and Selection Dialog Boxes 194

Dialog Boxes The following table lists the keyboard operations for dialog
boxes, alert boxes, and utility windows. For comprehensive treatment of
dialog boxes and alert boxes, see Chapter 8. For a discussion of utility
windows, see “Utility Windows” on page 100.

HTML Editor Kits HTML editor kits use the navigation, selection, and
activation sequences described in Table 27 on page 200, plus the two listed
here. For details on the appearance and behavior of this component, see
“HTML Editor Kit” on page 172.

Navigates among associated windows on
the desktop pane

Ctrl-F6, Shift-Ctrl-F6

Navigates between associated windows
when an internal frame creates a
secondary window

Ctrl-F6, Shift-Ctrl-F6

Displays desktop contextual menu Ctrl-spacebar

TABLE 17 Keyboard Operations for Dialog Boxes

Action Keyboard Operation

Navigates into dialog box Alt-F6

Navigates out of dialog box Alt-F6

Activates Cancel button Escape

Activates default command button Enter, Return

TABLE 18 Keyboard Operations for HTML Panes

Action Keyboard Operation

Navigates to link and other focusable
elements

Tab, Shift-Tab, Ctrl-Tab,
Shift-Ctrl-Tab

Activates link Enter, Return, spacebar

TABLE 16 Keyboard Operations for Desktop Panes and Internal Frames (Continued)

Action Keyboard Operation

Appendix A: Keyboard Navigation, Activation, and Selection Lists 195

Lists The actions listed in the following table assume multiple selection in lists.
For more information on the appearance, behavior, and selection of this
component, see “Lists” on page 173.

TABLE 19 Keyboard Operations for Lists

Action Keyboard Operation

Moves focus up one row or line Up arrow

Moves focus down one row or line Down arrow

Moves focus up one view minus one line,
giving focus to first line in the view

Page Up

Moves focus down one view minus one
line, giving focus to first line in the view

Page Down

Moves focus to beginning of list Home, Ctrl-Home

Moves focus to end of list End, Ctrl-End

Selects all items in list Ctrl-A, Ctrl-/

Deselects all Ctrl-/

Makes a selection (and deselects any
previous selection)

Spacebar

Toggles selection (and does not affect
previous selections)

Ctrl-spacebar

Extends selection Shift-spacebar

Extends selection down one item Shift-down arrow

Extends selection up one item Shift-up arrow

Extends selection to beginning of list Shift-Home

Extends selection to end of list Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Appendix A: Keyboard Navigation, Activation, and Selection Menus 196

Menus The keyboard operations in this table apply to menu bars, menus, drop-
down menus, submenus, contextual menus, menu items, radio button menu
items, and checkbox menu items. For a discussion of menus, see Chapter 9.

Radio Buttons The following table lists the keyboard operation for radio
buttons. For a discussion of the appearance and behavior of this component,
see “Radio Buttons” on page 155.

TABLE 20 Keyboard Operations for Menus

Action Keyboard Operation

Posts current menu Enter, Return, spacebar,
arrow keys

Dismisses menu without taking action and
returns focus to last component that had
focus

Escape

Moves focus to menu bar and posts first
menu

F10

Navigates within menus Arrow keys

Navigates between titles in menu bar Arrow keys

Activates a menu item, dismisses menu,
and goes to last window item with focus

Enter, Return, spacebar

Displays contextual menu Shift-F10

Dismisses contextual menu Escape

Navigates within contextual menu Arrow keys

Activates highlighted item in contextual
menu and dismisses menu

Enter, Return, spacebar

TABLE 21 Keyboard Operation for Radio Buttons

Action Keyboard Operation

Selects radio button Spacebar

Appendix A: Keyboard Navigation, Activation, and Selection Scrollbars 197

Scrollbars Users can operate scrollbars from the keyboard when keyboard
focus is anywhere in the scroll pane that contains the scrollbar. For a
discussion of the appearance and behavior of this component, see
“Scrollbars” on page 102.

Sliders The following table lists the keyboard operations for sliders. For details
on this component, see “Sliders” on page 159.

TABLE 22 Keyboard Operations for Scrollbars

Action Keyboard Operation

Moves view up one line Up arrow

Moves view down one line Down arrow

Moves up one view Page Up

Moves down one view Page Down

Moves to beginning of data Ctrl-Home

Moves to end of data Ctrl-End

Moves right one view minus one line Ctrl-PgDn

Moves left one view Ctrl-Pg Up

TABLE 23 Keyboard Operations for Sliders

Action Keyboard Operation

Changes value of slider Arrow keys

Moves to left/top value Home

Moves to right/bottom value End

Jumps in left/top direction (approximately
20% of the scale)

Page Up, Ctrl-PgUp

Jumps in right/bottom direction
(approximately 20% of the scale)

Page Down, Ctrl-PgDn

Appendix A: Keyboard Navigation, Activation, and Selection Split Panes 198

Split Panes The following table lists the keyboard operations for split panes.
After users enter a split pane, pressing Tab cycles the focus to the
components within the split pane. For a description of the appearance and
behavior of this component, see “Split Panes” on page 106.

Tabbed Panes The following table lists the keyboard operations for tabbed
panes. For a description of the appearance and behavior of this component,
see “Tabbed Panes” on page 104. When a tabbed pane initially gets focus, the
focus goes to one of the tabs, and not to one of the content panes.

TABLE 24 Keyboard Operations for Split Panes

Action Keyboard Operation

Navigates between split panes and gives
focus to last element that had focus

Tab, F6

Gives focus to splitter bar F8

Changes location of splitter bar in splitter
pane

Arrow keys, Home, End

TABLE 25 Keyboard Operations for Tabbed Panes

Action Keyboard Operation

Navigates through tabs Arrow keys

Moves from tab to its associated content
pane

Ctrl-down arrow

Moves from content pane to its
associated tab

Ctrl-up arrow

Moves to next or previous content pane Ctrl-PgDn or Ctrl-PgUp

Appendix A: Keyboard Navigation, Activation, and Selection Tables 199

Tables The following table lists the keyboard operations for tables. For a
description of the appearance and behavior of this component, see “Tables”
on page 176.

TABLE 26 Keyboard Operations for Tables

Action Keyboard Operations

Moves focus up one cell Shift-Return

Moves focus down one cell Return

Moves focus left one cell Shift-Tab

Moves focus right one cell Tab

Deselects current selection and moves
focus up one cell

Up arrow

Deselects current selection and moves
focus down one cell

Down arrow

Scrolls up one view and gives focus to first
visible cell in the current column

Page Up

Scrolls down one view and gives focus to
first visible cell in the current column

Page Down

Scrolls left one view and gives focus to first
visible cell in the current row

Ctrl-PgUp

Scrolls right one view and gives focus to
first visible cell in the current row

Ctrl-PgDn

Moves focus and view to first cell in the
current row

Home

Moves focus and view to last cell in the
current row

End

Moves focus and view to first cell in the
current column

Ctrl-Home

Moves focus and view to last cell in the
current column

Ctrl-End

Allows editing in a cell without overwriting
the information

F2

Resets cell to the state it was in before it
was edited

Escape

Selects entire table Ctrl-A

Appendix A: Keyboard Navigation, Activation, and Selection Text Areas and Default and Styled Text Editor Kits 200

Text Areas and Default and Styled Text Editor Kits The
following table lists the keyboard operations for text areas and the default
and styled text editor kits. For details on the appearance and behavior of
these components, see “Text Areas” on page 169, “Default Editor Kit” on
page 170, and “Styled Text Editor Kit” on page 170.

Extends selection up one row Shift-up arrow

Extends selection down one row Shift-down arrow

Extends selection left one column Shift-left arrow

Extends selection right one column Shift-down arrow

Extends selection to beginning of row Shift-Home

Extends selection to end of row Shift-End

Extends selection to beginning of column Ctrl-Shift-Home

Extends selection to end of column Ctrl-Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Extends selection left one view Ctrl-Shift-PgUp

Extends selection right one view Ctrl-Shift-PgDn

TABLE 27 Keyboard Operations for Text Areas and Default and Styled Text Editor
Kits

Action Keyboard Operation

Moves insertion point up one line Up arrow

Moves insertion point down one line Down arrow

Moves insertion point to the left one
component or character

Left arrow

Moves insertion point to the right one
component or character

Right arrow

Moves up one view Page Up

Moves down one view Page Down

TABLE 26 Keyboard Operations for Tables (Continued)

Action Keyboard Operations

Appendix A: Keyboard Navigation, Activation, and Selection Text Areas and Default and Styled Text Editor Kits 201

Moves left one view Ctrl-PgUp

Moves right one view Ctrl-PgDn

Moves to beginning of line Home

Moves to end of row or line End

Moves to beginning of data Ctrl-Home

Moves to end of data Ctrl-End

Moves to next word Ctrl-right arrow

Moves to previous word Ctrl-left arrow

Selects all Ctrl-A, Ctrl-/

Deselects all Ctrl-\

Extends selection up Shift-up arrow

Extends selection down Shift-down arrow

Extends selection left Shift-left arrow

Extends selection right Shift-right arrow

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDown

Extends selection to the left one view Ctrl-Shift-PgUp

Extends selection to the right one view Ctrl-Shift-PgDn

Extends selection to beginning of line Shift-Home

Extends selection to end of line Shift-End

Extends selection to beginning of data Ctrl-Shift-Home

Extends selection to end of data Ctrl-Shift-End

Extends selection to next word Ctrl-Shift-right arrow

Extends selection to previous word Ctrl-Shift-left arrow

TABLE 27 Keyboard Operations for Text Areas and Default and Styled Text Editor
Kits (Continued)

Action Keyboard Operation

Appendix A: Keyboard Navigation, Activation, and Selection Text Fields 202

Text Fields The following table lists the keyboard operations for text fields.
For details on this component, see “Text Fields” on page 167.

Toggle Buttons The following table lists the keyboard operation for toggle
buttons. For details on this component, see “Toggle Buttons” on page 152.

TABLE 28 Keyboard Operations for Text Fields

Action Keyboard Operation

Moves insertion point one character to the
right

Right arrow

Moves insertion point one character to the
left

Left arrow

Moves insertion point to beginning of next
word

Ctrl-right arrow

Moves insertion point to beginning of
previous word

Ctrl-left arrow

Moves insertion point to beginning of field Home

Moves insertion point to end of field End

Submits text entry Enter, Return

Extends selection to beginning of line Shift-Home

Extends selection to end of line Shift-End

Extends selection one character to the left Shift-left arrow

Extends selection one character to the right Shift-right arrow

Extends selection to next word Shift-Ctrl-right arrow

Extends selection to previous word Shift-Ctrl-left arrow

TABLE 29 Keyboard Operation for Toggle Buttons

Action Keyboard Operation

Toggles button on or off Spacebar

Appendix A: Keyboard Navigation, Activation, and Selection Tool Tips 203

Tool Tips The following table lists the keyboard operations for tool tips. For
details on this component, see “Tool Tips” on page 145.

Toolbars The following table lists the keyboard operations for toolbars. For
details on the appearance and behavior of this component, see “Toolbars” on
page 140.

Tree Views The following table lists the keyboard operations for tree views.
For details on the appearance and behavior of this component, see “Tree
Views” on page 187.

TABLE 30 Keyboard Operations for Tool Tips

Action Keyboard Operation

Displays tool tip Ctrl-F1

Removes tool tip Escape, Ctrl-F1

TABLE 31 Keyboard Operations for Toolbars

Action Keyboard Operation

Navigates within toolbar Arrow keys

Activates toolbar Spacebar

TABLE 32 Keyboard Operations for Tree Views

Action Keyboard Operation

Expands current node Right arrow

Collapses current node Left arrow

Moves focus up one node Up arrow

Moves focus down one node Down arrow

Moves focus to first node in tree Home

Moves focus to last node in tree End

Moves up one view Page Up

Moves down one view Page Down

Appendix A: Keyboard Navigation, Activation, and Selection Tree Views 204

Moves left one view Ctrl-PgUp

Moves right one view Ctrl-PgDn

Selects all nodes in tree Ctrl-A, Ctrl-/

Deselects all Ctrl-\

Extends selection down Shift-down arrow

Extends selection up Shift-up arrow

Extends selection to beginning of tree Shift-Home

Extends selection to end of tree Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Extends selection right one view Ctrl-Shift-PgDn

Extends selection left one view Ctrl-Shift-PgUp

TABLE 32 Keyboard Operations for Tree Views (Continued)

Action Keyboard Operation

GLOSSARY

Abstract Window
Toolkit

The class library that provides the standard API for building GUIs
for Java programs. The Abstract Window Toolkit (AWT) includes
imaging tools, data transfer classes, GUI components,
containers for GUI components, an event system for handling
user and system events among parts of the AWT, and layout
managers for managing the size and position of GUI
components in platform-independent designs. (The GUI
components in the AWT are implemented as native-platform
versions of the components, and they have largely been
supplanted by the Swing components.) See also Java Foundation
Classes, Swing classes.

accessibility The degree to which software can be used comfortably by a
wide variety of people, including those who require assistive
technologies like screen magnifiers or voice recognition. An
accessible JFC application employs the Java Accessibility API,
enables its users to select an appropriate look and feel, and
provides keyboard operations for all actions that can be carried
out by use of the mouse. See also Java Accessibility API, Java
Accessibility Utilities, keyboard operations.

alert box A dialog box used by an application to convey a message or
warning or to gather information from the user. Four standard
alert boxes (Question, Info, Error, and Warning) are supplied for
JFC applications. Alert boxes are created using the
JOptionPane component. See also dialog box.

applet A program, written in the Java language, that a user can
interact with in a web browser. See also application.

application A program that combines all the functions necessary for a user
to accomplish a particular set of tasks (for instance, word
processing or inventory tracking). Unless stated otherwise, this
book uses “application” to refer to both applets and standalone
applications. See also applet.

Glossary 206

assistive technology Hardware or software that helps people with disabilities use a
computer (or provides alternative means of use to all users).
Examples include pointing devices other than the mouse, audio
or text-only browsers, and screen readers that translate the
contents of the screen into Braille, voice output, or audible
cues.

AWT See Abstract Window Toolkit.

bit depth The amount of information (in bits) used to represent a pixel. A
bit depth of 8 supports up to 256 colors; a bit depth of 24
supports up to 16,777,216 colors.

browser An application that enables users to view, navigate through,
and interact with HTML documents and applets. Also called a
“web browser.”

button A collective term for the various controls whose on-screen
appearance typically simulates a push button or a radio button.
The user clicks buttons to specify commands or set options. See
also checkbox, command button, radio button, toggle button,
toolbar button.

checkbox A control, consisting of a graphic and associated text, that a
user clicks to select or deselect an option. A check mark in the
checkbox graphic indicates that the option is selected.
Checkboxes are created using the JCheckBox component. See
also radio button.

checkbox menu item A menu item that appears with a checkbox next to it to
represent an on or off setting. A check mark in the checkbox
graphic indicates that the menu item is selected. Checkbox
menu items are created using the JCheckBoxMenuItem
component. See also menu item.

color chooser A component that enables a user to select a color. Color
choosers are created using the JColorChooser component.
See also HSB, palette window, RGB, utility window.

combo box A component with a drop-down arrow that the user clicks to
display a list of options. Noneditable combo boxes (sometimes
called “list boxes”) have a list from which the user can select
one item. Editable combo boxes offer a text field as well as a
list of options. The user can make a selection by typing a value
in the text field or by selecting an item from the list. Combo
boxes are created using the JComboBox component.

Glossary 207

command button A button with a rectangular border that contains text, a
graphic, or both. A user clicks a command button to specify a
command to initiate an action. Command buttons are created
using the JButton component. See also button, toggle button,
toolbar button.

component A piece of code or, by extension, the interface element
implemented by that code. See also Swing classes.

container A component (such as an applet, window, pane, or internal
frame) that holds other components.

contextual menu A menu that is displayed when a user presses mouse button 2
while the pointer is over an object or area associated with that
menu. A contextual menu offers only menu items that are
applicable to the object or region at the location of the pointer.
Sometimes called a “pop-up menu.” Contextual menus are
created using the JPopupMenu component. See also menu.

control An interface element that a user can manipulate to perform an
action, select an option, or set a value. Examples include
buttons, sliders, and combo boxes.

cross-platform Pertaining to heterogeneous computing environments. For
example, a cross-platform application is one that has a single
code base for multiple operating systems.

cursor See pointer.

default command
button

The command button that the application activates if a user
presses Enter or Return. Default buttons in Java look and feel
applications have a heavier border than other command
buttons. See also command button.

designer A professional who specifies the way that users will interact
with an application, chooses the interface components, and
lays them out in a set of views. The designer might or might not
be the same person as the developer who writes the application
code.

desktop pane A container, a sort of “virtual desktop,” for an MDI application.
Desktop panes are created using the JDesktopPane
component. See also internal frame, MDI.

Glossary 208

dialog box A secondary window displayed by an application to gather
information from users or to inform them of a condition. A
dialog box can contain panes, lists, buttons, and other
components. Dialog boxes are created using the JDialog
component. See also alert box, color chooser, palette window,
secondary window, utility window.

dithering Simulating unavailable colors in a displayed graphic by using a
pattern of two or more available colors.

drag To move the mouse while holding down a mouse button. See
also drag and drop.

drag and drop To drag an interface element to a new location in order to
move, copy, or link it. See also drag.

drop-down arrow The triangular indicator that a user clicks to view more options
than are visible on screen—such as the list attached to a combo
box or the options provided by some toolbar buttons.

drop-down menu A menu that is displayed when a user chooses a menu title in
the menu bar. Drop-down menus are created using the JMenu
component. See also menu, menu bar.

editor pane A component that supports a variety of plug-in editor kits. The
JFC includes editor kits that can display plain, styled, HTML, and
RTF data. Editor panes are created using the JEditorPane
component. See also plug-in editor kit.

flush 3D style In the Java look and feel, the effect created by rendering on-
screen graphics whose surfaces appear to be in the same plane
as the surrounding canvas.

GIF Graphics Interchange Format. An 8-bit graphics format
developed by CompuServe and commonly used on the World
Wide Web. GIF files are limited to 256 colors, and they compress
without loss of information. The GIF format is typically used for
graphics in the Java look and feel. See also bit depth, JPEG.

HSB For “hue, saturation, brightness.” In computer graphics, a color
model in which hue refers to a color’s light frequency,
saturation is the amount or strength of the hue (its purity), and
brightness is the amount of black in the color (its lightness or
darkness). See also RGB.

icon An on-screen graphic representing an interface element that a
user can select or manipulate—for example, an application,
document, or disk.

Glossary 209

insertion point The place, usually indicated by a blinking bar, where typed text
or a dragged or pasted selection will appear. See also pointer.

internal frame A container used in MDI applications to create windows that a
user cannot drag outside of the desktop pane. In an MDI
application that uses the Java look and feel, internal frames
have a window border, title bar, and standard window controls
with the Java look and feel. Internal frames are created using
the JInternalFrame component. See also desktop pane, MDI.

internationalization The process of preparing software that is suitable for the global
marketplace, taking into account wide variations in regions,
languages, and cultures. Internationalization usually requires
the separation of component text from code to ease the process
of translation. See also localization.

Java 2D API A programming interface (part of the Java Foundation Classes in
the Java 2 SDK) that provides an advanced two-dimensional
imaging model for complex shapes, text, and images. Features
include enhanced font and color support and a single,
comprehensive rendering model. See also Java Foundation
Classes.

Java 2 SDK The software development kit that developers need to build
applications for the Java 2 Platform, Standard Edition, v. 1.2.
See also Java Development Kit.

Java Accessibility API A programming interface (part of the Java Foundation Classes)
that enables assistive technologies to interact and
communicate with JFC components. A Java application that fully
supports the Java Accessibility API is compatible with such
technologies as screen readers and screen magnifiers. See also
accessibility, assistive technology, Java Accessibility Utilities,
Java Foundation Classes.

Java Accessibility
Utilities

A set of classes (provided in the Java 2 SDK) for use by the
vendors who create assistive technologies or automated tool
tests. See also accessibility, assistive technology, Java
Accessibility API, Java Foundation Classes.

Java Development
Kit

Software that includes the APIs and tools that developers need
to build applications for those versions of the Java platform that
preceded the Java 2 Platform. Also called the “JDK.” See also
Java 2 SDK.

Glossary 210

Java Foundation
Classes

A product that includes the Swing classes, pluggable look and
feel designs, and the Java Accessibility API (all implemented
without native code and compatible with JDK 1.1). For the Java 2
platform, the Java Foundation Classes (JFC) also include the Java
2D API, drag and drop, and other enhancements. See also
Abstract Window Toolkit, pluggable look and feel architecture,
Swing classes.

Java look and feel The default appearance and behavior for JFC applications,
designed for cross-platform use. The Java look and feel works in
the same way on any platform that supports the Java
Foundation Classes. See also Java Foundation Classes, pluggable
look and feel architecture.

JDK See Java Development Kit.

JFC See Java Foundation Classes.

JFC application An application built with the Java Foundation Classes. See also
Java Foundation Classes.

JPEG A graphics format developed by the Joint Photographic Experts
Group. The JPEG format is frequently used for photographs and
other complex images that benefit from a larger color palette
than a GIF image can provide. JPEG compression is “lossy”;
decompressed images are not identical to uncompressed
images. See also GIF.

keyboard focus The active window or component where the user’s next
keystrokes will take effect. Sometimes called the “input focus.”

keyboard operations A collective term for keyboard shortcuts, mnemonics, and other
forms of navigation and activation that utilize the keyboard
instead of the mouse. See also keyboard shortcut, mnemonic.

keyboard shortcut A keystroke combination (usually a modifier key and a character
key, like Control-C) that activates a menu item from the
keyboard even if the relevant menu is not currently displayed.
See also keyboard operations, mnemonic.

label Static text that appears in the interface. For example, a label
might identify a group of checkboxes. (The text that
accompanies each checkbox within the group, however, is
specified in the individual checkbox component and is therefore
not considered a label.) Labels are created using the JLabel
component.

Glossary 211

layout manager An object that assists the designer in determining the size and
position of components within a container. Each container type
has a default layout manager. See also Abstract Window Toolkit.

list A set of choices from which a user can select one or more items.
Items in a list can be text, graphics, or both. Lists are created
using the JList component. See also combo box.

localization The process of customizing software for a particular locale.
Localization usually involves translation and often requires
changes to fonts, keyboard usage, and date and time formats.
See also internationalization.

look and feel The appearance and behavior of a complete set of GUI
components. See also Java look and feel.

MDI Multiple document interface. An interface that confines all of
an application’s internal frames inside its desktop pane. See
also desktop pane.

menu A list of choices (menu items) logically grouped and displayed
by an application so that a user need not memorize all available
commands or options. Menus in the Java look and feel are
“sticky”—that is, they remain posted on screen after the user
clicks the menu title. Menus are created using the JMenu
component. See also contextual menu, drop-down menu, menu
bar, menu item, submenu.

menu bar The horizontal strip at the top of a window that contains the
titles of the application’s drop-down menus. Menu bars are
created using the JMenuBar component. See also drop-down
menu.

menu item A choice in a menu. Menu items (text or graphics) are typically
commands or other options that a user can select. Menu items
are created using the JMenuItem component. See also
checkbox menu item, radio button menu item.

middle mouse
button

The central button on a three-button mouse (typically used in
UNIX environments). The Java look and feel does not utilize the
middle mouse button. See also mouse button 2.

MIME Multipurpose Internet Mail Extensions. An Internet standard for
sending and receiving non-ASCII email attachments (including
video, audio, and graphics). Web browsers also use MIME types
to assign applications interpret and display files that are not
written in HTML.

Glossary 212

minimized internal
frame

A reduced representation of an internal frame in an MDI
application. Minimized internal frames look like horizontally
oriented tags that appear at the lower-left corner of the
desktop. The user can drag minimized internal frames to
rearrange them. See also MDI.

mnemonic An underlined letter, typically in a menu title, menu item, or
the text of a button or component. A mnemonic shows the user
which key to press (in conjunction with the Alt key) to activate a
command or navigate to a component. See also keyboard
operations, keyboard shortcut.

modal dialog box In a JFC application, a dialog box that prevents the user’s
interaction with other windows in the current application.
Modal dialog boxes are created using the JDialog
component. See also dialog box, modeless dialog box.

modeless dialog box In a JFC application, a dialog box whose presence does not
prevent the user from interacting with other windows in the
current application. Modeless dialog boxes are created using
the JDialog component. See also dialog box, modal dialog
box.

modifier key A key (for example, the Control or the Shift key) that does not
produce an alphanumeric character but rather modifies the
action of other keys.

mouse button 1 The primary button on a mouse (the only button, for Macintosh
users). By default, mouse button 1 is the leftmost button,
though users might switch the button settings so that the
rightmost button becomes mouse button 1. See also middle
mouse button, mouse button 2.

mouse button 2 On a two-button or three-button mouse, the button that is used
to display contextual menus. By default, mouse button 2 is the
rightmost button on the mouse, though users might switch the
settings so that the leftmost button becomes mouse button 2.
See also contextual menu, middle mouse button, mouse
button 1.

mouse-over feedback A change in the visual appearance of an interface element that
occurs when the user moves the pointer over it—for example,
the display of a button border when the pointer moves over a
toolbar button.

multiple document
interface

See MDI.

Glossary 213

native code Code that refers to the methods of a specific operating system
or is compiled for a specific processor.

palette window In an MDI application with the Java look and feel, a modeless
window that displays a collection of tools, colors, or patterns.
Palette windows float on top of document windows. User
choices made in a palette window affect whichever primary
window is active. Palette windows are created using the
JInternalFrame component. See also utility window.

pane A collective term for scroll panes, split panes, and tabbed
panes.

panel A container for organizing the contents of a window, dialog box,
or applet. Panels are created using the JPanel component.
See also tabbed pane.

password field A special text field in which the user types a password. The field
displays a masking character for each typed character. Password
fields are created using the JPasswordField component.

plain window An unadorned window with no title bar or window controls,
typically used for splash screens. Plain windows are created
using the JWindow component. See also primary window,
window controls.

pluggable look and
feel architecture

An architecture that separates the implementation of interface
elements from their presentation, enabling an application to
dynamically choose how its interface elements interact with
users. When a pluggable look and feel is used for an
application, the designer can select from several look and feel
designs.

plug-in editor kit An editor that can be used by the editor pane. The Java
Foundation Classes supply plug-in editor kits for plain, styled,
RTF, and HTML data.

pointer A small graphic that moves around the screen as the user
manipulates the mouse (or another pointing device). Depending
on its location and the active application, the pointer can
assume various shapes, such as an arrowhead, crosshair, or
clock. By moving the pointer and pressing mouse buttons, a
user can select objects, set the insertion point, and activate
windows. Sometimes called the “cursor.” See also insertion
point.

preference A setting for an application or tool. Typically set by users. See
also property.

Glossary 214

primary window A top-level window of an application, where the principal
interaction with the user occurs. Primary windows always retain
the look and feel of the user’s native platform. Primary windows
are created using the JFrame component. See also dialog box,
secondary window.

progress bar An interface element that indicates one or more operations are
in progress and shows the user what proportion of the
operations has been completed. Progress bars are created using
the JProgressBar component. See also control, slider.

property A characteristic of an object. Depending on the object, the user
or the designer might set its properties. See also preference.

radio button A button that a user clicks to set an option. Unlike checkboxes,
radio buttons are mutually exclusive—selecting one radio
button deselects all other radio buttons in the group. Radio
buttons are created using the JRadioButton component. See
also checkbox.

radio button menu
item

A menu item that appears with a radio button next to it.
Separators indicate which radio button menu items are in a
group. Selecting one radio button menu item deselects all
others in that group. Radio button menu items are created
using the JRadioButtonMenuItem component.

resource bundle The place where an application stores its locale-specific data
(isolated from source code).

RGB For “red, green, blue.” In computer graphics, a color model that
represents colors as percentages of red, green, and blue. See
also HSB.

scroll arrow In a scrollbar, one of the arrows that a user can click to move
through displayed information in the corresponding direction
(up or down in a vertical scrollbar, left or right in a horizontal
scrollbar). See also scrollbar.

scroll box A box that a user can drag in the channel of a scrollbar to cause
scrolling in the corresponding direction. The scroll box’s
position in the scrollbar indicates the user’s location in the list,
window, or pane. In the Java look and feel, the scroll box’s size
indicates what proportion of the total information is currently
visible on screen. A large scroll box, for example, indicates that
the user can peruse the contents with just a few clicks in the
scrollbar. See also scrollbar.

Glossary 215

scroll pane A container that provides scrolling with optional vertical and
horizontal scrollbars. Scroll panes are created using the
JScrollPane component. See also scrollbar.

scrollbar A component that enables a user to control what portion of a
document or list (or similar information) is visible on screen. A
scrollbar consists of a vertical or horizontal channel, a scroll box
that moves through the channel of the scrollbar, and two scroll
arrows. Scrollbars are created using the JScrollBar
component. See also scroll arrow, scroll box, scroll pane.

secondary window A modal or modeless window created from and dependent upon
a primary window. Secondary windows set options or supply
additional details about actions and objects in the primary
window. Secondary windows are dismissed when their
associated primary window is dismissed. Secondary windows
are created using either the JFrame or the JDialog
component. See also dialog box, primary window.

separator A line graphic that is used to divide menu items into logical
groupings. Separators are created using the JSeparator
component.

slider A control that enables the user to set a value in a range—for
example, the RGB values for a color. Sliders are created using
the JSlider component. See also progress bar.

split pane A container that enables the user to adjust the relative size of
two adjacent panes. Split panes are created using the
JSplitPane component.

submenu A menu that is displayed when a user chooses a certain menu
item in a higher-level menu. Submenus are created using the
JMenu component.

Swing classes A set of GUI components, featuring a pluggable look and feel,
that are included in the Java Foundation Classes. The Swing
classes implement the Java Accessibility API and supply code for
interface elements such as windows, dialog boxes and choosers,
panels and panes, menus, controls, text components, tables,
lists, and tree views. See also Abstract Window Toolkit, Java
Foundation Classes, pluggable look and feel architecture.

tabbed pane A container that enables the user to switch between several
components (usually JPanel components) that appear to
share the same space on screen. The user can view a particular
panel by clicking its tab. Tabbed panes are created using the
JTabbedPane component.

Glossary 216

table A two-dimensional arrangement of data in rows and columns.
Tables are created using the JTable component.

text area A multiline region for displaying (and sometimes editing) text.
Text in such areas is restricted to a single font, size, and style.
Text areas are created using the JTextArea component. See
also editor pane.

text field An area that displays a single line of text. In a noneditable text
field, a user can copy, but not change, the text. In an editable
text field, a user can type new text or edit the existing text. Text
fields are created using the JTextField component. See also
password field.

theme mechanism A feature that enables a designer to specify alternative colors
and fonts across an entire Java look and feel application. See
also Java look and feel.

title bar The strip at the top of a window that contains its title and
window controls. See also window controls.

toggle button A button that alternates between two states. For example, a
user might click one toggle button in a toolbar to turn italics on
and off. A single toggle button has checkbox behavior; a
programmatically grouped set of toggle buttons can be given
the mutually exclusive behavior of radio buttons. Toggle
buttons are created using the JToggleButton component.
See also toolbar button.

tool tip A short text string that appears on screen to describe the
interface element beneath the pointer.

toolbar A collection of frequently used commands or options. Toolbars
typically contain buttons, but other components (such as text
fields and combo boxes) can be placed in toolbars as well.
Toolbars are created using the JToolBar component. See also
toolbar button.

toolbar button A button that appears in a toolbar, typically a command or
toggle button. Toolbar buttons are created using the JButton
or JToggleButton component. See also command button,
toggle button.

top-level container The highest-level container for a Java application or applet. The
top-level containers are JWindow, JFrame, and JDialog.

Glossary 217

tree view A representation of hierarchical data (for example, directory and
file names) as a graphical outline. Clicking expands or collapses
elements of the outline. Tree views are created using the
JTree component.

turner A graphic used in the tree view component. The user clicks a
turner to expand or collapse a container in the hierarchy.

utility window In a non-MDI application with the Java look and feel, a modeless
dialog box that typically displays a collection of tools, colors,
fonts, or patterns. Unlike palette windows, utility windows do
not float. User choices made in a utility window affect
whichever primary window is active. A utility window is not
dismissed when a primary window is dismissed. Utility windows
are created using the JDialog component. See also palette
window, secondary window.

web browser See browser.

window See dialog box, palette window, plain window, primary
window, secondary window, utility window.

window controls Controls that affect the state of a window (for example, the
Maximize button in Microsoft Windows title bars).

INDEX

NUMERALS
8-bit colors, 58–62

256-color displays, 58–62

A
About Application item (Help menu), 139

About boxes, 76

Abstract Window Toolkit (AWT), 16
accelerator keys. See keyboard shortcuts

access keys. See mnemonics

accessibility, 30–32
ease of use and, 30
JFC support for, 16–17
keyboard focus and, 32, 83–85
mnemonics and, 31–32, 88–90
multiplexing look and feel, xxv
recommended reading, xxvii–xxviii
tab traversal and, 32, 114
usability tests for, 32

active components, spacing of, 48–49
active windows

color design for borders, 40, 43
example, 5

alert boxes, 122–126
See also dialog boxes
capitalization of text in, 47
Error, 124–125
Info, 123
keyboard operations for, 194
platform-specific examples, 10
Question, 125–126
Warning, 10, 124

alignment. See spacing and alignment

Alt key, 82, 88–89

animation, 54–55
See also mouse-over feedback

applets, 27–29
browser windows and, 29
examples, 5, 10–12
JFC downloads with, 28
menus in, 29
mnemonics in, 29
recommended reading, xxviii
security issues, 28–29

application graphics, 57–76
See also button graphics; colors; icons
About boxes, 76
corporate and product identity and, 73–76
GIF files and, 58–59
installation screens, 73
internationalization, 36, 62
Java look and feel style, 62
JPEG files and, 58, 73
splash screens, 73–75
symbols, 72
tree views, 189

application windows. See primary windows

applications, compared with applets, xix, 5, 27–29

Apply button, 118

arrow keys, 82, 85, 86, 191
arrows. See arrow keys; indicators; scroll arrows

assistive technologies, 16–17, 31
See also accessibility

audience, xix

B
background canvas, color design for, 41, 43

Backspace key, 82

behavioral design, 77–90

bibliography, xxii–xxviii

bit depth, 58

black, use in Java look and feel, 40, 42, 43, 44
blinking. See animation

Index 220

blues, use in Java look and feel, 40–41, 43
borders

in button graphics, 68, 143–144
color design for, 43
in icons, 64

boxes. See About boxes; alert boxes; checkboxes;
combo boxes; dialog boxes

branding, for products, 73–76

browser windows, 5, 10–13, 29

button controls, 147, 148–156
See also button graphics; checkboxes; command

buttons; mouse buttons; radio buttons; toggle
buttons; toolbar buttons

button graphics, 66–72
See also spacing and alignment
borders in, 68, 143–144
drop-down arrows in, 144
use with text, 45, 142–143, 148, 150

C
Cancel button, 75, 116–117

capitalization, 46–47
cascading menus. See submenus

case-sensitivity, in user input, 159

CDE look and feel, 24

cells in tables, 176–177, 180–182

channels (for scrollbars), 103

checkbox menu items, 135
example, 7
keyboard operations for, 196

checkboxes, 154–155
example, 9
font design for, 45
keyboard operations for, 192
in menus, 7, 135
spacing of, 48–49, 154–155
text with, 46–47, 154

choosers, color, 126–127

choosing menu items, 133

clicking, 77–78
See also dragging
Control-clicking, 80
double-clicking, 77, 80

as selection technique, 80
Shift-clicking, 80
triple-clicking, 77, 80

client properties, 18

Close button, 76, 116

close controls, 98, 99, 109, 110
See also window controls

Close item (File menu), 98, 137
collapse box. See window controls

color choosers, 126–127

color model, 4, 39–44

colors, 39–44
See also application graphics
black, 40, 42, 43, 44
blues, 40–41, 43
cross-platform, 57–62
dithering, 58, 60–62
graphic file formats and, 58–59
grays, 40, 42, 43, 44, 60
Java look and feel model, 39–44
primary, 40–41, 43–44
redefining, 44
secondary, 40, 41–42, 43–44
table of Java look and feel colors, 43
web-safe, 58, 60
white, 40, 42, 43, 44

columns in tables
reordering, 177
resizing, 178–179
selecting, 184–186

combo boxes, 156–159
capitalization of text with, 46–47
defined, 147
editable, 158–159
example, 9
internationalization, 36
keyboard operations for, 192
noneditable, 157–158

command buttons, 148–150
See also button graphics; default command

buttons; toolbar buttons
in alert boxes, 122–123
Apply, 118
Cancel, 75, 116–117

Index 221

Close, 76, 116
color design for, 41
ellipsis mark in, 150
examples, 8, 9
font design for, 45
Help, 116
keyboard operations for, 193
OK, 116–117
Reset, 118
spacing of, 122–123, 143–144, 151
text with, 46, 142–143, 148, 149, 150–151

Command key, 87
commands, menu. See menu items

common menus, 136–139

company logos, 73–76

components, 17–18
spacing between, 47–53
specifying look and feel of, 23–24
table of major JFC components, 19–22

containers, 95–110
See also dialog boxes; windows

content panes, 104–106

contextual menus, 139–140
See also menus
defined, 129
displaying, 80–81
keyboard operations for, 196

Control key, 7, 80, 82–88, 191

control type style, in Java look and feel, 43, 45

controls, 147–161
See also checkboxes; command buttons; radio

buttons; sliders; toggle buttons; window
controls

capitalization of text with, 46–47
in menus, 135–136

copyright information, 74, 76

corporate identity, graphics and, 73–76

crosshair pointers, 79

cross-platform colors, 57–62
See also colors

cross-platform delivery guidelines, defined, xxii
cursors. See pointers

D
data loss and alert boxes, 124

default colors, 40–43
See also colors

default command buttons, 149–150
See also command buttons
behavior of, 118–119
examples, 9, 10
mnemonics with, 113

default editor kit, 170, 200–201

default fonts, 45

default pointers, 79

delay feedback, 54–55, 121–122

Delete key, 82
design principles. See principles of design

desktop panes, 108–110, 112, 193–194

destination feedback, 82

dialog boxes, 111–127
See also command buttons; spacing and

alignment; utility windows
capitalization of titles and text in, 47
command buttons in, 115–119
find, 120
initial keyboard focus in, 113
international considerations, 35
keyboard operations for, 194
login, 120
mnemonics in, 113
modes, 112
palette windows, 110
platform-specific examples, 8–9
preferences, 9, 113–114, 120–121
print, 121
progress, 54–55, 121–122
tab traversal in, 32, 114
titles for, 113
as top-level containers, 97–99

Dialog font, 45

dimmed text, color design for, 41, 43
disabilities. See accessibility

dithering, 58
in button graphics, 71
in icons, 65
prevention of, 60–62

Index 222

dockable toolbars, 141–142
dots in menus. See ellipsis mark

double-clicking, 77, 80

downloading applets, 28

drag texture, 4, 8

drag-and-drop operations, 81–82
dragging

and dropping, 81–82
as selection technique, 77, 80
title bars, 109
toolbars, 141–142

drop-down arrows
See also indicators
for combo boxes, 156–158
for toolbar buttons, 144

drop-down menus, 131
See also menus
common, 136–139
defined, 129
displaying, 131
examples, 6–8
keyboard operations for, 196
titles of, 131
toolbar buttons and, 144

E
ease of use. See principles of design

Edit menu, 138
example, 7
keyboard shortcuts in, 88
mnemonics in, 90

editable combo boxes, 158–159
See also combo boxes
example, 9
in login splash screens, 75

editable text fields, 9, 167–168
editing

password fields, 169
selection techniques, 77, 80
tables, 177
text, 169–172
text fields, 167–168
tree views, 189

editor panes, 170–172
example, 8
keyboard operations for, 200–201

8-bit colors, 58–62
ellipsis mark

in command buttons, 150
in menu items, 134

End key, 82, 87

Enter key, 82, 86, 87, 149

Error alert boxes, 124–125

error messages, 47, 124–125

Escape key, 87, 89, 150

Exit item (File menu), 98, 137

F
Federal Rehabilitation Act, 30
feedback

animation and, 54–55
while dragging, 82
mouse-over, 79, 145
pointer style as, 54, 78, 82, 106
progress bars, 160–161
progress dialog boxes, 54–55, 121–122
system status, 55

Ferret utility tool, 31
fields. See password fields; text fields

File menu, 137
Close item in, 137
Exit item in, 137
keyboard shortcuts in, 88
mnemonics in, 90
Preferences item in, 134

find dialog boxes, 120
flush 3D effects

See also application graphics
button graphics and, 67, 70
component spacing and, 48–49
default theme and, 41, 43
example, 3
icons and, 63–64, 65
symbols and, 62

Index 223

fonts
See also text
international considerations, 37
redefining, 45
table of default fonts, 45

Format menu, 7, 138
formatted text panes. See editor panes

formatting classes, 37

function keys, 82

G
GIF (Graphics Interchange Format), 58–59

glossary, 205–217
gradients

See also application graphics
in button graphics, 71–72
dithering added to, 61
in icons, 65

graphic conventions in this book, xxi–xxii

graphic file formats, 58–59

Graphics Interchange Format (GIF), 58–59
graphics. See application graphics; button graphics;

colors

grays, use in Java look and feel, 40, 42, 43, 44, 60

grids, 49–51

H
hand pointers, 79
handicaps. See accessibility

headline capitalization style, 46–47

Help button, 116

Help menu, 139
About Application item in, 139
mnemonics in, 90

help messages, capitalization of, 47
hierarchical menus. See submenus

highlighting, color design for, 43

Home key, 82, 87

HTML banners, 10–11

HTML editor kits, 172, 194, 200–201
human interface principles. See principles of design

I
I-beam pointer. See text pointers

icons, 63–66
See also application graphics
borders in, 64
capitalization of text with, 46–47
internationalization, 36, 62
selection, 77, 80

implementation tips, defined, xxii

inactive components, spacing of, 48–49

inactive menu items, color design for, 43
inactive windows

color design for, 41, 43
example, 5

indicators
for combo boxes, 156–159
for submenus, 132
for toolbar buttons, 144
in tree views, 187

Info alert boxes, 123

informational symbols, 72
input focus. See keyboard focus

insertion point, 78, 80, 84

installation screens, 73

internal frames, 108–110
color design for, 40–41
keyboard operations for, 193–194

internationalization, 33–37
fonts and, 37
formatting classes and, 37
graphics and, 36, 62
JDK support for, 17
layout managers and, 35, 49
mnemonics and, 33, 36
placement of checkbox text, 154
placement of radio button text, 155
recommended reading, xxvi–xxvii
resource bundles and, 35, 164
scrollbars and, 104
Stop button and, 122
testing in different locales, 37
text handling and, 17, 35–37, 49, 52

internationalization guidelines, defined, xxii

Index 224

J
JApplet component. See applets

Java 2 SDK, 15–16

Java 2D API, 16

Java Accessibility API, 16
See also accessibility

Java Accessibility Utilities, 16
Java applets. See applets

Java Development Kit (JDK), 15–16
Java Foundation Classes (JFC)

downloading with applets, 28
features of, 15–18
table of major JFC components, 19–22

Java look and feel
color model, 39–44
compared to other designs, 23–24
defined, 15
design fundamentals, 3–4
fonts in, 45
keyboard operations in, 82–90
mouse operations in, 77–82
visual tour of, 4–13

Java look and feel standards, defined, xxi

JavaHelp, 139
JButton component. See command buttons; toolbar

buttons

JCheckbox component. See checkboxes

JCheckboxMenuItem component. See checkbox
menu items

JColorChooser component. See color choosers

JComboBox component. See combo boxes

JDesktopPane component. See desktop panes

JDialog component. See dialog boxes

JDK (Java Development Kit), 15–16
JEditorPane component. See editor panes

JFC. See Java Foundation Classes

JFrame component. See primary windows

JInternalFrame component. See internal frames

JLabel component. See labels

JList component. See lists

JMenu component. See drop-down menus; submenus

JMenuBar component. See menu bars

JMenuItem component. See menu items

Joint Photographic Experts Group (JPEG), 58, 73
JOptionPane component. See alert boxes

JPanel component. See panels

JPasswordField component. See password fields

JPEG (Joint Photographic Experts Group), 58, 73
JPopupMenu component. See contextual menus

JProgressBar component. See progress bars

JRadioButton component. See radio buttons

JRadioButtonMenuItem component. See radio
button menu items

JScrollBar component. See scrollbars

JScrollPane component. See scroll panes

JSeparator component. See separators

JSlider component. See sliders

JSplitPane component. See split panes

JTabbedPane component. See tabbed panes

JTable component. See tables

JTextArea component. See text areas

JTextField component. See text fields

JTextPane component. See editor panes

JToggleButton component. See toggle buttons

JToolBar component. See toolbars

JTooltip component. See tool tips

JTree component. See tree views

JWindow component. See plain windows

K
key bindings. See keyboard operations

keyboard focus, 83–85
accessibility and, 32, 83–85
defined, 83

keyboard navigation and activation. See keyboard
operations

keyboard operations, 83–90
See also keyboard shortcuts; mnemonics
for navigation and activation, 85–87
tables of, 191–203

keyboard shortcuts, 87–88
See also keyboard operations; mnemonics
defined, 83
duplicates in contextual menus, 140
duplicates in toolbar buttons, 145
example, 7

Index 225

font design for, 45
in tool tips, 144
style in menus, 88, 130
table of common sequences, 88

keys
Alt, 82, 88–89
arrow, 82, 85, 86, 191
Backspace, 82
Command, 87
Control, 7, 80, 82–88, 191
Delete, 82
End, 82, 87
Enter and Return, 82, 86, 87, 149
Escape, 87, 89, 150
function, 82
Home, 82, 87
Meta, 87
modifier, 82, 85–89
Option, 82
Page Down, 82, 86
Page Up, 82, 86
Shift, 80, 82, 85, 191
spacebar, 85, 87
Tab, 85, 86, 191

L
labels, 164–166

See also text
active and inactive, 165
capitalization of, 46–47
color design for, 40–41, 43
communicating status with, 166
example, 9
identifying controls with, 164–166
internationalization and, 52
mnemonics in, 166
spacing and alignment of, 52, 53, 165

layers. See containers

layout managers, 35, 49, 101
layout. See spacing and alignment

legal requirements
About boxes, 76
accessibility and, 30
splash screens, 75

list boxes. See combo boxes

lists, 173–175
keyboard operations for, 195
scrolling in, 174
selection in, 80, 174–175

localization, 33–37
See also internationalization

login dialog boxes, 120

login splash screens, 75

look and feel designs, 23–24
See also Java look and feel

lower-level containers, 101–108
See also panels; scroll panes; split panes; tabbed

panes

M
Macintosh look and feel, 24

MDI (multiple document interface), 108–110, 112

menu bars, 130–131
in applets, 29
example, 6
keyboard operations for, 196

menu items, 132–136
See also keyboard shortcuts; menus; mnemonics
About Application (Help menu), 139
available and unavailable, 133
capitalization of, 46
checkbox, 135
choosing, 133
Close (File menu), 98, 137
color design for, 40–41, 42, 43, 130
ellipsis mark in, 134
example, 7
Exit (File menu), 98, 137
highlighted, 133
keyboard operations for, 196
Preferences (File menu), 134
radio button, 136
in submenus, 132
table of common keyboard shortcuts, 88
table of common mnemonics, 90

menu separators, 7, 134, 136

menu titles, 131
See also keyboard shortcuts; menu items; menus;

mnemonics

Index 226

menu titles (continued)
capitalization of, 46
color design for, 40–41, 42, 43, 130
example, 6
font design for, 45
order of, 136

menus, 129–146
See also contextual menus; drop-down menus;

keyboard shortcuts; menu bars; menu items;
menu titles; mnemonics; submenus

applets and, 29
choosing items, 133
color design for, 40–41, 42, 43, 130
common in Java look and feel, 136–139
displaying, 131
Edit, 7, 88, 90, 138
ellipsis mark in, 134
File, 88, 90, 134, 137
Format, 7, 138
Help, 90, 139
keyboard operations for, 196
Object, 137
order of, 136
separators, 7, 134, 136
types of, 129
View, 139

Meta key, 87
Metal. See Java look and feel

MetalEdit application, 5–10

Microsoft Windows look and feel, 24

MIME (Multipurpose Internet Mail Extensions), 82

minimized internal frames, 109–110, 193

minimized windows, example, 5

mnemonics, 88–90
See also keyboard operations; keyboard shortcuts
accessibility and, 31–32, 88–90
in applets, 29
defined, 83
in dialog boxes, 113
examples, 7, 9
international considerations, 33, 36
in labels, 9, 166
table of common assignments, 90

modal dialog boxes, 112

modeless dialog boxes, 112

models (in components), 17–18

modifier keys, 82, 85–89
See also keyboard shortcuts; mnemonics

mouse buttons, 77–78

mouse operations, 77–82
See also dragging
clicking, 77–78, 80
displaying contextual menus, 80–81

mouse-over feedback, 79, 145

move pointers, 79

multiplatform design, recommended reading, xxvi

multiple document interface (MDI), 108–110, 112

N
navigation, 85–87

See also keyboard shortcuts; mnemonics
accessibility considerations, 31, 32
between components, 191
tab traversal, 32, 114
tables of keyboard operations, 191–204

nested panes, 106, 107–108

nodes, in tree views, 187–188

noneditable combo boxes, 157–158
See also combo boxes

noneditable text fields, 167
See also text fields

O
Object menu, 137

OK button, 116–117
option buttons. See radio buttons

Option key, 82

P
padding. See spacing and alignment

Page Down key, 82, 86

Page Up key, 82, 86

palette windows, 110
See also dialog boxes

palettes, color, 58, 59, 60
See also color choosers; colors

panels, 51–52, 101

Index 227

panes. See scroll panes; split panes; tabbed panes

password fields, 168–169

plain windows, 73–75, 99–100
platform-specific design, recommended

reading, xxiv–xxvi

pluggable look and feel architecture, 17–18
See also Java look and feel

plug-in editor kits. See editor panes

pointers, 78–79
changing shape of, 54, 78, 82, 106
table of JDK types, 79

pop-up menus. See combo boxes; contextual menus

pop-up windows. See dialog boxes

posting menus, 131, 133

pre-dithered gradients, 60–61, 65, 71–72
See also application graphics

preferences dialog boxes, 9, 113–114, 120–121

Preferences item (File menu), 134

primary colors, in Java look and feel, 40–41, 43–44

primary windows, 95–98
See also windows
defined, 93
platform-specific examples, 5, 6

principles of design, 27–37
accessibility, 30–32
applets and, 28–29
internationalization and, 33–37
recommended reading, xxii–xxiii

print dialog boxes, 121

product names, 74, 76

progress bars, 160–161
color design for, 40–41
defined, 147

progress dialog boxes, 55, 121–122

progress feedback, 54, 121–122, 160–161
See also feedback

Q
Question alert boxes, 125–126
Quit. See Exit item

R
radio button menu items, 135–136

example, 7
keyboard operations for, 196

radio buttons, 155–156
capitalization of text with, 47
example, 9
keyboard operations for, 196
in menus, 135–136
spacing of, 156

reading order and localization, 35

recommended reading, xxii–xxviii

Reset button, 118

resize pointers, 79

resource bundles, 35, 164

Retirement Savings Calculator applet, 10–13

Return key, 82, 86, 87, 149

reverse video, 43
rollovers. See mouse-over feedback

rows in tables
selecting, 182–184
sorting, 179

RTF editor kit, 171

S
screen readers, 16

See also accessibility

scroll arrows, 103–104

scroll boxes, 102
color design for, 40–41
example, 8

scroll panes, 8, 102–103, 169–170

scrollbars, 102–104
example, 8
in lists, 174
in tables, 177
internationalization considerations, 104
keyboard operations for, 197

secondary colors, in Java look and feel, 40, 41–42,
43–44

secondary menus. See submenus

secondary windows, 93, 98–99
See also dialog boxes

Index 228

security of information, in applets, 28–29

selection, 77, 80
of list items, 174–175
of table cells, 180–182
of table columns, 184–186
of table rows, 182–184

sentence capitalization style, 47

separators, 7, 134, 136

shadows, color design for, 41, 43

Shift key, 80, 82, 85, 191
shortcut keys. See keyboard shortcuts

shortcut menus. See contextual menus

sliders, 159–160
capitalization of text with, 47
defined, 147
drag texture in, 85
example, 12
keyboard operations for, 197

small type style, in Java look and feel, 43, 45

sorting order and localization, 37

spacebar, 85, 87

spacing and alignment, 47–53
in alert boxes, 122
inside button graphics, 66–72
of checkboxes, 48–49, 154–155
of command buttons, 122–123, 151
between components, 48–49
design grids and, 49–50
in dialog boxes, 50–51, 115
internationalization and, 49
of labels, 52, 53, 165
layout managers and, 35, 49, 101
of radio buttons, 156
of scrollbars, 103
in tables, 177
of text, 49, 52–53
of titled borders, 51–52
of toggle buttons, 152–153
of toolbar buttons, 143

splash screens, 73–75, 99–100

split panes, 106–108
drag texture in, 85
keyboard operations for, 198

splitter bars, 107

standard menus. See drop-down menus

Stop button, 122

styled text editor kit, 170–171, 200–201

submenus, 132
See also menus
defined, 129
keyboard operations for, 196

Swing. See Java Foundation Classes

symbols, 62

system colors, 59

system status feedback, 55

system type style, in Java look and feel, 43, 45

T
Tab key, 85, 86, 191

tab traversal, 32, 114

tabbed panes, 104–106
capitalization of tab names, 47
keyboard operations for, 198

tables, 176–186
cell background color, 176
editing cells, 177
example, 12
font design for, 45
format options, 177
keyboard operations for, 199–200
reordering columns, 177
resizing columns, 178–179
scrolling in, 177
selecting cells, 180–182
selecting columns, 184–186
selecting rows, 182–184
selection techniques in, 80
sorting rows, 179

text, 163–172
See also editor panes; fonts; labels; password

fields; text areas; text fields
in buttons, 143, 149, 151
capitalization in interface, 46–47
color design for, 43
direction of, 17
internationalization and, 17, 34–37, 49, 52
selection, 77, 80
spacing and alignment, 49, 52–53
use in labels, 52

Index 229

text areas, 169–170, 200–201

text fields, 167–168
capitalization of labels with, 47
in combo boxes, 158, 159
examples, 9, 12
font design for, 45
keyboard operations for, 202
in sliders, 160

text pointers, 79

themes, 23, 39–45
three-dimensional effects. See flush 3D effects

title bars
alert box examples, 10
capitalization of text in, 47
color design for, 41, 43
dialog box examples, 9
dragging, 109
window examples, 6

titled borders, 51–52

toggle buttons, 152–153
See also button graphics; command buttons;

toolbar buttons
example, 8
keyboard operations for, 202

tool tips, 145–146
capitalization of, 47
font design for, 45
keyboard operations for, 203
timing of, 146
for toolbar buttons, 144

toolbar buttons, 142–145
See also button graphics; command buttons;

toggle buttons
examples, 6, 8
graphics in, 66–67
with menus, 144
spacing of, 143
text in, 143
tool tips for, 143

toolbars, 140–145
docking, 141–142
examples, 6, 8
keyboard operations for, 203
spacing of buttons in, 143
tool tips for, 144

top-level containers, 97–100
See also dialog boxes; plain windows; primary

windows; utility windows

trademarks, 74, 76

translating text, 34–36, 49, 52, 122

tree views, 187–189
font design for, 45
keyboard operations for, 203–204

triangles. See indicators

triple-clicking, 77, 80

turners, 187–188

type styles, in Java look and feel, 45
typography. See fonts; text

U
unavailable items in menus, 133
usability testing

accessibility issues, 32
internationalization, 37

user type style, in Java look and feel, 43, 45

utility windows, 100
defined, 93
keyboard operations for, 194

V
version numbers, in About box, 76
vertical spacing. See spacing and alignment

View menu, 139

visual design, 39–55
See also application graphics; spacing and

alignment

visual identifiers, product, 74, 76

W–Y
wait pointers, 79

Warning alert boxes, 10, 124

warning symbols, 72
web. See applets

web-safe colors, 58, 60

white, use in Java look and feel, 40, 42, 43, 44

Index 230

window controls
close controls, 98, 99, 109, 110
in internal frames, 108–109
in plain windows, 99–100
platform-specific examples, 6
in primary windows, 97–98

windows, 93–110
See also dialog boxes
active, 5, 40, 43
browser, 5, 10–13, 29
capitalization of titles, 47
color design for, 40–41, 43
frames and, 22
keyboard focus, 83
keyboard operations for, 193–194
in MDIs, 108–110

palette, 110
panels and panes in, 51–52, 101–108
plain, 73–75, 99–100
platform-specific examples, 5, 6
primary, 93, 95–98
secondary, 93, 98–99
as top-level containers, 97–100
utility, 93, 100

Windows. See Microsoft Windows look and feel

word order and localization, 36

word wrap, in text areas, 169–170

Z
zoom box. See window controls

zooming panes, 107

Colophon

LEAD WRITER
Patria Brown

WRITERS
Patria Brown, Gail Chappell

LEAD HUMAN INTERFACE DESIGNER
Don Gentner

JAVA LOOK AND FEEL CREATOR
Chris Ryan

MANAGING EDITOR
Sue Factor

GRAPHIC DESIGNER
Gary Ashcavai

ILLUSTRATORS
Gary Ashcavai, Don Gentner, Chris Ryan

PRODUCTION EDITOR
Bob Silva

PRODUCT MARKETING MANAGER
Christine Bodo

MANAGEMENT TEAM
Laine Yerga, Lynn Weaver, Rob Patten

GUIDELINE CONTRIBUTORS
Don Gentner, Chris Ryan, Michael C. Albers, Brian Beck, David-John
Burrowes, Carola Fellenz, Robin Jeffries, Earl Johnson, Jeff Shapiro,
Dena Shumila

Special thanks to Jonathan Schwartz and the Enterprise Products
Group in Java Software

Grateful acknowledgments to Ruth Anderson, Maria Capucciati,
Tom Dayton, Martine Freiberger, Janice Gelb, Dale Green, Mary
Hamilton, George Kaempf, Andrea Mankoski, Anant Kartik Mithal,
Moggy O’Donovan, Ray Ryan, Scott Ryder, Tom Santos, the Swing
Team, Harry Vertelney, Willie Walker, Steve Wilson, and all our
internal and external reviewers

This manual was written on Sun Microsystems workstations using
Adobe® FrameMaker software. Final page negatives were output
directly from text files on an AGFA Avantra 44 imagesetter. Line art
was created using Adobe Illustrator. Screen shots were edited in
Adobe Photoshop.

Text type is SunSans and bullets are ITC Zapf Dingbats. Courier is
used for computer voice.

	Java™ Look and Feel Design Guidelines
	Contents
	Figures
	Tables

	Preface
	Part I:� Overview
	1: The Java Look and�Feel
	Fundamentals of the Java Look and Feel
	Visual Tour of the Java Look and Feel
	MetalEdit Application
	Retirement Savings Calculator Applet

	2: The Java Foundation Classes
	Java Development Kit
	Java Foundation Classes
	JDK 1.1 and the Java 2 SDK
	Support for Accessibility
	Support for Internationalization

	User Interface Components of the Java Foundation Classes
	Pluggable Look and Feel Architecture
	Example Model and Interface
	Client Properties
	Major JFC User Interface Components

	Look and Feel Options
	Java Look and Feel—the Recommended Design
	Alternative Approaches
	Supplied Designs

	Part II:� Fundamental Java Application�Design
	3: Design Considerations
	Choosing an Application or an Applet
	Distribution
	Security Issues
	Placement of Applets

	Designing for Accessibility
	Benefits of Accessibility
	Accessible Design

	Planning for Internationalization and Localization
	Benefits of Global Planning
	Global Design

	4: Visual Design
	Themes
	Colors
	Fonts

	Capitalization of Text in the Interface
	Headline Capitalization in English
	Sentence Capitalization in English

	Layout and Visual Alignment
	Between-Component Padding and Spacing Guidelines
	Design Grids
	Titled Borders for Panels
	Text Layout

	Animation
	Progress and Delay Indication
	System Status Animation

	5: Application Graphics
	Working With Cross-Platform Color
	Working With Available Colors
	Choosing Graphic File Formats
	Choosing Colors
	Maximizing Color Quality

	Designing Graphics in the Java Look and Feel Style
	Designing Icons
	Working With Icon Styles
	Drawing Icons

	Designing Button Graphics
	Using Button Graphic Styles
	Producing the Flush 3D Effect
	Working With Button Borders
	Determining the Primary Drawing Area
	Drawing the Button Graphic

	Designing Symbols
	Designing Graphics for Corporate and Product Identity
	Designing Installation Screens
	Designing Splash Screens
	Designing Login Splash Screens
	Designing About Boxes

	6: Behavior
	Mouse Operations
	Pointer Feedback
	Mouse-over Feedback
	Clicking and Selecting Objects
	Displaying Contextual Menus

	Drag-and-Drop Operations
	Typical Drag and Drop
	Pointer and Destination Feedback

	Keyboard Operations
	Keyboard Focus
	Keyboard Navigation and Activation
	Keyboard Shortcuts
	Mnemonics

	Part III:� The Components of the Java Foundation Classes
	7: Windows, Panes, and Frames
	Anatomy of a Primary Window
	Constructing Windows
	Primary Windows
	Secondary Windows
	Plain Windows
	Utility Windows

	Organizing Windows
	Panels
	Scroll Panes
	Tabbed Panes
	Split Panes

	Working With Multiple Document Interfaces
	Internal Frames
	Palettes

	8: Dialog Boxes
	Modal and Modeless Dialog Boxes
	Dialog Box Design
	Tab Traversal Order
	Spacing in Dialog Boxes
	Command Buttons in Dialog Boxes
	Default Command Buttons

	Common Dialog Boxes
	Find Dialog Boxes
	Login Dialog Boxes
	Preferences Dialog Boxes
	Print Dialog Boxes
	Progress Dialog Boxes

	Alert Boxes
	Info Alert Boxes
	Warning Alert Boxes
	Error Alert Boxes
	Question Alert Boxes

	Color Choosers

	9: Menus and Toolbars
	Menu Elements
	Menu Bars
	Drop-down Menus
	Submenus
	Menu Items
	Checkbox Menu Items
	Radio Button Menu Items
	Separators

	Common Menus
	Typical File Menu
	Object Menu
	Typical Edit Menu
	Typical Format Menu
	View Menu
	Typical Help Menu

	Contextual Menus
	Toolbars
	Toolbar Placement
	Draggable Toolbars
	Toolbar Buttons

	Tool Tips

	10: Basic Controls
	Command Buttons
	Default Command Buttons
	Combining Graphics With Text in Command Buttons
	Using Ellipses in Command Buttons
	Command Button Spacing
	Command Button Padding

	Toggle Buttons
	Independent Choice
	Exclusive Choice

	Checkboxes
	Checkbox Spacing

	Radio Buttons
	Radio Button Spacing

	Combo Boxes
	Noneditable Combo Boxes
	Editable Combo Boxes

	Sliders
	Progress Bars

	11: Text Components
	Labels
	Labels That Identify Controls
	Labels That Communicate Status and Other Information

	Text Fields
	Noneditable Text Fields
	Editable Text Fields

	Password Fields
	Text Areas
	Editor Panes
	Default Editor Kit
	Styled Text Editor Kit
	RTF Editor Kit
	HTML Editor Kit

	12: Lists, Tables, and Trees
	Lists
	Scrolling
	Selection Models for Lists

	Tables
	Table Appearance
	Table Scrolling
	Column Reordering
	Column Resizing
	Row Sorting
	Selection Models for Tables

	Tree Views
	Lines in Tree Views
	Graphics in Tree Views
	Editing in Tree Views

	A: Keyboard Navigation, Activation, and Selection
	Checkboxes
	Combo Boxes
	Command Buttons
	Desktop Panes and Internal Frames
	Dialog Boxes
	HTML Editor Kits
	Lists
	Menus
	Radio Buttons
	Scrollbars
	Sliders
	Split Panes
	Tabbed Panes
	Tables
	Text Areas and Default and Styled Text Editor Kits
	Text Fields
	Toggle Buttons
	Tool Tips
	Toolbars
	Tree Views

	Glossary
	Index
	Copyright
	Colophon

