Name.....

Final - CS U380 - Dec. 18, 2008

No calculators, PDAs, etc.

1 Representation of numbers

a. **Assuming an 8-bit word length,** What is the two's-complement representation of -64(base 10)? Show all your work.

.

b. What is the 32 bit IEEE floating representation of $8\frac{1}{14}(base10)$?

.

c. What is the eight-bit ASCII representation of '\$'?

For the following questions, your MIPS code should follow the callee-save conventions for register usage that we have been using in this course.

2 Pointers; Call and return

```
Translate to MIPS assembly language: (Note: you do NOT have to
implement the functions g and h in part b.)
a.)
int
addVars(int *px, int *py, int *psum) {
    int val = *px + *py;
    *psum = val;
    return val;
}
```

Extra page, for your use

3 Pointers and arrays

Translate the following procedure, nextHigherChar, into MIPS assembly language, so that it can be called in any program:

```
void nextHigherChar(char *s) {
    char ch;
    while((ch = *s) != '\setminus 0') {
        ch = ch + 1
        *s = ch;
         /* increment s */
        s++;
    } /* end while */
}
```

Extra page, for your use

Recursion 4

Calculate the length of a string. Use a method similar to the one for calculating the length of a list in the Felleisen book.

```
\slash Translate literally- don't eliminate the recursion. */
int strlen(char *s) {
    if(*s == '\0') {
        return 0;
    } else {
        s = s + 1;
        return 1 + strlen(s);
    }
}
```

Extra page, for your use

5 Arrays and function values

```
Translate to a function in MIPS assembly language.
int countEqualElements(int a[], int b[], int len) {
   int count = 0;
   int i;

   for(i = 0; i < len; i++) {
      if(a[i] == b[i])
            count++;
   }

   return count;
}</pre>
```

6 Representation of instructions

For this question, write any addresses that are part of your answer in hexadecimal.

a.

Write one line of assembly language that will assemble into the fol-

lowing instruction:	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
	001000	10000	01000	11111	11111	111111

.

b.

Write one line of assembly language that will assemble into the fol-

lowing instruction:	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits	
	000000	10000	10001	01000	00000	101010	

.

c.

Write one line of assembly language that will assemble into the fol-

lowing instruction:	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
	000010	00000	00000	00000	00000	001001

.