CS G357: Computer Security, Privacy and Usability

Simson L. Garfinkel

Analysis of HW5: Good Reports

Explains what tools were usedExplains what was found.

 Gives specific details without compromising privacy

HW5: Things to avoid

Spending more than a paragraph describing your tools

Giving a few paragraphs of vague generalities talking about what was found.

Listing filenames without any thought as to what might be in the files.

HW6: Comments? -

Schedule Issues

Option #1 - Class on July 5th: ****
Option #2 - Class on July 8th: ****
Option #3 - July 1 till 9pm : *****

Final Projects

You will need to have groups of two. Justification:

Two people can do a better project than one person.

 Group work ethic should prevent some people from leaving this to the last minute.

Biometrics and Privacy

Simson L. Garfinkel

Something that you are

Uses of Biometrics:

Why the Interest in Biometrics?

Identification

?

Search a sample against a database of templates.

Typical application: identifying fingerprints

Bertillion System of Anthropomorphic Measurement

- Alphonse Bertillion Appointed to Prefecture of Police in 1877 as Records Clerk
- Biometrics to give harsher sentences to repeat offenders
- Measurements:
 - Head size
 - Fingers
 - Distance between eyes
 - Scars
 - Etc...
- Key advance: Classification System
- Discredited in 1903: Will West was not William West
- http://www.cmsu.edu/cj/alphonse.htm

Fingerprints (ca. 1880-)

- Henry Faulds letter to Nature (1880)
 Fingerprints might be useful for crime
 - scene investigations

W. J. Herschel letter to Nature (1880)

 Had been using fingerprints in India for 20 years; suggested a universal registration system to establish identity and prevent impersonations

Fingerprints after Faulds...

- *Pudd'nhead Wilson*, Mark Twain (Century Magazine, 1893)
- Prints quickly become tool of police.
- Manual card systems:
 - 10 point classification
 - Scaling problems in the mid 1970s.
- ♦ AFIS introduced in the 1980s
 - Solves back murder cases
 - Cuts burglary rates in San Francisco, other cities.

VoiceKey (ca. 1989)

- Z80 Microprocessor
- PLC coding
- 40 stored templates
- 4-digit PINs

♦ False negative rate: 0-25%

- False positive rate: 0%*
- "Airplane"

Biometrics Today

Biometrics In Practice...

Inherently not democratic
 Always have a back door
 Discrimination function tradeoffs:

 Low false negatives => high false positives
 Low false positives => high false negatives

Policy Issues That Effect Biometrics:

Strong identification may not be necessary or appropriate in many circumstances

 Voters may be scared off if forced to give a fingerprint

Authorization can be granted to the individual or to the template.

It is frequently not necessary to identify an individual with a name.

Biometrics and Privacy

- Long association of biometrics with crime-fighting
- Biometrics collected for one purpose can be used for another

Accuracy Rates:

False Match Rate (FMR) Single False Match Rate vs. System False Match Rate If the FMR is 1/10,000 but you have 10,000 templates on file — odds of a match are very high False Nonmatch Rate (FNR) ◆ Failure-to-Enroll (FTE) rate Ability to Verify (ATV) rate: % of user population that can be verified ATV = (1-FTE)(1-FNMR)

Other Issues:

Stability of Characteristic ofver Lifetime Suitability for Logical and Physical Access

Difficulty of Usage

Biometrics in Detail

Finger-scan

- ♦ A live acquisition of a person's fingerprint.
 ♦ Image Acquisition → Image Processing → Template Creation → Template Matching
- Acquisition Devices:
 - Glass plate
 - Electronic
 - Ultrasound

Fingerprint SWAD

Facial Scan

- Templates can be based on previouslyrecorded images
- Technologies:
 - Eigenface Approach
 - Feature Analysis (Visionics)
 - Neural Network

Facial Scan: SWAD

Strengths: Database can be built from driver's license records, visas, etc. Can be applied covertly (surveillance photos). (Super Bowl 2001) Few people object to having their photo taken Weaknesses: No real scientific validation Attacks: Surgery Facial Hair Hats Turning away from the camera Defenses: Scanning stations with mandated poses

Iris Scan

Uses to date:

- Physical access control
- Computer authentication

Iris Scan: SWAD

-	
	Strengths:
	 300+ characteristics; 200 required for match
	Weaknesses:
	 Discomfort
	 Proprietary acquisition device
	 Algorithms may not work on all individuals
	 No large databases Attacks:
	 Attacks. Surgery (<i>Minority Report</i>)
	Defenses:

Voice Identification

4

Scripted vs. non-scripted

Voice: SWAD

Strengths:

- Most systems have audio hardware
- Works over the telephone
- Can be done covertly
- Lack of negative perception
- Weaknesses:
 - Background noise (airplanes)
 - No large database of voice samples
- Attacks:
 - Tape recordings
 - Identical twins / soundalikes
- Defenses:

Hand Scan

- Overall hand and finger width
- Distance between joints
- Bone structure
- Primarily for access control:
 - Machine rooms
 - Olympics
- Strengths:
 - No negative connotations non-intrusive
 - Reasonably robust systems
- Weaknesses:
 - Accuracy is limited; can only be used for 1-to-1 verification
 - Bulky scanner

Oddballs

Retina Scan

- Very popular in the 1980s military; not used much anymore.
- Facial Thermograms
- Vein identification
- Scent Detection
- Gait recognition

DNA Identification

Behavior Biometrics:

Handwriting (static & dynamic) Kovetroko dynamice

Keystroke dynamics

Classifying Biometrics

Template Size

4

Biometric	Approx Template Size
Voice	70k – 80k
Face	84 bytes – 2k
Signature	500 bytes – 1000 bytes
Fingerprint	256 bytes – 1.2k
Hand Geometry	9 bytes
Iris	256 bytes – 512 bytes
Retina	96 bytes

Passive vs. Active

- Latent fingerprints
- Face recognition
- DNA identification

- Fingerprint reader
- Voice recognition (?)
- Iris identification (?)

Knowing vs. Unknowing

Body Present vs. Body Absent

Performance-based Fingerprint biometrics DNA Identification ♦ Voice print Hand Geometry Facial Thermograms Iris Prints

Template: Copy or Summary

Copy	Summary
 Original fingerprint 	Iris Prints
Original DNA sample	Voice Prints
	DNA RFLPs

Racial Clustering? Inherited?

Racial Clustering? Inherited?

System Design and Civil Liberties

Identity Card

- Card has:
 - Biometric
 - Digital Signature?
 - Database Identifier?

- Central Database
 - has:
 - Biometric?
 - Biometric Template?

Biometric Encryption

Big problems:

- Biometrics are noisy
- Need for "error correction"
- Potential Problems:
 - Encryption with a 10-bit key?
 - Are some "corrected" values more likely than others?
 - What happens when the person changes --- you still need a back door.