
ABSTRACT
In this paper, we describe The Designerʼs Augmented Real-
ity Toolkit (DART).  DART is built on top of Macromedia 
Director, a widely used multimedia development environ-
ment. We summarize the most significant problems faced 
by designers working with AR in the real world, and discuss 
how DART addresses them. Most of DART is implemented 
in an interpreted scripting language, and can be modified by 
designers to suit their needs. Our work focuses on supporting 
early design activities, especially a rapid transition from story-
boards to working experience, so that the experiential part of 
a design can be tested early and often. DART allows designers 
to specify complex relationships between the physical and 
virtual worlds, and supports 3D animatic actors (informal, 
sketch-based content) in addition to more polished content. 
Designers can capture and replay synchronized video and sen-
sor data, allowing them to work off-site and to test specific 
parts of their experience more effectively.
Categories and Subject Descriptors: D.2.2 [Design 
Tools and Techniques]: Evolutionary prototyping, User 
interfaces; H.5.2 [User Interfaces]: Graphical User Interfaces 
(GUI),  Prototyping; I.3.7 [Three-Dimensional Graphics 
and Realism]: Virtual reality; J.5 [Arts and Humanities]: 
Fine arts
Keywords: Augmented Reality, Mixed Reality, Design 
Environments, Capture/Replay, Animatics, Storyboards.
INTRODUCTION
Over the past few decades, augmented reality (AR) researchers 
(including ourselves) have explored a wide variety of task-
focused domains, ranging from equipment maintenance and 
repair to medicine to battlefield awareness. Over the past four 
years, we have been collaborating with new-media designers1, 
shifting our thinking from “AR as technology” to “AR as 
medium,” and turning our attention toward more experiential 

AR domains such as in-situ educational historic dramas, re-
flections on biased point of view in “3 Angry Men” [9], and 
entertainment in “Aliceʼs Adventures” [12]. 
In this paper, we use the term AR to refer to a broad class 
of user interface techniques that seek to augment a personʼs 
perception of the world around them with computer generated 
information.  (In our work, we tend to use see-through head-
worn displays and headphones to precisely align graphics and 
sound with the userʼs view of the world around them, but the 
issues and solutions discussed in this paper are applicable to 
a broad class of systems that combine sensing with in-situ 
presentation of computer generated content.)  There are sig-
nificant technical challenges to creating working AR systems, 
but these challenges can be overcome in specific situations 
through careful engineering and design. When working 
on a well-defined AR task, such as a printer maintenance 
system [4], it is feasible for a team of technology experts to 
work closely with design and HCI experts to understand the 
particular problem and engineer a solution. 
Unfortunately, tight collaboration between designers and 
technologists is not effective for less well-specified design 
projects, where AR is the medium being used by a designer to 
explore a problem. Designers are most effective when working 
directly with a medium, and working through an intermediary 
seriously hinders (or even destroys) the creative process. Con-
sider the difference between a painter directing an assistant 
where to apply oil to a canvas, rather than holding the brush. 
Or a 3D animator describing to a programmer how a character 
should move, rather than manipulating the model directly. 
Skilled designers are also not novices in need of hand-holding. 
Design tools (such as the 3D animation program mentioned 
above) do not have to be easy to use to be useful;  rather, 
they need to be predictable, understandable, well documented 
and powerful, and to support a work style that is appropriate 
for the medium. Our target users are these “typical” skilled 
designers. 
DART (The Designer s̓ AR Toolkit) is the result of our collabo-
rations with designers over the past four years, and is aimed 
at enabling them to work directly and effectively with AR. 
The design of DART addresses a collection of problems that, 
together, make AR a difficult medium to work with. DART 
is implemented on top of Macromedia Director, the defacto 
standard for multimedia content creation. Director was chosen 
because it is a full-featured, widely used tool that is relatively 
open and extensible, has a robust debugging and design envi-
ronment, and is powerful enough for final content delivery.

DART: A Toolkit for Rapid Design Exploration 
of Augmented Reality Experiences

Blair MacIntyre1, Maribeth Gandy2, Steven Dow1 and Jay David Bolter3

1College of Computing, 2Interactive Media Technology Center 
3School of Literature, Communication and Culture

GVU Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
{blair, steven}@cc.gatech.edu, maribeth.gandy@imtc.gatech.edu, jay.bolter@lcc.gatech.edu

1 For simplicity, we will use the term designer to refer to those people whose 
primary interest is in creating experiences or artifacts of some kind; this 
could include graphics designers, artists, architects, game designers, me-
dia theorists, museum exhibit designers and so on.

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.
UIST ʼ04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

197Volume 6, Issue 2



There are three main contributions of this paper.  First, we 
identify a collection of problems that make AR a particularly 
difficult medium to work with, and suggest an approach to AR 
design (manifested in DART) that addresses many of these 
problems. This design process emphasizes rapid exploration 
and testing of AR experiences using informal content. Second, 
we argue for the importance of integrating research tools with 
existing commercial authoring software (Macromedia Direc-
tor, in our case), and report on our experiences (especially the 
impact of the drag-and-drop timeline-based authoring model 
used by many such tools).  Finally, we present a collection 
of novel features of DART that support our approach to AR 
design. These features include integrated support for physi-
cal and virtual content in the design environment, support for 
sketch-based animatic content, and capture/playback facilities 
that break the need for working in real-time in the target site.
AR IN THE WILD: DEATH BY MANY SMALL CUTS
In  this section, we highlight the problems that have made AR 
a difficult medium to work with, and briefly summarize how 
DART addresses them. Many of these problems are familiar to 
AR researchers, and some have been discussed or investigated 
elsewhere. However, no other AR environment has attempted 
to provide a comprehensive solution to these problems.
We group these challenges into three broad categories: design 
and programming, enabling technology, and the implications 
of working in the physical world.
Design and Programming
There are no simple, flexible programming environments for 
AR. Designers are accustomed to tools such as Macromedia 
Director and Visual Basic, which mix visual layout, direct 
manipulation and scripting. In these environments, simple 
experiences can be created with little or no programming, and 
complex systems can be created by delving into the script-
ing language. Visual layout is used when appropriate (e.g., 
positioning 2D elements, organizing content on a timeline, 
etc.), but not for everything. Since there are many things that 
cannot be specified graphically (e.g., complex control flow 
and interactions among multiple elements over time), most 
designers learn to program (textually) out of necessity when 
working with these tools. This is not a bad thing (there are 
many things that are most concisely expressed with program 
code), and allows us to assume that our designers can and will 
venture “into the code.” 
DART is integrated into Macromedia Director, and designed to 
complement the common development style used by Director 
developers. We assume designers will continue to use their 
existing tools (e.g., Photoshop, Maya) for content creation. 
Programming must be done at too low a level. Most AR tools 
are designed by computer scientists for computer scientists 
(e.g., Studierstube [15], the ARToolkit [2]). They require 
the use of programming languages such as C or C++, and 
combine general-purpose libraries such as OpenInventor with 
(occasionally poorly documented) custom libraries. These 
languages and libraries are a poor match for the work practices 
and talents of typical designers, who are skilled with visually-
oriented design tools (e.g., Flash, Photoshop or Maya). While 
these tools often have integrated scripting, most designers 
do not have substantial (if any) programming experience in 
languages like C++ or Java.

The bulk of DARTʼs functionality comes from a col-
lection of behaviors (structured scripts) written in 
Lingo, Directorʼs interpreted scripting language. 
These behaviors can be easily integrated with other  
Director content,  and can be modified at will, allowing DART 
to be extended by designers as needed.
3D content is expensive and time-consuming to create. AR 
content must be integrated with the physical world, and is 
thus inherently 3D in nature (even if some of the individual 
elements might be 2D graphics or audio). As Landay and his 
colleagues have shown (in a variety of domains), the key to 
supporting creativity and design exploration is to encourage a 
gradual transition from informal (i.e., sketched) to formal con-
tent as the design is explored and refined (e.g., [8]).  We view 
3D content creation as one step in the shift from initial design 
ideas and storyboards to working experiences, and (following 
Landay) believe it is important to support sketched content 
during early design.  Skilled designers can create aesthetically 
pleasing and emotionally evocative content using 2D sketches, 
(e.g., Figure 8(b)), far beyond what they could do in a similar 
amount of time with 3D modeling tools (including research 
tools, such as Teddy [7], that have been designed to “simplify” 
the creation of 3D content).   
DART supports rapid creation of informal content from 2D 
storyboards via 3D animatic actors. Animatics are sequences 
of 2D storyboards synchronized with audio, often used dur-
ing film previsualization. Animatic actors are sequences of 
sketches used as placeholders for individual content elements, 
supporting rapid assembly of, and experimentation with, an 
experience prototype prior to final content creation.  
Enabling Technology
Dealing with multiple, unrelated tracking technologies is 
extremely difficult. Spatial trackers are one of the fundamen-
tal technologies needed for AR experiences. Most available 
technologies, from computer vision-based marker tracking to 
devices with physical sensors, are difficult to set up and use.  
Many libraries have been created to simplify the use of these 
technologies (e.g., the ARToolkit [2] and VRPN2).  However, 
these libraries are themselves hard to use, and are difficult to 
integrate and use together. For example, creating an experi-
ence that integrates vision-based sensing with other tracking 
technologies, or substituting one kind of sensing for another 
as development progresses, is currently a daunting task, even 
for skilled technologists.
DART provides uniform access to these sensors, letting them 
be mixed and matched as desired. The code that integrates the 
different sensing technology is centralized in the Lingo code, 
allowing it to be modified as needed for specific situations 
designers may encounter.
Sensing and reasoning technologies are expensive (in time 
and money) to create and deploy. Most interaction in AR is 
implicit and dependent on the specific applications (e.g., is the 
user looking at the statue?  Did the user open the lid on the 
machine?).  Thus, in addition to commercial tracking systems, 
AR systems often require custom sensing and reasoning to be 
implemented. As with 3D content creation, experience testing 
and design is seriously hindered by the difficulty and time 
required to design, create and deploy these technologies.

2 http://www.cs.unc.edu/Research/vrpn/

198

 

 

 



DART is designed from the lowest level to support Wizard-
of-Oz simulation of sensors and experience logic. (We do not 
address Wizard-of-Oz simulation in this paper, as we have not 
yet explored this DART functionality in depth).
No separation of concerns between system components. 
Since most AR toolkits force the programmer to work at a 
low level, the implementation of an AR experience typically 
ends up mixing high- and low-level concerns (e.g., experience 
scripting and tracking issues), and thus being intimately tied 
to the technologies used during design. This lack of abstrac-
tion makes it difficult to switch to new technologies as they 
become available.
DART is designed to encourage modular experience develop-
ment by having each actor (content element) defined as an 
independent entity that is indirectly linked to other elements 
and to sensing and tracking hardware. 
Working in the Real World
Managing relationships between the physical and virtual 
worlds is difficult. In AR, objects in the physical world make 
up most of the content of the eventual experience.  However, 
current AR systems provide little or no explicit support for 
managing knowledge about the physical world, and the rela-
tionships between virtual and real objects. 
DART supports a mixture of physical and virtual content. 
Physical content can range from elaborate models of physical 
structures to 3D points in the world. Virtual objects can be 
positioned relative to physical ones, physical objects can ob-
scure virtual ones, and both can interact using the underlying 
physics engine.
Having to actually work (develop) in the physical world can 
be prohibitively difficult. An often-overlooked impediment to 
developing AR experiences is the need to be physically pres-
ent during the development cycle in the environment being 
augmented, and to get up and move around the physical space 
during testing. This is especially painful for outdoor experi-
ences, where factors such as weather, a lack of ergonomic 
work areas, and the lack of power and networking hamper 
effective development.
DART supports the synchronized capture and playback of 
video and sensor information, allowing designers to work any-
where they find convenient, testing their experience against 
representative snippets of captured data.
Working in real-time is difficult. When many things are hap-
pening in a split second, and when interactions are based on 
possibly noisy sensor data, debugging and understanding an 
experience can be difficult or impossible. 
All time-based scripts in DART are based on the DARTClock, 
an abstract wrapper around the Director clock. This wrapper 
allows the designer to control time by pausing the experience 
time, changing its speed, or moving the time backwards or 
forwards to a specified point. While live video and sensor data 
cannot be paused or stepped through, the rest of the experience 
can.  When recorded data is being used, everything (video, 
tracking and actor scripts) can be paused and stepped through 
at whatever pace the designer needs.
TOWARDS A DESIGN PROCESS FOR AR EXPERIENCES
The goal of our research is to create tools that allow a wide 
range of designers to explore the medium of AR. Integrating 

AR technology (e.g., video cameras, computer vision and a 
wide variety of physical sensors) into a sufficiently powerful 
authoring environment such as Director is a first step toward 
this goal, but is not sufficient. As illustrated in the previous 
section, there are many other reasons that creating 3D experi-
ences which blend physical and virtual worlds is difficult.
Schell and Shochet have shown (in the context of mixed-real-
ity theme park rides) that design ideas for experiences that 
integrate physical and virtual worlds must be tested in the 
target site as soon and as often as possible [14]. By address-
ing many of the problems faced when working with AR, our 
design for DART takes a significant step toward supporting 
rapid in-situ design and testing of AR experiences, which 
we believe will be the foundation of an effective AR design 
process.  In particular, DART enables (and even encourages) 
in-situ experience testing by combining informal, animatic 
content with synchronized capture/playback of video and sen-
sor information.  
Animatic content allows design storyboards to be moved 
into the 3D world quickly, and to be quickly changed as the 
design progresses.  Synchronized capture/playback supports 
experimentation, refinement and testing of design ideas in the 
context of the target environment, without needing to work in 
the target site.  Capture/playback actually encourages in-situ 
testing because it is typically easier to work with captured data 
(that delivers synchronized, realistic sensor and video infor-
mation to the evolving prototype) than it is to work without 
such input.  We expand on these ideas later in the paper.
MOTIVATION: A LOT OF PAIN FOR A LITTLE GAIN
The history of media has shown that any medium (not just 
AR) will not reach its potential until it is put into the hands 
of designers who, through their work, eventually define the 
popular forms of the medium. Gutenberg invented the printing 
press, but not “the novel”.  Edison invented motion pictures, 
but not “the film”. Berners-Lee invented HTTP and HTML, 
but not “the web” as we now know it.  And so it will be for AR. 
Sutherland invented AR technology, but we do not yet know 
what forms the medium will take on over time.
Our desire to push forward the development of AR as a me-
dium, by putting it in the hands of designers, did not arise in 
a vacuum, but from our experiences over the past dozen years 
of AR research, and more recently from four years teaching 
a multidisciplinary course on AR Experience Design. While 
the lack of decent tools during our early research in AR was 
annoying, it was a severe problem for our design colleagues 
and students.  We noticed that, while these designers usu-
ally produced polished demonstrations of their ideas in other 
media, their work with AR was often far less technically and 
conceptually refined, even when we integrated the necessary 
AR technology (e.g., tracking and live video) into Director 
and had experienced AR technologists work with them. Closer 
examination revealed that the difficulty of working with the 
technology, combined with the absence of support for tradi-
tional design activities (such as rapid prototyping and design 
exploration), was seriously impeding their work with AR.
Our experience is not unique, and perhaps (when you consider 
the state of the technology) not particularly surprising. For 
example, while there have been a growing number of confer-
ences devoted to creative uses of new technologies such as 

199Volume 6, Issue 2



AR and mixed reality (MR) (such as CAST, TIDSE, IWEC 
and ACE) many of the experiential projects reported at these 
conferences never make it past the theoretical or early design 
stages into working prototypes. In both our work, and in the 
wider research community, instances of successful design 
projects using media like AR have usually been slow, pains-
taking endeavors carried out by close-knit teams or technically 
sophisticated individual designers (e.g., [5]).
A Motivating Example: Alice, Three and Four Angry Men
While these occasional successes are encouraging, they 
rarely provide a firm foundation for future work because the 
implementations usually mix low- and high-level details and 
become intimately tied to the problem solved. For example, the 
designer who implemented our Alice system [12] in Director 
helped us use his code to do a proof of concept for Three Angry 
Men (TAM), a dramatic AR experiment in point-of-view [9].  
TAM is a re-creation of the movie “12 Angry Men,” where the 
participant can move around a table, occupy the positions (and 
minds) of the jurors discussing a court case, and see the drama 
unfold as colored by each jurorʼs biases. Even with his help, 
completing the initial implementation of TAM (technically, 
a very similar experience to Alice: a group of video-based 
actors seated around a table with the participant) took many 
months, much of it devoted to content creation. Unfortunately, 
when the first version of TAM finally worked, we discovered a 
variety of problems with the design; fixing the design required 
us to recreate all of the content.
The update of TAM, now called Four Angry Men (FAM), was 
created in parallel with DART over the past year, and was our 
first major test of DART.  We completely reimplemented TAM 
without using any code from the original prototype (except 
where TAM code had made it into DART itself). The resulting 
prototype ended up being simple and concise, and required 
only a small amount of custom code to deal with the specific 
interaction techniques of standing and sitting to pause and 
resume the experience. We used animatic actors to develop 
and test the experience before the content was complete. The 
screenshot of the FAM prototype in Figure 1 shows the entire 

score for the experience along the bottom. While FAM does not 
represent a formal evaluation of DART, nor does it exercise all 
of DARTʼs functionality, it does represent one example show-
ing that complex AR experiences can be implemented with 
our system. The final content for FAM is almost complete, and 
represents over a year of work in itself.
HOW WE LEARNED TO STOPPED WORRYING AND 
LOVE DIRECTOR
When we began conceiving of this project, we made a deci-
sion to integrate whatever we did into existing tools, rather 
than create our own, so that designers would not have to learn 
a new tool or use crippled “research grade” tools.  This last 
point should not be minimized:  research systems are often 
weak in the areas that are farthest “from the research,” and it is 
in those areas that commercial systems typically excel. 
We chose Macromedia Director as the basis for DART. Direc-
tor is a flexible, general-purpose authoring tool for Shockwave 
content (the 3D component of which is Shockwave3D) and 
is widely used for CDRom, desktop and kiosk multimedia 
development.  Director has a rich feature set, an interpreted 
programming environment called Lingo, and a freely available 
plug-in SDK (allowing us to extend it as necessary). Other 
popular platforms that we considered (but eventually rejected) 
include Flash (it does not have native 3D support, has weak 
support for non-vector-based content, has a weaker scripting 
language than Director, and does not have a freely available 
plugin API) and MAX/MSP (it uses a graphical data-flow 
model that makes it difficult to develop narrative content and 
requires designers to develop new functionality in C/C++).  
Most interaction designers, including the students and re-
searchers with whom we work, are skilled with Director. There 
is a vast amount of existing support for Director that we can 
leverage: hundreds of books, Xtras (plug-ins) for everything 
from low-level OS access to database integration, official and 
unofficial web sites, mailing lists and discussion groups with 
an overwhelming amount of sample code, and so on.
Furthermore, while it is possible to create visually interest-
ing content without programming in Director, virtually any 
interactive Shockwave content requires at least simple Lingo 
programming. Therefore, experienced Director users are often 
surprisingly good programmers. Macromedia designed the 
bundled Lingo scripts with this in mind; they are all well docu-
mented and designed to be instructive of how to do “typical” 
things with Lingo. It is common for designers to appropriate 
scripts and modify them to suit the task at hand. 
We adopt the same approach with DART: our entire collection 
of Lingo scripts is designed to serve as an example of how to 
create an AR system, as much as it is a complete AR system 
itself.  It is our intention (and expectation) that designers will 
pick and choose what parts of DART they use, and modify 
those parts to suit their needs. Our behaviors are designed to 
be used alongside other Lingo scripts that a designer may have 
already developed, and to be modified, copied, rewritten, and 
extended by designers as needed. 
As with other non-AR researchers who have extended Direc-
tor to support their collaborations with artists and designers, 
we do not assert that it is the ideal environment for our work.  
For example, Shockwave3D does not support stereo displays, 
and requires us to use a very simp le 3D camera model. We 

Figure 1: An example work session in DART (while debugging 
the Four Angry Men (FAM) experience).  The entire score for 
FAM is visible, including the nine scenes and most of the actors 
(each scene is a column in the score). The stage (containing the 
running experience) is visible, as is part of the content for one 
video actor, and some of Director’s editing windows.

200

 

 

 



can circumvent the former problem using two machines and 
an external video multiplexer, but the simple camera model 
limits the accuracy of 3D registration in some cases. The 
environment is strictly single-threaded, which can impact 
performance. Finally, the timeline-based structuring metaphor 
is not a natural metaphor for interactive content, as we discuss 
in the next section. However, it is a very good system in many 
ways, especially its support for a mix of visual and textual 
programming, and it is suffi ciently powerful to deploy work-
ing AR systems (as our prototypes have demonstrated). 
DART IMPLEMENTATION 
The challenge of designing DART was to create a system 
that matches the authoring style commonly used for complex 
Shockwave content by experienced Director developers, 
yet is appropriate for AR and meets our research goals.  We 
informally interviewed experienced developers, looked at 
examples of complex content, and spent many months moni-
toring the Director-games and Director-3D mailing lists to 
become as familiar as we could with common Director work 
practice.  In the end, the DART model is similar enough to the 
common Director authoring styles that, if you are experienced 
with Director, you are already familiar with the programming 
model used by DART.
In this section, we will give a (necessarily terse) overview of 
Director and how DART is integrated into it. In the next sec-
tion, we will focus on those features that are either novel, or 
provide a solution to one of the problems mentioned earlier. 
Director Development Overview
Director includes an object-oriented language called Lingo 
and is based on a stage production metaphor. The environ-
ment includes a stage (where content is placed), multiple 
casts (where all content elements are stored, including images, 
video, 3D content, Lingo scripts, text data and so forth), a 
score (the timeline of the experience) and sprites (cast mem-
bers that have been placed on the stage or in the score). Lingo 
scripts (typically called behaviors) are interpreted and can be 
attached to cast members, the stage, sprites or frames in the 
score; Director automatically generates graphical interfaces 
for editing behavior properties based on structured comments 
in the script.

The main structuring mechanism in Director is the score.  
When an application runs, the “play-head” moves across 
the score from left to right. Since interactive applications do 
not typically follow a fi xed linear script, Director developers 
mainly use the score as a method of visually creating single-
frame logical sections through which the program execution 
will fl ow, and loop on those frames (see Figures 1 and 4). 
A designer places sprites on the score and can add behaviors 
to them by dragging behavior scripts on to the sprites. Scripts 
can also be placed on individual frames, or on an entire ap-
plication. In a 2D application, a sprite will be a graphical 
component that will appear on the stage. Behaviors placed on 
a sprite will typically be used to modify the spriteʼs appear-
ance or its reaction to inputs such as mouse buttons. 
The Director environment follows a playback paradigm 
where an application can be played, stopped, and rewound. 
When the play-head enters a frame containing a sprite that 
component becomes active, causing the beginSprite function 
in any behaviors attached to the sprite to be called. When the 
play-head exits the frame the endSprite function is called in 
all behaviors. Similarly, enterFrame and exitFrame are called 
on each behavior when a frame of the score is entered and 
exited, respectively. A common programming technique is to 
place a script on a frame that causes the play-head to loop 
on that frame, and then use the enterFrame and/or exitFrame 
functions as the “main loop” of the program. Events are then 
used to cause the play-head to jump to the different frames in 
the score that represent logical sections of the application.
The stage represents the output of the application, and devel-
opers can directly manipulate their application components in 
this area. Typically, developers use a combination of graphical 
programming and scripts to create and manipulate elements on 
the stage; anything that can be done graphically can be done 
from scripts (but not vice-versa). Since all of the behaviors 
are written in Lingo and editable by the user, it is common 
for developers to modify the standard behaviors while also 
writing their own from scratch. This approach allows for rapid 
application development via direct manipulation of sprites, 
while also allowing for advanced programming via scripting. 
The use of the score produces a visual representation of the 
application that can be easily changed while testing by simply 

��������������

�������
�����

�������
�������

��������
�����

��������
�������

������� ��������

�����������

����������� ���������� ����������� ����������

������
����������
�����

������
������
�����

��������
����������

������

��������������

�������� ��������� �������� ������
��������

���� ������� ����

�����������

�������� ��������� ��������� ���������

��������� ������
��������
������

���������� ��������
���

������������

�������
����

�����
�������

�������
�������

������
�������

���������� ������

Figure 2: The different categories of DART behaviors. Each of the groupings is stored in a separate Director cast,  and represents a separate 
part of DART.  The DART-Framework provides the lowest level layer of abstraction, wrapping up the functionality in the DART Xtra and pro-
viding other basic runtime services.  The empty box icons are the text sprites used as proxy objects (containers) for the DART behaviors.

201Volume 6, Issue 2



moving elements on the score and dragging behavior scripts 
on and off of sprites. Sprites and scripts can even be modifi ed 
during run-time, which aids in debugging and prototyping.
As with any Director application, an experience created using 
DART will consist of a series of sprites on the score populated 
with behavior scripts that defi ne the properties and interactions 
of the sprites. The initial set of DART behaviors is shown in 
Figure 2, and their relationship to each other, Director and the 
DART Xtra is shown in Figure 3. An example of the score for 
a DART application is show in Figure 4 (a screenshot of that 
application is shown in Figure 5).
Container Sprites: Integrating 3D content with the Score
In DART, the stage is covered by a single Shockwave3D 
sprite representing the 3D world.  A signifi cant problem that 
we needed to engineer around is that 3D content is not well 
integrated into the Director model (Shockwave3D is actually 
an Xtra).  A 3D world is represented by a single Shockwave3D 
cast member, and corresponds to a single sprite on the score;  
the content elements of the 3D world are not individually rep-
resented on the score.  The content of Shockwave3D sprites 
can only be accessed via Lingo scripts.
We get around this problem by creating sprites of other 
media types (currently, we use text items), and hide these 
text elements under the Shockwave3D world (this happens 
automatically, as Shockwave3D sprites usually sit above other 
Director sprites for performance reasons). By attaching DART 
behaviors to these container sprites, they take on the desired 
AR-specifi c functionality. We leverage the beginSprite/end-
Sprite/enterFrame/exitFrame methods (see the previous 
section) to make these container sprites behave appropriately. 
For example, sprites representing 3D content initialize them-
selves and add their content to the 3D world in the beginSprite 
method, and update the state of the 3D objects in the enter-
Frame method. DART has behaviors to copy 3D content from 
other Shockwave3D cast members, create new content using 
Lingo commands, and implement DART-specifi c objects such 
as video-based actors and animatic actors. 
By using container sprites, DART allows the developer to 
leverage some of the benefi ts of Directorʼs score in the 3D 
domain. The designer can create sprites and drag them in and 
out of specifi c frames (and thus in and out of the experience). 
Extra content can be created and stored in frames that are never 
entered during the experience fl ow. Quick “what-if” tests can 
be performed by copy-and-pasting a collection of sprites (and 
thus all of their behaviors) to a new location, making a few 
changes to the behavior properties, and then trying out the ex-
perience in that frame.  The DART behaviors also make heavy 
use of Directorʼs automatically-generated property pages to 

allow the designer to set behavior parameters, such as the local 
transformation of a graphical object, an objectʼs parent in the 
scene graph, and the linkage of an object to incoming tracker 
data. Behaviors can be added to a sprite to tell the object when 
to create or respond to events. Sprites are also used to hold 
behaviors for confi guring trackers and cameras, and to control 
video and data capture and playback.
Container sprites can be assigned any names the designer 
chooses, although we provide a few predefi ned containers in 
the DART casts for simplicity.  In Figure 4, the Cameras and 
Actors sprites are “container” sprites.
The DART Xtra 
The foundation of DART is the DART Xtra, a Director 
plugin written in C and C++, that provides an interface to the 
technologies needed to work with AR.  These include real-
time live video capture (including support for DirectShow 
and custom capture libraries from Point Grey and Videre 
Design), the ability to feed a live video stream into the texture 
memory of a Shockwave3D scene (to support video-mixed 
AR, where the video stream is displayed in the background of 
a 3D scene), support for visible marker tracking on live video 
streams (currently using the AR Toolkit) and an interface to a 
wide collection of other tracking and sensing systems (to track 
the userʼs head and other objects, using VRPN). From VRPN, 
the DART Xtra also gets a basic distributed shared memory 
system that allows integers, fl oating point numbers and strings 
to be replicated reliably across any number of processes.
The DART Xtra is not typically accessed directly by the 
developer. Instead, the DART-Framework behaviors provide  
structured access to the DART Xtra functionality. The DART 
Framework consists of behaviors that give the designer 

3D Camera
VRPN

Live Video
* Marker Tracking
* MarkerCue = marker_here
* MarkerCue = marker_gone

ObjectActor = (Virtual) Flowerpot Model
TimeAction = 0, Start Actor
* TimeAction = 0, Hide Actor
* CueAction = marker_here, Show Actor
* CueAction = marker_gone, Hide Actor

ObjectActor = (Physical) Cylinder
TimeAction = 0, Start Actor
* TimeAction = 0, Hide Actor
* CueAction = marker_here, Show Actor
* CueAction = marker_gone, Hide Actor

Figure 4: The score for a basic DART example. A screenshot 
of the running experience is shown in Figure 5. Loop is a script 
that tells Director to repeat this frame forever. 3D World is a 
Shockwave3D sprite that covers the stage. Cameras and Actors 
are text sprites that are hidden under the 3D World, and serve as 
containers for DART behaviors.  The behaviors attached to each 
sprite are listed in the inset boxes, with some key parameters. 
The italicized behaviors with an asterisk at the start of the line 
would be included when using marker tracking;  if global track-
ing (via a physical head- or camera-tracker) is used, they are 
not needed. 

DART Foundation

Director DART
Xtra

Shockwave
3D Xtra

Havok
 Xtra

Actors

Events Physics

DataStore

Figure 3: The relationship between the major pieces of DART.  
Each piece can be used independently from the pieces in the 
same or higher layers. 

202

 

 

 



control over the 3D camera in the Shockwave3D world 
(3DCamera), the camera parameters for live video capture 
(LiveVideo), whether to do marker tracking on the video 
stream (MarkerTracking), and the VRPN tracking and sensing 
system (VRPN). The 3DCamera behavior allows the designer 
to use its property pages to set its linkage to the scenegraph, 
such as connecting it to a tracking device or not . Examples of 
property pages for these sprites are shown in Figure 6.
The DARTCore movie script (a “movie script” is a global script) 
handles application-wide services such as the subscription to 
and distribution of incoming tracker data and events, and the 
global abstract clock (DARTClock) mentioned earlier. All 
DART behaviors use the DARTClock rather than the Director 
clock, so the designer can exercise complete control over the 
“time” used by the DART behaviors. 
KEY FEATURES OF DART

At one level, DART represents a design and engineering effort 
that integrates a carefully chosen set of AR authoring concepts 
into the Director authoring model.  DART uses the score for 
content organization in a way that is common among Direc-
tor developers, and most of the system is implemented in the 
interpreted language, allowing it to be edited as necessary. 
DART combines the Director sprite and event model with 
an event-based actor model common in VR systems.  DART 
has a set of events that are similar to any complex VR or AR 
system (e.g., [3] or [15]), as well as additional events geared 
towards the set of actors currently supported.  Multiple levels 
of abstraction are provided to the low-level technology (all of 
which can be used by the designer): a direct interface to the 
Xtra, a more structured global interface in DARTCore, and a 
high-level interface through the actors.
In addition to careful design and engineering, however, there 
are a number of interesting and novel elements to the design of 
DART which we discuss in the remainder of this section.  
Actors for AR: Physical/Virtual Interplay and Animatics
DART currently supports 3D models, audio, video-based con-
tent, and animatics. The DART-Actors behaviors are used to 
define these content objects that make up an AR application. 
Common properties, such as local transformations, texture 

and color, placement in the scene graph, and linkage to track-
ers can be specified via property pages. The specific set of 
actors included with DART were created based on our needs; 
to create a new actor, one of the existing actor scripts can be 
copied and modified as needed (e.g. one of the students in our 
AR Design class developed a spatialized audio actor based 
on the ObjectActor, the AudioActor and a spatialized audio 
Xtra). The new actor must support a basic set of functions, 
such as “StartActor” and “MoveActor,” and any of the actions 
the developer needs.
The ObjectActor is used to add a 3D object to the world, either 
a primitive object (such as a cube or cylinder), or an imported 
Shockwave3D model.  A novel feature of the ObjectActor is 
that the objects can represent either “virtual” or “physical” 
content. A virtual object is rendered normally and appears 
in the scene. A physical object, on the other hand, is used 
to model known objects in the physical world. The physical 
objects are rendered into the z-buffer (but not the color buffer) 
before rendering the virtual objects, allowing physical objects 
in the world to appear to occlude virtual objects, as shown in 
Figure 5. Real and virtual objects can interact using a physics 
simulation that includes collision detection, inertia, gravity, 
and constraints. The DART-Physics behaviors are used to 
specify the physics properties of actors. The physics simula-
tion is handled by an Xtra containing a basic version of the 
Havok3 Physics Engine (included with Director). 
The VideoActor texture-maps video onto a polygon in the 3D 
world, and plays a synchronized audio track if one is pres-
ent. We leverage Directorʼs highly efficient data management 
facilities and store the video as individual 32-bit RGBA image 
cast members in a Director cast, with the audio track stored 
in an audio cast member in the same cast. While this takes a 
significant amount of space (e.g., the video actor content for 
FAM is over 5 gigabytes in size), it allows the frames to be 
played back rapidly with alpha information (for transparent 
backgrounds) intact.  Frames of a video actor can be seen in 
the cast in Figure 1.
The SketchActor implements animatic characters, a key 
element of our support for rapid design exploration. Techni-
cally, SketchActors are similar to VideoActors, but rather than 

Figure 6: Examples of property pages created by Director for the 
DART behaviors. LiveVideo allows the parameters of a video 
camera to be specified (the driver, size, speed, camera cali-
bration data filename). VRPN allows the VRPN subsystem for 
tracker access, as well as servers within the DART Xtra, to be 
enabled or disabled. 3DCamera controls the parameters of the 
3D virtual camera, including attaching it to trackers or actors.

Figure 5: A screenshot of a running DART program. The “pro-
gram” for this example is shown in Figure 4. There are two 
objects, the virtual flowerpot, and a “physical” cylinder that is 
aligned with the cup (hard-coded relative to the fiducial in this 
example) and used to cause the cup to interact correctly with 
the flowerpot.

3 http://www.havok.com/

203Volume 6, Issue 2



displaying fixed frame-rate video, a SketchActor flips through 
a sequence of sketched images, with the exact timing informa-
tion specified by the designer. A cast for a SketchActor contains 
the sketches (a set of image cast members), a text cast member 
with the timing information, and an optional audio track. A 
snapshot of a scene containing three early animatic mock-ups 
of the jurors in Four Angry Men is shown in Figure 7(a).  The 
final content, using VideoActors, is shown in Figure 7(b).
Synchronized Capture and Playback
The second key feature of DART is support for synchronized 
capture and playback of video, tracking and other sensor data. 
We have found, in our own work and in our discussions with 
others, that the inconvenience of working with real devices 
(trackers, head-worn displays, cameras, etc.) in a real physical 
location (an historic site, a lab with equipment being augmented, 
outside in a city, etc.) is a significant impediment to working 
with AR. Having to be in the physical space, with the physical 
devices set up, to test design ideas and debug prototypes, is 
often impractical. Therefore, AR designers often develop 
“blind” and avoid testing until the last minute.  Wizard-of-
Oz simulation of sensors can help with this problem [6], but 
manually simulating one or more 6 degree-of-freedom spatial 
trackers is difficult, and does not address the need to see the 
graphics merged with the physical world.
The DART-DataStore behaviors allow designers to capture 
and playback video and tracker data. The captured data is 
stored in a Director cast (as a collection of images for the 
video frames, and separate text cast members for each stream 
of sensor data). Playback is transparent to the other DART 
components; the data is inserted into the system so that most 
of DART cannot distinguish between live and captured data. 
Therefore, nothing has to be changed in the behavior proper-
ties to switch between live and prerecorded data. Switching 
from one to the other is as easy as dragging Playback sprites 
and live Video and Tracking sprites on and off the score.
To capture data, the developer adds CaptureVideo and/or one 
or more CaptureTracker behaviors to the score. Video can be 
captured at a lower frame rate and size than the original, to 
save space during long capture sequences. A separate behavior 
is used for each tracker to be captured, with each different 
fiducial marker being treated as a separate tracker, allowing 
the desired set of sensors and markers to be saved. Typically, 
we capture video, multiple trackers and data from multiple 
fiducials simultaneously.
PlaybackVideo and/or one or more PlaybackTracker behav-
iors are added to the score to play back captured data. The 
playback behaviors respond to cues to control when they start, 
stop, pause or restart playback. Captured video and live video 
cannot be used together, but captured marker tracking data and 
VRPN tracker data can be mixed transparently with live track-
ing. A key feature of the playback behaviors is that they are 
based on the DARTClock (DARTʼs global clock, mentioned 
earlier). The playback of video and sensors works correctly 
as the clock is paused, fast forwarded, rewound, advanced at 
variables rates, or even set to arbitrary values. The combina-
tion of synchronized playback with a controllable clock allows 
designers to examine their experiences at speeds other than 
real-time, an invaluable design and debugging facility.
Captured data can be used for more than offsite development. 
For example, the movements of a tracker can be treated as 

simple motion-capture data, and used to control animated 
objects in the scene. (To support this, PlaybackTracker replays 
the data “absolutely” or “relatively”, where “relative” playback 
reports each data value relative to the first data value).
Event-based Programming Using Cue and Actions
DART provides an AR-specific event system for the DART 
Actor objects. The DART-Events behaviors are split into 
cues (named events that are broadcast when some condition 
arises) and actions (actions that occur in response to a named 
cue event or some basic condition), and support a mixture of 
common VR-style and DART-specific events. For example, a 
cue could fire based on the distance of one actor to another in 
3D space, a particular frame in the VideoActor being played, 
a specified fiducial marker coming into view, or a key being 
pressed on the keyboard. 
To create a cue, the designer places the appropriate cue behav-
ior on an Actor, Camera, or the 3D World, specifies the name 
of the cue that should be fired, chooses the condition that will 
trigger the cue from a drop-down list (e.g., the collision of 
this actor with another, or a position in space), and specifies 
any additional required parameters (e.g., the actor to watch for 
collision with, or the x,y,z  position).  The CueAction behavior 
is used to perform an action in response to a cue. When a Cue-
Action behavior is attached to an Actor, the designer specifies 
the cue to respond to and the action the Actor should perform 
(e.g., starting an audio clip, moving the actor, moving the play 
head to another location on the score). 
In addition to the CueAction, we have found it onerous to 
create pairs of cues and actions for the most common actions 
(time-based actions that fire when a specific time is reached in 
the active frame, and actions that fire based on the location and 
orientation of the virtual camera). Therefore, DART has two 
behaviors, TimeAction and CameraPositionAction, that fire 
actions in response to these events without needing to create 
a separate cue.
Adding new cues and actions is straightforward. The action 
and cue list definitions are embedded in the code in two places 
(the string describing the list in a property sheet, and a case 
statement that reacts to the corresponding property value); 
by adding new entries in two places, and adding a method to 
handle the action in each actor behavior, a new action can be 
added to the system and reflected in the property pages. 
Handling of Tracking Data
There are two interesting aspects to the way DART handles 
tracking data.  First, the marker tracker (that tracks ARToolkit 
markers in the live video stream, of the sort shown in Figure 
5) reports the marker positions in world coordinates, rather 

(a) Animatic scene (b) Final Scene

Figure 7: Captured scenes from Four Angry Men. The animatic 
scene is shown on a table in our lab. The final scene is in a con-
ference room set up to look like a jury room.

204

 

 

 



than relative to the camera (as is done in most marker-based 
systems). Therefore, regardless of how the video camera is 
positioned, either absolutely, relative to another actor or 
relative to a tracker, the objects attached to markers are 
automatically positioned in a useful, stable coordinate system. 
This difference is easier for designers to understand (i.e., why 
would anyone care where a marker on the table is in relation 
to the camera?), and also manifests itself when a marker is 
lost by the tracking system, as the objects attached to it are 
then fixed relative to the world rather than relative to the 
camera (which is usually attached to the userʼs head). Having 
“untracked” objects fixed in world coordinates is a much more 
useful default behavior than having them stick to the screen.
Second, DART allows designers to specify application-
specific transformations to apply to the reports from different 
tracking hardware before the reports reach the application.  
Different devices report in different coordinate system, some 
of which are very inconvenient to use.  For example, some 
devices report in a Cartesian coordinate system with Z up, X 
forward and Y to the side relative to an upright personʼs head, 
while other systems report with Y up, Z forward and X to the 
side. GPS units report in longitude, latitude and altitude, or in 
meters relative to the global UTM grid. By adjusting the data 
before it reaches the application, a designer can specify her 
experience content in meters relative to a known location at 
her site.  Or, when moving from one technology to another, 
the tracking data can be adjusted instead of modifying the 
application content and logic.  These data transformations 
can be specified on a per-subscriber basis, so each script in 
DART that subscribes to a specific tracker can arrange to see 
the tracker reports differently.  
EXAMPLES
We have been using DART for the past year in our own work. 
The largest project we have used this version of DART on, as 
discussed above, is Four Angry Men. We also used a prelimi-
nary version of DART to support our AR Design class during 
Spring 2004. The capture/playback facilities proved invaluable 
in this context, as all 35 students could work on AR projects 
(individually and in groups) without needing to timeshare 
our AR equipment. For some assignments, the students never 
visited the target environment, but created an experience and 
tested it against a collection of captured data sets. The students 
did three AR projects using DART, plus a major experience 
design project. The animatic content allowed them to focus on 
the design of their experiences, without getting bogged down 
in content creation. Some groups used DART as is, and others 
extended it to meet their needs (to support spatialized audio, or 
to support Phidget sensors and actuators [6]). Example content 
from our class is shown in Figure 8.  
We are currently using DART for a variety of other projects, 
including AR tours of Atlantaʼs Historic Oakland Cemetery 
(the focus of the projects in our class, and of an ongoing 
research project), a distributed AR game loosely modeled 
on the popular Warcraft game series, and to create the “task” 
for an experiment evaluating the utility of AR for poultry 
inspection. We have recently released DART to a small 
number of designers around the world, and anticipate a wider 
release before this paper is published. Initial feedback has been 
very positive, although at this point we have nothing beyond 
anecdotal evidence of DARTʼs utility.

RELATED WORK
Most work in the AR community has focused on improving 
tracking and display technology. There have been a number 
of AR toolkits developed over the years, the best known of 
which are Studierstube [15], the ARToolkit [2], Tinmith [13] 
and DWARF [11]. All of these tools require the application 
developer to work at a fairly low level, with languages like 
C or C++. Our own previous system (Repo-3D [10]) used a 
high-level interpreted language, but (like the other systems) 
provided no graphical design environment. None of these sys-
tems attempt to address the wide range of issues addressed by 
DART. Of these, the most widely used is the ARToolkit, both 
because the technology requirements for using it are modest 
(it only supports video marker tracking, and one requires 
inexpensive web cameras), and because one of its sample 
programs shows how to attach VRML models to markers, al-
lowing designers to explore AR by editing VRML text files.
More recent projects have begun to tackle the other end of 
the design spectrum, exploring environments to simplify the 
creation of AR systems with minimal programming. APRIL4 (a 
scripting environment built on Studierstube) is an XML-based 
language for authoring AR, but is still preliminary and does 
not yet provide the breadth or power of Director and Lingo. 
AMIRE is focused on creating graphical authoring tools for 
specific AR domains, rather than on creating a general purpose 
environment. When working in one of their domains, on a task 
that one of their tools supports, their tools would probably be 
easier to use, but designers are limited to exactly the kinds of 
problems they have created tools to solve [1]. CATOMIRE5 
is a graphical authoring environment that uses a dataflow 
approach, where their system components are hooked together 
with “wires.” As with AMIRE, their system is currently very 
limited in scope, and would limit designers to working on 
problems they have built components for.
Other relevant work can be found outside the AR community. 
The Phidget toolkit [6] aimed at making tangible devices 
available to designers (via COM and ActiveX), and solved 
some fundamental problems with prototyping beyond just 
“making it easy to get at the hardware.”  Their domain was 
different, however, and the scope of their work more focused. 

(a) Working with recorded data (b) An animatic ghost

Figure 8: (a) A TA for our AR Design class, working with DART 
in the comfort of a lounge outside our lab. He is grading an 
experience using a 30 second video and tracker segment that 
was captured at Oakland Cemetery in downtown Atlanta.  The 
dataset includes InertiaCube2 orientation data and differential 
(WAAS) GPS data. (b) An example of an animatic ghost created 
by a student in the class (Image courtesy of Smitha Prasadh). 

4 http://www.studierstube.org/april/
5 http://webster.fhs-hagenberg.ac.at/staff/jzauner/CATOMIR.html

205Volume 6, Issue 2



There have been numerous research systems created over the 
years to support the exploration of a new electronic medium 
by novice programmers with an eye toward developing bet-
ter interface and programming technologies. The closest to 
our work is Alice [3], although they are focused on lowering 
the threshold of entry into the world of 3D graphics and VR 
programming (a much simpler medium to work with), rather 
than explicitly supporting early design activities. Most such 
systems take the approach of creating a custom programming 
environment, rather than enhancing an existing environment.
The motivation for our sketch-based content comes from the 
work of Landay and his collaborators at CMU and Berkeley 
(e.g., [8]). Their work focuses on supporting designers in the 
manner we hope to, although they have tended to work in 
more traditional domains. 
ONGOING AND FUTURE WORK
We are in the process of finishing the first public release of 
DART.  After this release, there are a number of directions we 
hope to move in. Technically, we plan to enhance the camera 
infrastructure to support multiple simultaneous cameras, cam-
era calibration from inside Director, a plugin architecture for 
image processing operations, better multi-sensor integration, 
and automated multi-sensor calibration.
Another major research direction is Wizard-of-Oz (WoZ) 
support.  DART contains the necessary building blocks for 
distributed WoZ interfaces, but we have just begun to explore 
the potential for WoZ interfaces to AR experiences. We have 
created a simple WoZ tracker, where a map could be placed 
on a tablet, and a “tracker” would send events corresponding 
to the pen location.  However, this is only the tip of the 
iceberg. We believe the structure of our behaviors will allow 
us to generate simple WoZ interfaces automatically on the fly, 
supporting remote monitoring and control of our experiences.
A final direction is to tackle the problems of authoring and 
debugging.  While we rely on the skills of designers, working 
in 3D is conceptually hard.  The kinds of authoring and debug-
ging facilities Alice has would be quite useful in DART.
CONCLUSIONS
DART takes a significant step toward enabling designers to 
work with the exciting new medium of AR. By focusing on 
rapid prototyping and early experience testing, and creating 
an environment which allows designers to work effectively 
at (and away from) a physical site, we help designers get over 
the initial hurdle of creating a first working prototype of an 
embodied AR experience. We have demonstrated the impor-
tance of integrating a research toolkit with existing, powerful 
tools such as Director, and of addressing both technical (e.g., 
tracker integration) and practical problems (e.g., dealing with 
the annoyances of working in the physical world). 
DART places a heavy emphasis on rapidly moving informal 
content from storyboards into a functioning AR prototype, and 
using this informal content to explore the design space. We be-
lieve that the difficulty of design exploration, not final content 
creation, is what has limited AR experience prototyping, it is 
this hole that DART has been designed to fill.
ACKNOWLEDGEMENTS
This work was supported by seed grants from the GVU Center 
at Georgia Tech and by NSF CAREER Grant 0347712.  We 

acknowledge the contributions of our students, especially 
Emmanuel Moreno (who created our first AR experiences in 
Director) and the students in all our AR Design and indepen-
dent research classes. We also thank UNC Chapel Hill for use 
of the VRPN library, and the UW HIT Lab for the ARToolkit.
REFERENCES
1. Abawi, Daniel F., Dörner, Ralf, Haller, Michael, Zauner, Jürgen. 

(2004) “Efficient Mixed Reality Application Development” In 
1st European Conference on Visual Media Production (CVMP), 
London, England, March 15, pp. 289–294.

2. Billinghurst, M., Bowskill, J., Jessop, M., and Morphett, J. (1998) 
“A Wearable Spatial Conferencing Space”, In Proc. International 
Symposium on Wearable Computing (ISWC ʼ98), pp. 76–93. 

3. Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, 
K., Deline, R., Durbin, J., Gossweiler, R., Koga, S., Long, C., 
Mallory, B., Miale, S., Monkaitis, K., Patten, J., Pierce, J., Shochet, 
J., Staack, D., Stearns, B., Stoakley, R., Sturgill, C., Viega, J., 
White, J., Williams, G., and Pausch, R. (2000) “Alice: Lessons 
Learned from Building a 3D System For Novices” In Proc. CHI 
2000, pp. 486–493.

4.   Feiner, S., MacIntyre, B., and Seligmann, D. (1993) “Knowledge-
based augmented reality” Communications of the ACM, 36(7), July 
1993, pp. 52–62.

5. Flintham,  M., Anastasi, R., Benford, S., Hemmings, T., Crabtree, 
A., Greenhalgh, C., Rodden, T., Tandavanitj, N., Adams, M., 
and Row-Farr, J. (2003) “Where On-Line Meets On-the-Streets: 
Experiences with Mobile Mixed Reality Games” In Proc. of 
CHIʼ03, pp. 569–576.

6. Greenberg, S. and Fitchett, C. (2001) “Phidgets: Easy Development 
of Physical Interfaces through Physical Widgets.” In Proc. 
Symposium on User Interface Software and Technology (UIST 
ʼ01), pp. 209–218. 

7. Igarashi, T., Matsuoka, S., Tanaka,  H. (1999) “Teddy: A Sketching 
Interface for 3D Freeform Design” In ACM SIGGRAPHʼ99, Los 
Angeles, pp.409–416.

8. Landay, James A., and Myers, Brad A. (2001) “Sketching Interfaces: 
Toward More Human Interface Design.” IEEE Computer, vol. 34, 
no. 3, pp. 56–64. 

9. MacIntyre, B., Bolter, J. D., Vaughn, J., Hannigan, B., Gandy, M., 
Moreno, E., Haas, M., Kang, S.-H., Krum, D., and Voida, S. (2003) 
“Three Angry Men: An Augmented-Reality Experiment in Point-of-
View Drama” In Proc. International Conference on Technologies 
for Interactive Digital Storytelling and Entertainment (TIDSEʼ03), 
Darmstadt, Germany, pp. 230–236.

10. MacIntyre, B. and Feiner, S. (1998) “A Distributed 3D Graphics 
Library.” In Proc. ACM SIGGRAPH 98, July 19–24, Orlando, 
Florida, pp. 361–370.

11. MacWilliams, A., Reicher, T., Klinker, G., and Bruegge, B. “Design 
Patterns for Augmented Reality Systems” In Proc. International 
Workshop Exploring the Design and Engineering of Mixed Reality 
Systems - MIXER 2004, Funchal, Madeira.

12. Moreno, E., MacIntyre, B., and Bolter, J.D. (2001) “Aliceʼs 
Adventureʼs in New Media: An Exploration of Interactive Narratives 
in Augmented Reality.” In Conference on Communication of Art, 
Science and Technology (CASTʼ01), Bonn, Germany, pp. 149-152.

13. Piekarski, W. and Thomas, B. H. (2003) “An Object-Oriented 
Software Architecture for 3D Mixed Reality Applications” In 
Proc. International Symposium on Mixed and Augmented Reality 
(ISMARʼ03), pp. 247–257.

14. Schell, J. and Shochet, J. (2001) “Designing Interactive Theme 
Park Rides: Lessons From Disneyʼs Battle for the Buccaneer Gold” 
in Gamasutra, July 6, 2001.

15. Schmalstieg, D., Fuhrmann, A., Hesina, G., Szalavári, Z., 
Encarnação, L. M., Gervautz, M. and Purgathofer, W. (2002) 
“The Studierstube Augmented Reality Project”  PRESENCE–
Teleoperators and Virtual Environments, 11(1): 32–54.

206

 

 

 


