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The Use of Triple-Modular  Redundancy 
to  Improve  Computer  Reliability 

Abstract:  One  of  the proposed techniques for  meeting  the severe reliability  requirements  inherent  in 
certain  future  computer applications i s  described. This  technique involves the use of  triple-modular 
redundancy, which is essentially the use of the  two-out-of-three  voting concept at  a low level. Effects of 
imperfect  votingcircuitryand  ofvarious  interconnectionsof logical elementsareassessed. A hypothetical 
triple-modular  redundant  computer is  subjected to a Monte  Carlo  program  on  the  IBM 704, which 
simulates component failures. Reliability is  thereby  determined and compared  with  reliability  obtained 
by analytical calculations based on  simplifying assumptions. 

Introduction 

For some  time  it  has been known that the reliability of 
digital systems can  be  improved  through  the use of 
redundant  components, if these additional  components 
are properly employed.’, ’, In this paper, we  will 
examine a specific means, called triple-modular re- 
dundancy  (TMR),  for meeting future reliability re- 
quirements  for digital computers in space and certain 
military  applications.  This  paper is concerned with 
system failures  caused by permanent  component fail- 
ures, in contrast to the  problem of transient  failures 
caused by noise, which has been treated extensively by 
Von Neumann  and  others.  The same  techniques  are 
useful for combating  both types of failures. 

It is interesting to specify numerically the desired 
reliability improvement.  (Reliability is quantitatively 
defined as  the  probability  that a system will not  fail 
under specified conditions.) A typical application may 
require 95-percent reliability for a period of time 
roughly  equal to the mean-time-to-failure of present 
systems-say one  hundred  hours. A rough  calculation 
shows that without  the use of redundancy this require- 
ment implies a twenty-fold improvement in the mean- 
time-to-failure of all components. Even if such large 
improvements in component reliability could be 
achieved in  the years ahead, complex digital systems 
would still not  be reliable enough  for  those  applica- 
tions where maintenance  during  operation is im- 
practical.  The  application of redundancy,  together 
with the  improvement of component reliability and 
the  reduction of system complexity, will  be required to 

200 solve the  problem. 

The use  of redundancy is proposed  not  as  a replace- 
ment,  but  rather  as  a  supplement to the  two  cardinal 
principles of reliable design: I )  use the most reliable 
components and 2) use the least possible complexity 
consistent with required system performance. This is 
not  just a  matter of “using every available  means.” 
The analysis shows that  the effectiveness  of redundancy 
as a  tool  for  obtaining digital system reliability is 
much more pronounced in a system composed of 
basically reliable components  than in a system of 
unreliable components.  Put  another way, while re- 
dundancy  can be  used as  a lever to greatly enhance  the 
reliability of an already reliable system, it is of little 
use-and can even have a  detrimental effect-if the 
nonredundant system is unreliable in the first place. 

The use of redundancy to obtain reliability has been 
extensively covered in the l i t e r a t ~ r e . ~ - ~  We  will 
attempt to assess the effects on  redundant  computer 
reliability due  to imperfect voting circuitry and  due 
to the  interconnections of logical elements which 
arise in practice. 

Mathematical analysis of a TMR computer 

Triple redundancy with perject voting  circuits 

To explain triple-modular  redundancy, it is first neces- 
sary to explain the  concept of triple redundancy  as 
originally envisaged by Von Neumann.’  The  concept 
is illustrated in Fig. 1, where the  three boxes labeled 
M are identical modules or black boxes which have a 
single output  and  contain digital equipment. (A black 

IBM JOURNAL APRIL 1962 



box  may be a  complete  computer, or it may be  a 
much less complex unit-for example an  adder  or a 
gate.) The circle labeled V is called a tnajority  organ 
by Von Neumann.  In this paper  it will  be called a 
voting circuit because it accepts the  input  from  the 
three sources and delivers the majority  opinion as  an 
output. Since the  outputs of the M’s are  binary  and 
the  number of inputs is odd,  there is bound to be an 
unambiguous  majority  opinion. 

The reliability of the  redundant system illustrated 
in Fig. 1 is now determined as  a  function of the re- 
liability of one  module, R,, assuming the voting circuit 
does  not fail. The  redundant system  will not fail  if none 
of the  three modules fails, or if exactly one of the  three 
modules fails. It is assumed that  the failures of the 
three modules are independent. Since the two events 
are  mutually exclusive, the reliability R of the re- 
dundant system  is equal to  the sum of the probabilities 
of these two events. Hence, 

R = R M 3  + 3RM2(1  - R,) = 3RM2 - 2 R M 3 .  (1) 

Several observations  can be made regarding Eq. 
( I ) .  Note  that  application of this type of redundancy 
does  not increase the reliability if R, is less than 0.5. 
This is an example of the general truth  that reliability, 
even by the use of redundancy,  cannot be obtained if 
the  redundancy is applied at a level where the  non- 
redundant reliability is very low. The closer R, is to 
unity,  the  more  advantageous  the  redundancy becomes. 
In particular,  the slope of the curve for  the  redundant 
case is zero at R, = 1. Thus, when R, is  very near 
unity, R departs from unity only by a  second-order 
effect. 

Although  most of the analysis which follows is 
valid for  any  type of dependency of the  nonredundant 
reliability on operating time, it is interesting to 
examine the specific case where the  nonredundant 
reliability* is a decaying exponential of the  operating 
time, i.e., where 

RM(t) = exp( -ft) = exp( - t / M T F )  . (2) 

In this formulafis a  constant, called failure rate;  and 
M T F  is its reciprocal, called mean-time-to-failure. 
The reliability of the triply redundant system is now 
given by 

R(t) = 3 exp( - 2 r I M T F )  - 2 exp( - 3 t / M T F )  . (3 )  

Note  that  for t > MTF,  which  is the range of time 
that is pertinent to  the subject matter of this paper, 
R < RM. This means that  triple  redundancy at  the 
computer level should  not be  used to improve reliability 
in this case. To obtain  improvement in reliability by 
the use  of triple redundancy, we require t < MTF.  
This  can be achieved in the present situation by break- 
ing the  computer  into  many modules, each of which 

* A nonredundant  system is one which  fails  if any single  element in the system 
fails.  The  exponential  failure  law  for  nonredundant  systems  has  been justified 
for  a  wide  class of complex  systems  for  periods o f  observation  which are 
short  compared  with  the  mean-time-to-failure of  an  individual  component.’ 

Figure / Triple redundancy as originally en- 
visaged by Von  Neumann. 
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Figure 2 Triple-  modular-  redundant configura- 
tion. 

is much more reliable than  the  entire  computer.  In this 
instance t @ MTF,  and  the triply redundant  module is 
much more reliable than  the original module. If these 
triply redundant modules are now reconnected to 
assemble an entire  triple-modular-redundant  (TMR) 
computer,  an over-all improvement in the reliability 
of the  computer will be achieved. 

Triple-modular redundancy with  perfect  voting 
circuits 

Figure 2 illustrates the  triple-modular-redundant con- 
figuration that will  be  used in this analysis. This  con- 
figuration differs from  the  one shown in Fig. 1 because 
it employs three identical voting circuits instead of the 
one voting circuit previously used.* If i t  is assumed 
that the voting circuits do not fail, the two configura- 
tions have identical reliability. Later, when the un- 
reliability of the voting circuits is taken  into  account, 
it will be observed that the voting circuits themselves 
are  redundant in the  configuration of Fig. 2. Hence 
single voting circuit failure will not necessarily cause 
computer failure. 

1) The  nonredundant  computer is divided into m 

The following assumptions  are made: 

modules. 

2 )  Each  module  has  just  one  input  and  one output. 

3) The voting circuits do  not fail. 

4) The failures of the modules are statistically in- 
dependent. 

5) The modules m are equally reliable. 



Figure 3 TMR reliability R vs nonredundant 
reliability Ro. 
R = ( 3 R 0 2 J m  - ZR03Jm)m. 

Letting R ,  represent the reliability of the entire non- 
redundant  computer  and R ,  the reliability of a single 
module, assumption 5 implies 

RM = R ,  'Irn. (4) 

Substituting this value for RM into  Eq. (1) to find 
RT, the reliability of one  trio (a group of three modules 
connected as in Fig. 2), gives 

RT = 3R:'" - 2 R d J m .  ( 5 )  

Reassembling modules into  a complete computer 
having the same capability as  the original nonredun- 
dant computer results in 

R(R,, m) = RTm = (3R:'" - 2R,3/m)m , (6) 

where R(R,, m) is the reliability of the TMR computer. 
Figure 3 shows TMR reliability R plotted versus 

nonredundant reliability R, with m as a  parameter, 
Eq. (6).  Note  that as a consequence of assumption (3) ,  
the TMR reliability can be made as close to unity as 
one pleases  by making an increasingly finer modular 
breakdown  (a larger and larger m). 

As an example, consider a  nonredundant  computer 
with an exponentially decaying reliability whose 
operating time is required to be equal to its MTF. 
Figure 3 (note circled point), illustrates that  a TMR 
reliability of  0.95 can be  achieved  by breaking this 
computer  into 60 modules. 
Analysis with imperfect voting circuits 

202 For the present, assumption (5) (the modules are equally 

reliable) will  be retained. Assumption (2)  (one input)  can 
be relaxed  by the following procedure. 

Consider Fig. 4 which illustrates a section of a com- 
puter consisting of a  trio having multiple inputs. It 
is convenient to group  the voting circuits with the 
equipment driven, and  to  treat the reliability of the 
equipment within the  dotted line of Fig. 4 as  a  unit. 
Having grouped the voting circuits with the following 
modules, the designation trio is retained for  the equip- 
ment within the  dotted lines and  the  relation R = RTm 
still holds. 

The assumption of only one output per module is 
not severe. In  a real computer, nearly all modules do 
have only one output.  For those modules which have 
more  than  one  output,  the conservative assumption is 
made  that  the failure of any one component of the 
module fails all outputs.  The  error introduced by this 
assumption is negligible. 

To calculate the effect of unreliability of voting 
circuits, assumptions (1) and (5) of the preceding section 
are retained, but assumptions (2),  ( 3 )  and (4) are replaced 

Figure 4 Section of a  computer, consisting of a 
trio of modules,  which has multiple 
inputs. 
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by the following assumptions : 

2*) All module  interconnections are made  through 
input  voting circuits as  illustrated  in Fig. 4. 

3") The failures of modules and  voting circuits are 
statistically independent events. 

4*) The voting circuitry associated with each  module 
has the same reliability for all modules. 

R, is defined as  the reliability of the voting circuitry 
which drives a single module. For example, in  Fig. 2 
R, is the reliability of one  voting  circuit, while in  Fig. 4 
it is  the reliability of three voting circuits. In practice 
R, will be close to unity, and  in fact  a  reasonable value 
for R, is about 0.999 for  operating  periods on  the 
order of one or two hundred  hours using present-day 
circuits and components. 

The effect of R, on  the reliability of the  trio  can be 
taken  into  account by multiplying the reliability 
R, (= R, ' I r n )  by R,. This is valid because by assump- 
tion (2*) the  voting circuits are in reliability series with 
the following module, and  the effect of voting circuit 
failure  is  the  same  as the effect  of module  failure. The 
result of substituting RvRotlrn in place of Rollm in 
Eq. (6) is 

R(R,, R,, m) = (3RV2R2/" - 2Rv3R03/m)rn . (7) 

It is of interest to consider the reliability of the TMR 
computer  as  the  number of modules m becomes large. 
Figure 3 indicates that R increases monotonically  with 
increasing m, but this figure is for  the case of R, = 1 .O. 
If the voting  circuits are  not perfectly reliable, it is 
logical to expect that  as m is made very large, thereby 
requiring  many  voting circuits, the  TMR computer 
reliability will eventually begin to decrease. In  fact, it 
can  be  shown  that  the limit of R(R,, R,, m) as 'm 
approaches infinity is zero. 

For small m, the unreliability of the voting logic 
will have  little effect on  the reliability of the TMR 
computer because a small number of voting  circuits 
are needed and because RY is close to unity. 

The curves of Fig. 3 can be expected to be  valid then 
for small m. Since R, considered as a  function of m, 
initially increases with increasing m, but ultimately 
approaches  zero  as m approaches infinity, the  function 
has a maximum  for  some value of m, say m,. Figure 
5 ,  which is a  plot of Eq. (7) when R, = 0.37 and 
R ,  = 0.999, is an example of the  shape of the  graph 
of  the function R(m). 

To find an  approximation  for m,, which is that value 
of m which maximizes R(R,, R,, m), in  terms of R, and 
R,, we use the  fact that R, is near  unity  in  the  practical 
case and  that RM = Ro'Im, the reliability of a single 
module,  must  be  near  unity if a high TMR reliability 
is to be achieved. As a consequence the  quantity 

X = ln(R,R~/") (8) 

will be small in practice. On  the  other  hand, it follows 
from  Eq. (7) that R and hence In R, is a function of X .  

0.99 -1 

I) 

Im  

Figure 5 Example  of  the function R(m). 
RO = 0.37; Rv = 0.999; and R(m) = [3Ro2Im 
Rv2 - 2R08'mRv3]m. 

Thus an approximation to R can  be  obtained by 
expanding In R into a power series in X and retaining 
the first non-zero  term  only.  This leads to the following 
approximation  for R : 

R M exp(-12 In R, In R,) 

x exp{ -3[& In R, - (In Ro/&)12} . (9) 

Noting  that  the first factor  in (9) is  independent of m, 
and  that  the maximum value of the second factor is 
eo = 1 ,  the conclusions are reached that 

R,,, = exp[- 12 In R, In R,] , (IO)* 

and  that  the value of m, is given  by 

mo = In R,/ln R, . (1  I)* 

As an example, consider the  case of a  nonredundant 
computer and voting circuits with exponentially de- 
caying reliabilities. Then 

In Ro = --fat, In R, =fut , (12) 

where t is the operating  time  and where fo and f, are  the 
(constant)  failure  rates of the  nonredundant  computer 
and  the voting circuitry associated with each module 
respectively. 

Now (1 1) can  be  written as 

mo = fo/fu * (13) 
Hence for the case of constant  failure rates, the 

Equations (IO) and (11) can  be written to a higher degree of approximation 
as follows: 
R,,, = exp(  -12 In R v R o ( [ l  - (2/3)ln RvllCI - 2 In Rvl'))  
mo = ([In  RoICI + In RvI)/([ln RvlCl - (7/3)ln Rvl) 

( 1 Oa) 
( 1 W  203 
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optimum value of m is, to a first approximation, 
independent of the  equipment  operating time t .  

Equation (13 )  can  be rewritten 

f, =fo/m, 9 (14) 

which states that  for maximum reliability each  module 
must have approximately  the  same  failure  rate  as  the 
voting circuitry which drives it.  Under fairly general 
assumptions,  the  failure  rate of nonredundant  equip- 
ment is proportional to the size or complexity or 
component  count of the  equipment. Thus  for maximum 
reliability, the  modules  into which the  computer is 
subdivided must have the  same size as the voting 
circuitry which drives them. Hence, it follows that  for 
maximum reliability the  total size of all modules 
should  be  equal to  the size  of all  voting circuitry. 
However, by definition, the size of all modules is three 
times the size of the original nonredundant  computer. 
Therefore, for maximum reliability, the size of the 
TMR computer  must  be  approximately six times the 
size of the  original  nonredundant  computer. 

For practical reasons, the advisability of using a 
procedure which requires six times as  much  equipment 
may  be  questionable. The  factor of six is based on  the 
use of the  optimum m. However, even for  a  non- 
redundant reliability which is an arbitrary  function of 
operating time, near  optimum TMR reliability can 
be achieved by utilizing a value of m considerably 
smaller than  the  optimum value m,. 

Substituting (10) and (1 1) into (9) yields the follow- 
ing  formula : 

Since the  natural  logarithm of the reciprocal of a 
reliability which is close to unity is approximately 
equal to the  probability of failure,  it is seen from (15) 
that  the probability of failure  for a TMR computer is 
approximately 

1 ( m  - m,)' 
mm, 

times the minimum  attainable  failure  probability. For 
instance, when m = ( l /2)mo,  the  failure  probability is 
1.125 times the  minimum  failure  probability.  The 
same result is obtained when m = 2m,. 

For the  above example, (15) provides a trade-off 
curve between size and reliability of the TMR com- 
puter; namely, if the size  of the  redundant  computer is 
3( 1 + K )  times the size of the  nonredundant  computer, 
then the failure  probability of the  redundant  computer 
is 

1 (1 - K ) 2  
l+" 

4 K  

times the  minimum  failure  probability. 
204 As a  numerical  illustration, the above  equations are 

now  applied to the  problem of optimizing  the TMR 
reliability of a  nonredundant  computer with ex- 
ponentially decaying reliability whose operating  time 
is required to be as  great  as  its  mean-time-to-failure. 
Then R ,  = e-' = 0.368. Using an estimated value of 
0.999 for R ,  in (IO) and (11), one finds that  the 
optimum  number of modules is m, = 1000, and  the 
corresponding  maximum TMR reliability is R,,, = 
0.988. To achieve R = 0.95, one  can  show  from (15) 
or  from Fig. 5 that m = 0.0674m0 = 67 modules. 
(Note  that this is only slightly higher than  the 60 
modules previously calculated on  the basis of R, = 
1.0.) The size of the TMR computer  in  this  case is 
3 + 3(.0674) = 3.20 times the size of the  nonredundant 
computer. 
Modules with unequal reliabilities 

In this section the  assumptions 1, 2*, and 3* made 
previously are retained,  but  the unnecessarily re- 
strictive assumptions 4* and 5 will be  dropped. 

The reliability, R K ,  of the K-th module  can  be 
presented by R ,  = Rollrn exp AK,  where AK measures 
the  deviation of R ,  from  the reliability Rollrn, which 
would have prevailed for modules of equal reliability. 
Likewise, the reliability of the  voting  circuitry associ- 
ated with the K-th module  can be written as 
R ,  exp a,, where R, is the average reliability of the 
voting circuitry associated with the modules. Thus 
the  sum of the AK's and  the sum of the 6,'s are zero. 

It can  be  shown that formula (9) must  now  be re- 
placed by 

R = exp( - 3m{[(ln Ro)/m] + In  R,}') 

x exp[ - 3  ( A K  + 6 3 ' 1  * (16) 

Hence, unequal reliabilities of modules and associ- 
ated  voting circuitry will lower the  attainable TMR 
reliability. In many cases of practical  interest  the  total 
amount of voting  circuitry will be  a  small  portion  of 
the entire  computer  equipment.  In  that event S K  can 
be expected to be small  compared to AK, and, hence 
can be neglected in (16). Under these circumstances  it 
follows that  for maximum TMR reliability, the  non- 
redundant  computer  should be subdivided into 
modules of as nearly equal reliability as possible. 

The  problem of module interconnection 

In  the preceding section it has been assumed  that every 
input  to every module is checked by voting circuitry 
(assumption 2"). One  may  question  whether this pro- 
cedure will indeed lead to maximal TMR reliability 
for a realistic situation. 

The basic problem is that  in a practical  computer 
the  output of some highly reliable module, such as a 
timing pulse generator, can be an input to a  large 
number, say n, of the  other  modules.  Rigorous 
application of the principles followed in  the preceding 
sections would require not only  triplication of the 
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timing pulse generator, but would also demand  the 
installation of 3n voting circuits to check the  output of 
the  three  timing pulse generators. It would seem 
possible that  for large n this  procedure  could decrease 
rather  than increase the TMR reliability. 

To analyze this problem  the  rigorous  application of 
the TMR principle as in Fig. 4 and  three  alternative 
configurations are compared.  Conditions  for  the values 
of certain critical reliabilities are derived which deter- 
mine whether over-all reliability is enhanced or 
degraded by replicating a given unit. The  interpretation 
of the  conditions, which are  stated  in  the  form of in- 
equalities, should  take  into  account  that reliability is 
often not known very precisely. Thus, while the  mathe- 
matical  treatment yields  well-defined regions where 
replication should or should not be used, in  practice 
there is usually a  rather  broad  range over which nearly 
equal over-all reliability will result in  either case. 

The  four cases to be compared are: 

Case 1 : Connection of n triplicated voting circuits at 
the  inputs  to  the n modules driven by the 
timing pulse generator. 

Case 2: Connection of one triplicated voting  circuit 
at the output of the timing pulse generator. 

Case 3 :  Omission of the  voting circuits, retaining  the 
triplicated timing pulse generator. 

Case 4: Use of a single timing pulse generator to 
drive all n triplicated modules without  voting 
circuitry. 

For convenience in  further discussion, the following 
terms are defined: 

M-unit : An M-unit is a trio of modules whose outputs 
are  connected to  other trios  only  through 
voting circuits. 

Q-unit: A Q-unit is a trio of modules whose outputs 
are  connected to  other trios directly. 

N-unit: An N-unit is a non-triplicated  module. 

Use of this terminology and  the definitions of the 
four cases are  illustrated  in Fig. 6. The following 
formulas  for  the reliabilities of the  four cases can  be 
derived : 

R ,  = (3RtpgZ - 2Rtpg3) n (3RiZRv2 - 2Ri3RV3) (17) 
n 

i =  1 

R ,  = C3Rtp,2 - 2Rtpg31 

x [RV3  fi (3R; - 2Rij) + 3Rv2(1 - RV)RZ 
i= 1 1 

( 1  8) 
n 

R3 = RtPg3 n (3Ri2 - 2Ri3) + 3Rtpg2(1 - RtPg)R2 (19) 
i= 1 

n 
R, = Rtpg n (3R? - m i 3 )  , (20) 

i= 1 

where Rtpg = reliability of one  tpg  module 
R,  = reliability of one  voting circuit 
Ri = reliability of the  ith driven module 

R = n Ri = aggregate nonredundant relia- 

bility of modules driven. 
In the analyses which follow it is assumed that  the 

failure  probabilities of the  timing pulse generator and 
of the voting circuits are sufficiently small that second 
and higher order  terms  can  be neglected compared 
with first-order  terms. It is also assumed that  the 
failure  probability of the aggregate of all modules 
driven is much  larger than timing pulse generator and 
voting circuit failure  probability. 

Comparison of R,  and R ,  

One  can show from (17) and (18) that R, > R, if and 
only if 

1 - R,, < [(l - RZ)S + 2 In R ] / n ,  (21) 

where RV, is the reliability of a voting circuit for case 
1, R,, is the reliability of a  voting circuit for case 2, 
and S = ( 1  - RV2)/(1 - Rvl)  is the  ratio of voting 
circuit failure  probabilities. 

If  the same standard  voting  circuit is used in both 
case 1 and case 2, then S = 1. However, normally 
S > 1 because output power requirements usually 
demand  more voting circuitry to drive n trios  than  to 
drive one  trio. 

It is easy to show that  for S = 1, (21) implies 
R, > R,, in all cases. It is  of interest to solve in- 
equality (21) for S to determine  that value of S for 
which R, and R2 are  equal. As an illustrative example, 
consider case 1 when the reliabilities of the driven 
modules  are  equal to each other  and  are also equal to 
the voting circuit reliabilities-an example previously 
shown to yield optimum TMR reliability. In this case, 
R, > R, if and  only if 

S > - .  

(i = 1,2, - * * , n)  
n 

i =  1 

3 In(l/R) 
1 - R 2  

As a continuation of a previous numerical example, 
if R, the  nonredundant reliability of all modules driven 
is l / e ,  then R,  > R, if and only if S > 3.47. Hence, 
in this specific example, the configuration of case 1 is 
more reliable than  that of case 2 if and  only if the 
voting circuitry required to drive n modules is more 
than  about 33 times as likely to fail  as the voting 
circuitry required to drive  one  module. 

Conlparison of R, and R3 

Since (3RtPg2 - 2Rtp93) is extremely close to unity  in 
(18), inspection of (18) and (19) reveals that R3 > R, 
if and only if 

Rtpg3 > Rv2 * (22) 

Thus,  the  configuration of case 3 is more reliable 205 
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Figure 6 Solutions to  problem of unbalance between  amount of computer logic and voting logic. 
implies that modules are connected to voting circuits as in Fig. 2. 

than  that of case 2 if and only if the reliability of the  and only if 
timing pulse generator of case 3 exceeds the reliability 
of the voting circuit of case 2. 1 - Rtpg4 -= 3(1 - J4pIg3)(1 - R Z )  9 (23) 

Comparison of R ,  and R, where Rtpg3 and Rtpg4 are  the timing pulse generator 
reliabilities for  the two cases. 

One  can show from Eqs. (19) and (20) that R, > R, if It is instructive to compare R, and R, for  the special 
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case  that  the  exponential law of reliability holds, i.e., 
R = e - i l M T F  

Rtpg3 = e - f  3’ 

Rtpg4 = e - f 4 t  . 
In this case one finds that R, > R3 if and only if 

f>-ln- 3f3 ( M T F )  . (24) 

Further specializing to  the case that f3 = f4, one 
finds R, > R ,  if and only if 

t > 0.202 ( M T F )  . (25) 

Thus  for  short  operating times the configuration of 
case 3 is more reliable, and  for  long  operating times 
that of case 4 is more reliable. Inequality (25) gives the 
cross-over time at which the two configurations are 
equally reliable. 

Monte Carlo analysis of a TMR computer 

The preceding results provide  some guide lines for  the 
design of a TMR computer.  Although these guide 
lines are useful, they exhibit several deficiencies. First, 
they are  unable to cope  in  detail  with  the complicated 
computer designs met in practice. Secondly, they are 
qualitative only, since they indicate rules for  improving 
reliability without  furnishing  a  quantitative  measure 
for this improvement. Clearly, additional  tools  are 
desirable in the design of a TMR computer.  One such 
tool  and  its usage will be described in this section. It 
consists of a Monte  Carlo  model  for  simulating  the 
statistical  failure  structure of a TMR computer. 

The model requires a list of all modules mi; 
i = 1, . . - , s which make  up  the TMR computer, 
together with a list, indicating  the  triplets  among  the 
modules which form ”units, the  triplets which form 
@units, and  those single modules which are N-units. 
The simulation of the logical structure of the 
TMR computer  is completed by listing for each  module 
the set of those  modules which feed it. 

This  part of the model enables us to decide whether 
the  TMR computer fails when the set of failed modules 
is given. For example, if a failed module  is  an N-unit, 
the TMR computer  has failed. However, if a failed 
module belongs to  an “unit, whose other  two  modules 
are still operating,  then  this failed module will not 
affect the TMR computer  operation so long as the 
three  modules feed into  operating voting circuits. 
Thus  it is possible to  supplement  the model by a simple 
decision process which, for a given sequence of failed 
modules, determines  the first point  in  the sequence 
where failure of the TMR computer occurs. 

The model  can  now be used to play the following 
“game”. At  the beginning of the  game consider all 
modules to be operating. Select modules successively 
and declare them  permanently failed, considering those 
not yet selected as still operating. At each  stage in this 

2 3f3 ” f 4  

succession decide whether  the TMR computer  fails 
as  a result of the modules declared failed up  to  that 
stage. The game ends when failure of the TMR com- 
puter  occurs  for  the first time. The result of a single 
game is the  number of stages in  the sequence, in  other 
words, the number of modules necessary to cause 
computer  failure  in  this game. 

By properly selecting the sequence of failed modules 
and by playing a  large  number of games, one  can 
simulate the failure structure of the TMR computer. 
To obtain  a selection process every module  should be 
looked  upon as a collection of components  (transistors, 
diodes, capacitors, resistors, soldered or welded con- 
nections). Failure of a  component shall imply failure 
of the  module of which it is a part. Given a configura- 
tion of failed and operating  components, and given 
the occurrence of one  additional  component  failure, 
the  probability that this  component belongs to module 
mi shall be denoted by pi. Thus p i  = 1. Although, 
in general, the  probability pi will be  a  function of 
operating time and of the  configuration of failed and 
operating  components just  prior  to  the  additional 
component failure, it shall be  assumed,  for  the  sake of 
simplicity, that  the  probabilities pi are  constant. Thus, 
for  each game, the sequence of failed modules  can be 
selected as follows. 

Starting with all  components  operating,  each  stage 
of the sequence represents an additional  component 
failure. By casting a  die with s faces, m,, m2, * , m,, 
such  that face mi has  probability p i  to occur, the 
module in which that  component failure  occurred is 
determined. Note  that repetitions  in the sequence, 
though unlikely, are possible. Such  repetitions  indicate 
modules  in which more  than  one  component  failure 
has  occurred. Hence, the result of a game is now the 
number of component  failures necessary to fail  the 
TMR computer  in this game. By playing a large 
number of games and by tabulating  the  percentage of 
the games which terminated  after exactly k component 
failures, one  obtains an estimate for  the probability, 
Pk, of a TMR computer  failure  after exactly k com- 
ponent failures. 

To obtain a model  in which the  probabilities p ,  are 
approximately  constant,  assume that all components 
have exponentially decaying reliabilities. It can  be 
shown that  for  computer designs met  in practice, the 
above  assumption implies that pi is approximately 
constant  and  can  be  estimated by dividing the  sum of 
the  failure  rates of the  components  in  module mi by 
the  sum of the failure  rates  of all components. 

The  Monte  Carlo  model shall now  be completed 
with  a model for computing  the TMR reliability as a 
function of operating time t. Assuming a Poisson 
distribution  for  the  number, k ,  of  component failures 
after exactly t hours of operation, it is seen that  the 
probability of k or  more  component failures in t hours 
of operation is given by 

e-* mY/y! , (26) 
y = k  207 
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where m is the  product o f t  and  the sum of the  failure 
rates of all components.  Multiplication of (26) by Pk 
yields the  probability of computer  failure before t 
hours of operation  as  a consequence of exactly k 
component failures. Hence, the TMR computer re- 
liability, R(t), i.e., the  probability of TMR computer 
operation  for at least t hours, is given by 

R(t )  = Pke-" mY/y! . 
m k -  1 

(27) 
k =  1 y=o 

Note  that  the above Monte  Carlo model is capable 
of  furnishing  the TMR computer  failure  probability  as 
a  function of the  number  of  component  failures  and of 
furnishing  the TMR computer reliability as  a  function 
of the  operating time t .  As a numerical example, TMR 
failure  probability versus the number of component 
failures, and the TMR reliability as a  function o f t  have 
been displayed in Figs. 7 and 8 for  four different TMR 
computer designs. All four TMR designs were based 
on  the same  nonredundant  computer whose reliability 
has been depicted in  Fig. 8. 

The curves labeled 1 in Figs. 7 and 8 correspond to 
a reasonably realistic TMR implementation using 
Q- and M-units  only. The curves labeled 2 correspond 
to  the  TMR implementation  obtained by retaining 
the  M-units  and  the  corresponding voting circuitry, 

but by replacing all Q-units by N-units. A deterioration 
of the reliability of design 2 as  compared to design 1 
is clearly evident in Fig. 7 as well as Fig. 8. Design 3 
is based on the results obtained in the preceding section 
(Eq. 24) which were used to decide which  Q-units in 
design 1 should  remain Q-units and which Q-units 
should  be  converted to N-units. The resulting reliability 
improvement of design 3 over designs 1 and 2 is clearly 
noticeable in Figs. 7 and 8. Design 4 was a  purely 
TMR design, consisting of n M-units, n being equal to 
the  total  number of Q- and M-units  in design 1. All 
"units were chosen equal, in such a manner  that  the 
nonredundant  computer  corresponding to design 4 
possessed the  same reliability as  the  nonredundant 
computer on which designs 1, 2 and 3 were used. It 
must  be emphasized that design 4 totally  disregards 
the logical design of the  nonredundant  computer of 
the designs 1, 2 ,  and 3. The reason  for  including design 
4 is to demonstrate  the power of a  pure TMR design. 
Unfortunately  such  a design seems rarely  attainable 
in view of the complex logical constraints which must 
be met in practice. 
Conclusion 

Since maintenance  during  computer  operating time 
will not  be  permitted in  many applications of interest, 

Figure 7 Monte  Carlo results, showing TMR failure  probability vs number  of component failures. 
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Figure 8 Monte  Carlo results,  showing reliability vs time. 

a reliability which would make in-service maintenance 
unnecessary has been the goal. It is worth noting, 
however, that  the  TMR concept lends itself  very  well 
to  a maintenance situation. Intermittent component 
failures will not normally cause the TMR computer to 
fail. By a suitable modification of the voting circuits, 
it is possible to detect and indicate where intermittent 
as well as permanent component failures have occurred. 
It is  even possible to replace faulty units while the 
TMR computer continues to operate  without  error. 

The preceding analysis has concerned itself with the 
logical structure of a digital computer. However, the 
TMR concept is applicable to any digital system, 
mechanical or electrical. In particular it can be applied 
to storage media and  input-output equipment associ- 
ated with digital systems. 
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