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1 Shannon’s Theorem

1.1 Description

Theorem 1 Shannon’s Theorem (in words): given a channel with noise
there exists a non-zero capacity of data rate achievable with arbitrarily low
error.

C = B log2

P + N

N
, where

C = capacity,

B = bandwidth,

P = power,

N = noise

The most used model for noise is Additive White Gaussian Noise (AWGN).
Using this model, every value of y(t)is shifted randomly with a normal prob-
ability distribution with respect to the original x(t), as shown in Figure 1.
The parameter nis the variance of the normal distribution. As a result, the
signal y(t)will be on average the same as x(t).
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Figure 1: Using AWGN as a noise model, every point in x(t)will be shifted
up or down randomly, with certain probability. The peak of the normal
distribution lies exactly at x(t)

y(t) = x(t) + N (0, n) , where

n = variance,

N = The Normal distribution

Once the original signal y(t), which includes noise, has been received,
the next step is reconstructing x(t). It is possible that 2 or more different
signals match the received y(t), so the problem reduces to finding enough
separation between the possible values of x(t)such that no confusion may
occur.

Suppose the signal x(t)is sampled for an interval of time Tand the signal
is sampled at 2B samples/sec, giving us a vector 〈x1, x2, . . . , x2B T〉, and also
a noise vector 〈n1, n2, . . . , n2B T〉. Recall the formula for the total energy of
a signal (per unit resistance) x(t), so the total energy of the signal and the
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noise function are:

E =
∫ ∞

−∞
|x(t)|2 dt =

1
2B

2B T∑
k=1

xi
2

E = P T

1
2B

2B T∑
k=1

xi
2 = P T

1
2B

2B T∑
k=1

ni
2 = N T,

where P and N is the signal and noise powers respectively, B is the signal
Bandwidth and T is the sampling period.

The 〈x1, x2, . . . , x2B T〉 vector is 2B T-dimensional, and its length is
√

2BP T.
This is a possible signal for the sender, which will be jittered by the energy of
the noise inside a 2B T-dimensional ball of radius

√
2B TN. Now the question

has been reduced to how many “noise-sized” balls fit inside the “signal-sized”
ball? This is illustrated in Figure 2
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Figure 2: A possible signal x(t)may get jittered around due to noise by a
certain amount limited to the noise power

#bits = B T log2

P + N

N

C = B log2

P + N

N

= B log2

(
1 +

P

N

)
, where

P

N
= SNR

We define the SNR = signal to noise ratio (measured in decibels) as the
ratio of the power in a signal to the power contained in the noise present at
a particular point in the transmission. Typically, the ratio is measured at
the receiver.

SNRdB = 10 log10

signal power

noise power

The formula for computing the number of decibels of value x is X =
10log10x, where X is the value in decibels.
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1.2 Implications of Shannon’s Theorem

C = B log2

P + N

N

Shannon’s Theorem is universally applicable (not only to wireless).
If we desire to increase the capacity in a transmission, then one may

increase the Bandwidth and/or the transmission power. Two questions arise:

• Can B be increased arbitrarily?

No, because of:

– regulatory constraints

– semiconductor constraints (silicon)

– bandwidth noise increases with bandwidth

N = N0B, where

N0 = kT

N0 = Noise Power Density

k = Boltzmann constant

T = Temperature (in Kelvin)

Therefore,

C = B log2

(
1 +

P

N0B

)
• Can P be increased arbitrarily?

No, because of:

– it’s harmful

– cost

– regulatory reasons (you don’t want to bleed into different spec-
trums)

There is a parameter that is very convenient to use for determining digital
data rates and error rates. This parameter is called the ratio of signal energy
per bit to noise power density per Hertz.
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C/B vs. Eb/N0

Figure 3: C
B as a function of Eb

N0

Eb

N0
= bit energy to noise density ratio

Eb =
P

C
, where

Eb = energy per bit

N0 = noise density

Therefore

C = B log2

(
1 +

P

N0B

)
C = B log2

(
1 +

Eb

N0

C

B

)
C

B
= log2

(
1 +

Eb

N0

C

B

)
, where

C

B
= spectral efficiency, measured in

bits

Hz

For a graphical representation of equation

C

B
= log2

(
1 +

Eb

N0

C

B

)
, where

please take a look at Figure 3.
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Figure 4: Omnidirectional antenna
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antenna location

Figure 5: Directional antenna

2 Antennas

An antenna can be defined as an electrical conductor or system of conductors
used either for radiating electromagnetic energy of for collecting electromag-
netic energy. Usually the same antenna can be used for both transmission
and reception. An antenna will radiate power in all directions, but it typi-
cally does not perform equally well in all directions.
A common way of characterizing the performance of an antenna is the ra-
diation pattern.
Idealized radiation patterns:

• omnidirectional/isotropic (Figure 4)

• directional (Figure 5)

Antenna gain is a measure of the directionality of an antenna.
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transmit antenna receiving antenna

signal propagation

Figure 6: Ground wave propagation (below 2MHz)

transmit antenna receiving antenna

signal propagation

ionosphere

Figure 7: Sky wave propagation (2 to 30 MHz)

G =
4πAe

λ2
, where

G = ratio of the antenna’s power to that of an equivalent isotropic antenna

λ = wave length

Ae = Effective Area of Antenna

Propagation types:

• ground-wave (below 2MHz)(Figure 6)

• sky-wave (2 to 30MHz)(Figure 7)

• line of sight (LOS; above 30MHz)(Figure 8)

The optical line of sight (with no obstacles) is:
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transmit antenna receiving antenna

signal propagation

Figure 8: LOS propagation (above 30MHz)

d = 3.57
√
h, where

d = distance between an antenna and the horizon (in Kms)

h = height of the antenna (in meters)

The radio line of sight to the horizon is:

d = 3.57
√
hk, where

k =
4
3
, an adjustment factor for the refraction

The maximum distance between two antennas for LOS propagation is:

d = 3.57
√
k(

√
h1 +

√
h2), where

h1 = height of the first antenna measured in meters

h2 = height of the second antenna measured in meters

The signal disperses with distance. A receiving antenna will receive less
signal power the farther it is from the transmitting antenna. This form of
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attenuation is called free space loss, which is defined as:

Pt

Pr
=

(4πd)2

λ2

=
(4πd)2

λ2GrGt
, where

Pt = signal power of the transmitting antenna

Pr = signal power of the receiving antenna

Gt = gain of the transmitting antenna

Gr = gain of the receiving antenna
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