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Abstract 
This paper describes the navigational control scheme used 
in the CO-Operative Locomotion Aide (COOL Aide), an 
intelligent walker designed to assist the elderly or the 
disabled with normal, and routine walking tasks. Navigation 
is achieved through a shared control architecture that 
recognizes the goals of both the human user and the walker.  
The control system is based on a synthesis of heuristic logic 
that exploits a dynamic model of walker system that can 
detect sliding and loss of walker stability. The model is used 
to predict the user’s intended path, based on the history of 
information collected from the walker’s sensors. Sensor 
information consists primarily of the forces and moments 
the user exerts on the walker’s handles during the natural 
assisted walking process, as well as the user’s local 
environment. Based on the model’s prediction, the walker’s 
state, and the walker’s environment, the control system can 
confirm or overturn the hypotheses of user’s intent it put 
forward and can influence the walker’s heading if the 
system believes the user will not reach the perceived 
intended goal unassisted. This paper discusses the model’s 
use in the shared control scheme and the mechanism for 
detecting/handling errors in the model’s predictions. 

 
Keywords-Assistive and Healthcare Robotics, Personal 
Robots, Human Computer Interaction, Real-Time Systems, 
Shared Control, User Intent Detection   

1 Introduction 
One of the most important factors in quality of life for the 
older adults is their ability to move about independently. 
Not only is mobility crucial for performing the activities of 
daily living (ADLs), but for maintaining fitness and vitality. 
Lack of independence and exercise can lead to a vicious 
cycle. Decreased mobility due to a perceived lack of safety 
can cause muscular atrophy and a loss of the feeling of 
empowerment (both of which contribute to further 
decreased mobility). 

An intelligent pedestrian mobility aide, termed COOL 
Aide, is being developed to help the frail elders negotiate 
obstacles in indoor environment. The primary goal of this 
work is to augment a user’s ability to walk, not replace it. 
In this sense, we are seeking to help those who can and 

want to walk perform this task more safely and easily. As 
the world’s elderly population rises (the US Senior 
population will double over the next 30 years (Kramarow 
et al., 1999) and the cost of healthcare skyrockets (to $4 
trillion over the same period (Ciole et al., 1999)), robotic 
mobility aides will increase in importance. 

Two key issues in developing COOL Aide are how to 
determine a user’s intent and how to activate a smooth 
control without destabilizing the user. This paper describes 
a mathematical model that can analyze walker system 
dynamics with human input on-line. A goal of this project 
is to provide a very intuitive and natural interface and thus 
no provision is made for any explicit means by which the 
human “enters their goal”. Instead, the model is used to 
predict the user’s short term (a few seconds) goal/path 
based on the forces and moments they apply to the 
walker’s handles in the natural process of assisted walking, 
in addition to the user’s local environment and the walker’s 
current state (such as velocity). In this way, operation of 
COOL Aide is identical to operation of any other wheeled 
walker, the user simply pushes it. The output of the model 
can then be used to influence the steering angle of the 
walker frame. However, the control system only attempts 
to adjust the walker’s heading if the user is believed to be 
in a difficult or dangerous situation.  The model and the 
control system are built with the understanding that 
predictions can be imprecise or incorrect as a user may 
perform similar actions to achieve different goals. The 
control system therefore uses the model to make multiple 
predictions over time and switches between different 
control logics/ actions when suitable differences between 
predicted and received handle inputs occur.  

There are a number of applications of robotic technology 
for assistive devices for walking to help the elderly or the 
blind. Among them, MIT’s “PAMM” (Dubowsky et al., 
2000) and CMU robotic walker (Morris et al., 2003) can 
detect the user’s intent. However, these systems do not 
infer the implicit user’s intent from rich sensory 
information. 



Moreover, there are several applications of user intent 
detection and shard control from wheelchair community. 
Such as “NavChair” (Levine et al., 1999) and “Sharioto” 
(Vanhooydonck et al., 2003).  “Sharioto”, for example, 
attempted to estimate the user’s intent from user’s noisy 
input signal, through a joystick, and the interaction with 
the perceived environment to generate navigational 
behaviors. The shared control of the wheelchair is different 
from that of a  walker in that the user of the wheelchair 
does not provide the propulsion force; he/she only needs to 
show his/her command explicitly by operating the joystick. 
In our shared control architecture, the user is responsible to 
the propulsion of the walker. The user’s intent is not 
entered explicitly; instead, the users’ implicit intent is 
inferred from the forces and moments applied to the 
walker’s handles as they push the walker naturally, and the 
controller will detect and behave accordingly. 

The COOL Aide is built on a commercial three-wheeled 
Invacare walker frame. Two six-axis force and moment 
sensors from ATI Industrial Automation (US120-160) are 
mounted on the handles. The absolute encoder mounted to 
measure the heading angle of the frontal wheel and the two 
incremental encoders mounted at shaft of back wheels are 
used to estimate the walker’s velocity, position, and 
heading. An infrared obstacle detection sensor (PBS-03JN 
from Hokuyo Automatic Co., Ltd.), provides a 180° radial 
depth map of the environment surrounding COOL Aide. 
Control of the walker’s front wheel is achieved by a 
stepper motor driven belt and pulley system. A clutch is 
used to disconnect the motor from the wheel when control 
is not required. COOL Aide uses a laptop to run all needed 
software. A picture of the system is shown at figure 1.  

 
Figure 1. COOL Aide hardware configuration 

2 Walker System Dynamics Modeling 
The physics based mathematical model (Huang and Sheth, 
2004) to representing the walker’s system dynamics with 
human inputs is a key element for the shared navigational 
control. This dynamic model is comprised of a set of 
coupled nonlinear differential equations derived from the 
Lagrangian and the Lagrange multipliers of the system. 
The general form for the model can be represented as, with 
reference to Figure 2:  
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The system mass matrix is
( )4 4
M
×

. The force vector F  

models the handle forces and moments while the Lagrange 
Multipliers are λ for the two nonholonomic (rolling 

without sliding) constraints represented by ( ) 0, =qqg &rr . 
One of the two constraints is for the front wheel and the 
second for the consolidated axle of the two rear wheels. By 
monitoring the forces in these nonholonomic constraints, 
the model is able to detect the sliding of the walker. The 
sliding condition is considered to be jeopardizing the 
user’s balance and hence if this case is detected, it 
indicates the need to change the current control. The model 
can also detect user instability when vertical reaction 
forces on the wheels become zero or negative.  

 
Figure 2. Two dimensional motion dynamics model of the walker 

with three dimensional human forces/moments input 

Preliminary results of the path prediction using this 
model were validated against VICON motion capture data 
and were presented in (Wasson et al., 2004). 

3 Shared Navigational Control 
Navigation is controlled by both the user and the COOL 
Aide’s navigational control system. COOL Aide activates 
control of the steering when a collision is likely to occur or 
when the controller believes that some pro-active 
movement of the walker frame is necessary to help the user 
reach his/her short term goal. Based on the requirement of 
shared control through user intent detection, three general 
design goals of COOL Aide’s controller are: 
1. maintain the user’s safety and stability. 



2. assist users in accomplishing their navigational goals. 
3. do not increase the user’s cognitive load  

Achieving the first goal requires the ability to detect the 
user’s potential instability and an understanding of how the 
control actions may jeopardize stability. The second goal 
requires the ability to understand the user’s navigational 
intent and how it relates to the local environment. The final 
goal requires the first two goals to be performed via an 
intuitive interface to the COOL Aide. The remainder of this 
section addresses aspects of the system related to these 
goals.  

3.1   Environment Modeling for Shared Control 

COOL Aide’s environment is sensed by an infrared sensor 
that produces a radial depth map. The inherent uncertainty 
created by the sensor’s noise must be accounted for when 
building a map. Also, obstacles in the environment must be 
modeled such that they can be used within the physics-
based model of Section 2 to achieve appropriate shared 
control.   

A 2D grid style map is adopted due to the two 
dimensional nature of the infrared sensor data. Histogramic 
in Motion Mapping (HIMM) (Borenstein and Koren, 1991) 
was adopted for map-building in this research due to its 
computational efficiency (Murphy 2000). 

121 data points, each 1.8° apart, are acquired in each 
scan of the infrared sensor. COOL Aide processes the inner 
180° arc at a range between 200mm and 3000mm. Thus 
the sensor can detect an object wider than 0.1m. Based on 
these data, the system builds a 40 x 80 grid map with the 
grid size 100mm.  

The system combines the previous map with the current 
instantaneous map to get the most up-to-date grid local 
map using the following formula: 
   (2) curr

t
prev jimejimjim ],[],[],[ +×= ∆−λ

where λ is the "forgetting" factor, is the time 
difference between the two consecutive scan, these two 
together determine the forgetting speed of the algorithm for 
the old data in memory. 

t∆

By tuning the parameters used in HIMM method and the 
forgetting factor λ , a local map suited for local 
navigational control can be achieved. 
 

Once a map of the environment is built, the forces and 
moments exerted on the walker’s handles can be 
“interpreted” within the context of the environment. Once 
the user’s likely goal is determined, a decision about 
whether or not to activate control and what control mode, 
to apply, if any, can be made. 

For COOL Aide, we chose a method inspired by the 
Virtual Force Field (VFF) method (Borenstein and Koren, 
1989), which can be viewed as an extension of the 
Potential Field/Function method (Khatib, 1985). COOL 
Aide is different from the autonomous robots used in the 
navigation literature because it is mostly a passive robot. 

This means that the user provides the propulsion and 
COOL Aide controls only the angle of the front steering 
wheel.  So in contrast to the VFF method where virtual 
forces of the occupied cells are applied directly to the 
center of the robotic system which in turn determines the 
movement of the robotic system, in COOL Aide the 
occupied cells only have influence on the rotational joint 
connecting the front wheel to the walker frame. Occupied 
cells in COOL Aide’s map have virtual repulsive moments 
on that joint, which influences the steering of the front 
wheel guiding the walker together with the control from 
the user. 

The repulsive virtual moment should satisfy the 
following requirements: 
1. The virtual moment should only be effective within a 
certain distance from the obstacle, r0 for example.  
Continuous and smooth condition should apply on the 
boundary where the change of virtual moment from 
ineffective to effective happens.  
2. The repulsive moment should have an upper limit to 
accommodate the ability of the human user to adjust to 
control decisions made by the walker. Omni-directional 
mobile robots can respond appropriately to large forces, 
but COOL Aide must consider the stability of its user and 
cannot turn too sharply. The traditional potential function 
(Khatib, 1985; Borenstein and Koren, 1989) which has 
infinite upper boundary also makes certain tasks such as 
docking onto an object or passing through a tight space 
difficult. Using a bounded, repulsive virtual moment, and a 
set of heuristic rules (see below), COOL Aide can respond 
correctly in these circumstances. 
3. Because the infrared sensor is only capable of detecting 
obstacles in the half plane in front of the walker, the virtual 
moment is only computed in the half plane in front of the 
sensor.  
4. An obstacle on the walker’s path should have a larger 
influence than the obstacle on side of the walker’s path. 
5. The influence of the relative velocity between the 
obstacle and walker is also considered in the calculation of 
the virtual moment. In this research, due to the limit of the 
sensor and slow motion character of the elderly user, the 
mapped objects were assumed to be static or quasi-static. 
Therefore, the relative velocity of the walker to the 
obstacle (defined as vobst) is the projection of the velocity 
of walker in local coordinates to the line between the 
walker and obstacle. Then the influence of the relative 
velocity can be expressed in a coefficient as indicated in 
Equation (3): 
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Where ε is a small positive number, or zero, based on 
different control status.  

Based on the requirement above, the repulsive virtual 
moment of the ith occupied cell on the walker is expressed 
as: 
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It should be noted that the repulsive virtual moment of 
the left occupied cells that lie on the left of the central 
vertical axis of the map may counteract the repulsive 
virtual moment of occupied cells that are to the right part 
of the same axis. This can make an obstacle that is most 
dangerous to the user have a small repulsive virtual 
moment. This can mislead the system into not taking the 
proper action in time. To avoid this, the system calculates 
the repulsive virtual moment generated from the map of 
the environment in the following way. First, system detects 
obstacle that lies on the central vertical axis of the map. 
Then the absolute value of the virtual moments contributed 
by all occupied cells by this obstacle (the sum of absolute 
value of Equation (4)) is computed. This value is assigned 
a sign according to whether the center of obstacle is in 
left/right half of the map. Then Equation (4) is used to 
calculate the repulsive virtual moment of obstacles that 
don’t lie across the central vertical axis. 

3.2   Shared Control Strategy for Navigational 
Control 

In COOL Aide, the user has the control authority for the 
navigation of the walker, while the control from COOL 
Aide will activate only when necessary, although the 
controller monitors COOL Aide all the time. To achieve 
this, COOL Aide uses the math model described in section 
2 and heuristic rules in the control.  

 
Figure 3  Shared control system architecture 

 
With reference to the shared control block diagram shown 
in figure 3, the user’s propulsive forces/moments and the 
environment are considered inputs into the system’s 
dynamics. User’s forces/moments input contribute to all 
the general forces in the model, while the influence of 

environment only affects the general force to the front 
wheel ( ).  

c
Fθ

When obstacles are on or near the path of the walker, 
there can be two possibilities: one is that user isn’t aware 
of the obstacles appearing in his/her way, and this requires 
the system to take action to help the user avoid the 
obstacles. The second is that the user is aware of the 
obstacles appearing and he/she wants to go there (docking, 
for example). As control logic, the controller of COOL 
Aide considers the obstacle avoidance to be the first choice 
and the docking as the second choice.  

To avoid activating the obstacle avoidance too early 
which can be a cause of oscillations in the navigational 
control, the controller of COOL Aide will only activate the 
obstacle avoidance after the absolute value of the repulsive 
virtual moment exceeds a certain threshold. When obstacle 
avoidance activates, part of the walker’s control is 
transferred from user to the COOL Aide. The walker is 
controlled by both the controller (controls steering) and the 
user (controls propulsion).  

Under this obstacle avoidance control strategy, system 
first evaluates the predicted response of the walker 
dynamics with the consideration of both the user’s input 
and environmental influence, together with walker’s 
nonholonomic constraints (i.e. the actual path), then uses 
the filtered predicted result of the rotational velocity of the 
front wheel ( ( )tcθ& ) to estimate the needed command 
parameter for the motor velocity control in the next time 
step, and then sends these commands to be executed by the 
lower-level controller. To make the steering smooth and 
comfortable to the user under the requirement of achieving 
local navigation, COOL Aide uses velocity control mode 
for the stepper motor as the low level controller.  

The obstacle avoidance action is terminated when the 
absolute value of the repulsive virtual moment drops below 
the threshold, or if during this period, the control system 
detects that the user either stopped walking or was fighting 
the steering guidance of the walker. “Control fighting” 
implies a conflict between the user’s need and controller’s 
intent, jeopardizes user stability, and may occur during 
docking. The controller monitors this conflict by using the 
resultant fighting moment as the “conflict index”.  When 
this index exceeds a certain threshold, the controller can 
infer, with confidence, the user’s disagreement with the 
control action. There may be several choices to resolve this 
conflict. Currently the controller takes the simplest choice 
by stopping the motor, disengaging the clutch, and 
returning the full control back to the user.  

3.3   Detection of User’s Navigational Intent 

Besides the obstacle avoidance, COOL Aide also uses 
models to detect the user’s intent over a short time horizon. 
The controller continuously analyzes the predicted paths, 
within the context of environment map acquired, and 



continuously detects and updates the user’s navigational 
intent. The predicted path is the output of the deterministic 
physics-based model for walker dynamics. It changes fast, 
reflecting the changes in the user’s force-moment input. 
The force-moment data reflect the user’s intent through 
actuation affected by the human’s muskelo-skeletal system, 
with potentially some perceptual or motor “noise”, thus the 
analysis result of instantaneous predicted path and current 
map may not reflect the true user’s navigational intent. 
Moreover, the instantaneous predicted path represents a 
snapshot of the user’s navigational intent. A better 
representation of the user’s true navigational intent could 
be drawn on a series of these instantaneous observations, 
i.e. based on history.  

To this end, Dempster-Shafer theory (DST) is used to 
extract the user’s navigational intent from the historical 
observations, or evidences. Dempster-Shafer theory 
belongs to possibility theory. In Dempster-Shafer theory, 
belief functions are mappings from the power set of 
possible evidence causes to the closed interval between 0 
and 1 of real numbers (Hoffman). This set is called Frame 
of Discernment (FOD) . The elements inside, which are 
called focal element, are assigned belief mass by a belief 
function. Any two belief functions over the same FOD with 
at least one focal element in common may be combined 
into a new belief function over FOD using Dempster’s rule 
of combination (Murphy 1998). This rule strongly 
emphasizes the agreement between multiple sources and 
ignores all the conflicting evidence through a 
normalization factor. The advantages of the Dempster-
Shafer theory over the Bayesian framework include its 
ability to represent ignorance, and the fact that it does not 
require a priori probabilities. Here ignorance includes 
incompleteness, imprecision, and uncertainty. It allows 
ignorance when assigning the possibility values (belief 
mass). Moreover, this method can combine evidence 
explicitly. Because of these advantages, Dempster-Shafer 
theory has had a large number of applications in 
engineering in the past years. It has the versatility to 
represent and combine different types of evidence obtained 
from multiple sources as well. Based on these merits, the 
Dempster-Shafer theory was applied to the problem of 
detecting the user’s navigational intent.  

Θ

The user’s navigational intent detection algorithm entails 
3 iterative: a) Analyze current map and predicted path to 
assign belief mass to the valid passages on the map, b) 
Track the valid passages in subsequent maps, and c) apply 
Dempster-Shafer’s evidence combining rule to obtain the 
possibilities for the valid passages of being the user’s 
navigational goal. The details of these procedures are 
illustrated below. 
3.3.1 Analyzing the relationship between current map 
and predicted path. The algorithm starts by searching for 
valid passages (a valid passage is an opening on the map 
whose width is larger than the dimension of the walker. 
This concept takes into consideration the geometric 

dimensions of the walker) and assigns each a 
corresponding FOD. The advantage of this procedure over 
lumping all evidence causes of all valid passages into one 
FOD is that FOD is relatively simple and uniform, there 
are always only 4 elements in the set (as will be illustrated 
below), and thus the belief function of interest is equal to 
the belief mass after assignment/ applying the combination 
rule. This choice simplifies implementation in the software 
and makes it computationally more efficient. The 
disadvantage of this choice lies in that the usual decision 
making criteria, such as max belief criteria or max 
plausibility criteria, can not be simply applied. With our 
method, when considering all the valid passages, these 
multi FODs adopted here make the possibility set non-
exclusive between different FODs. Thus there may exist 
such a case where multiple FODs from different passages 
form the user’s intent. For example, the user may want to 
pass passage A as well as passage B, as far they are 
sequential from the user’s point of view, and thus passing 
both A and B will become the user’s intent. 

Therefore for each valid passage on the environment 
map at a particular time, there exists a power set: 

{ }θφ ,,, AA=Θ , among them: φ represents null subset, it 
is always zero in implementation; A represents the 
possibility of user will pass this valid passage; 
A represents the possibility that user will not pass this 

valid passage; θ represents the possibility of AAU , 
which reflects ignorance. Belief mass is assigned to each 
focal element; the relationship among them is obvious, 
( ) ( ) ( ) 1=++ θmAmAm . 
Then the rules for assigning the belief mass are defined 

as: 
Rule 1: If the predicted path crosses the valid passage, then 
assign belief mass so that ( ) ( ) 1=+ θmAm . Assign a 
constant value to m(A). Here, 0.75 is assigned. 
Rule 2: If the predicted path does not cross the valid 
passage, then assign the belief mass so 
that ( ) ( ) 1=+ θmAm . Meanwhile, assign ( )Am of each 
passage based on the proportion of the length between the 
end point of predicted path and the center of the valid 
passage.  

The continuity between whether or not predicted path 
crosses a valid passage can be satisfied with the 
consideration of plausibility. When predicted path 
approaches the valid passage but does not cross it, ( )Am  
approaches zero according to rule 2, value of ignorance 
( )θm  approaches 1. At the condition that the end point of 

predicted path crosses the valid passage, rule 1 applies. 
Then:  
( ) ( ) ( ) ( ) ( ) ( ) ( )2222111 APmAmmmAmAP =+==+= θθθ  

These rules guarantee the continuity of the plausibility of 
passing a valid passage.  



This procedure can be practically implemented by: 
1. Finding all the occupied blocks in the current local map 
and extract their boundaries. 
2. Find all the valid passages on the map. 
3. Assign belief mass to FOD of each valid passage.  

A dynamic list is used to record the valid passages that 
have ever appeared on the map and contribute to the 
detection of the user’s navigational intent. The size of the 
list is neither pre-fixed nor limited, with elements 
continuously being dropped from the list and added into 
the list. 
3.3.2 Tracking the valid passages. To dynamically track 
the valid passages in the updated maps, a matching 
problem solving approach was adopted: match the 
elements (passages in this case) in the list with the 
counterparts from the current map. However, our matching 
problem is not a classical one due to the open nature of our 
set: first, the number of elements in the two matching sets 
is not the same; second, for each match, elements may 
have been removed, or newly added to the set to be 
matched. To overcome this peculiarity, the open set 
matching problem is then separated into two sub problems. 
One is a target tracking problem: track the elements in the 
list with the current measurements. Here, measurement 
means certain environmental geometric properties acquired 
from the environmental mapping. But it is not simple a 
target tracking problem, as the system has to cater for the 
facts that old objects may go out of sensor’s detection 
region, and that new objects may come into the  detection 
region. Therefore, after the tracking finished, the other sub 
problem is to deal with what the target tracking process did 
not resolve, namely to process the elements that are in the 
list but did not appear in the current map and the new 
passages that appeared in the current map.  

A more challenging problem for matching is caused by 
the characteristics of the environmental sensor. The sensor 
emits beams to detect the environment. When position of 
the sensor changes, the shape of the objects on the map 
based on the sensor data will change, thus causing the 
change of the geometric properties of the corresponding 
passages, sometimes dramatically. However, in this 
research we have not addressed this problem due to the fact 
that of the walker moves in a slow motion. Hence, the 
probability of the dramatic change in shape of the objects 
on the map is small, and would only happen if the 
orientation of the walker was changes dramatically 
abruptly.   

Because of the relative consistency of the user’s intent 
compared to force/moment change, it is assumed that the 
elements in the list that represent the user’s current 
navigational intent will be the elements appearing in the 
current map. However, in the first sub problem, the list will 
not include new passages appearing in the current map, 
because the preference of user to a certain place in the map, 
as an evidence, should appear several times on the map to 
increase the confidence in being an intended destination. 
Since the candidate indicating the user’s current 

navigational intent corresponds to the current measurement, 
the elements that don’t have a matched measurement in the 
current map are marked as inactive elements and will be 
eliminated in the iteration that follow.  

Then the first sub problem: tracking the elements in the 
list with the current measurement becomes tracking the 
elements that appear as measurement in the latest previous 
map. To track the active elements in the list with the 
current measurement, first, the geometric characters (such 
as passages) in the latest previous environmental map is 
projected into the current local coordinate system via 
coordinate transformation, this is the predicted 
measurement. Then, the geometric characters are compared 
between the current measurements and the predicted 
measurement to obtain the correct pair of the elements in 
the list and the current measurement. Currently, the nearest 
neighbor (NN) method and method of pattern match in a 
region are used together for the tracking.  

For the second sub problem, as described above, the 
inactive elements that do not have matched counterpart 
measurement in the current map will be eliminated from 
the list when it is identified to have been passed away from 
user’s vision. This will prevent the list from getting huge 
and keep the processing speed fast; the new valid passages 
that do not have the matched counterpart of the elements in 
the list will be considered as new elements to be added into 
the list.  
3.3.3 Combining the evidences to obtain the user’s 
navigational intent. The elements in the list are then 
combined with their counterpart in current measurement 
list to the updated list. To combine evidence of user’s 
intent by Dempster-Shafer theory, the specific combining 
rules applied are: 
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It is worthy to note that with the method illustrated here, 
FOD will keep the highest possibility value in history. This 
is not applicable to user’s intent detection, because the 
user’s current intent should always be the focus. So in 
order to overcome this problem, a forgetting factor is 
applied to FODs in the list. The possibility value whether 
user will pass through a passage or not( )Am ( )Am is 
modified to decay with time in the following 
way: ( ) ( ) t

ii eamam ∆−= λ , whereλ is the forgetting factor, 

t∆ is the time between iterative user’s intent detection. 
This change will lead FOD to converge to total ignorance 
eventually, if no new supporting evidence is added. With 



this modification of the belief functions for each FOD, (5), 
(6) and (7) will be used to update FODs for user’s intent.  

Following these procedure, the controller will get a list 
containing hypotheses. Each element in the list is actually 
a hypothesis of where the user may want to go, that is, 
his/her potential navigational intent. These hypotheses are 
confirmed or refuted by evidence tracking and combining. 
By comparing their possibility values, these hypotheses 
compete with each other. The user’s navigational intent 
lays in the hypotheses whose accumulated possibility 
values will be among those with high values. Once these 
values exceed a certain threshold (90%), the controller will 
be confident about this intent.  

If the controller believes it “knows” the user’s intended 
destination, it will act proactively to guide the user towards 
it. 

4 Experiment Results 
Figure 4 shows COOL Aide performing obstacle avoidance. 
The user pushes the walker along a hallway toward an 
obstacle. The user’s intent, i.e. the control action that 
would be achieved if the forces/moments they are exerting 
on the walker frame were followed, would result in a 
collision with the obstacle (the dashed line). The COOL 
Aide controller activated to guide the user away from the 
obstacle. From the natural feedback of the motion change 
felt through the handles, the user realized the obstacle and 
followed COOL Aide’s control action. The COOL Aide 
controller ceased active control when the user has left the 
danger zone, leaving the user in control again.   
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Figure 4. Obstacle avoidance scenario: user accepted the 

guidance from the controller 
 

In figure 5, the user pushes the walker toward an 
obstacle which the controller detects, attempting to guide 
the user away to the empty space to the left. However, the 
user resists the guiding of the controller as detected by 
increased resultant turning moment at the handles. This can 
be seen from the difference between the user desired path 
(dashed line) and the controller desired path (solid line) in 
the figure. The controller detected the increase of the 
conflict between the user intent and the controller’s intent 

and relents, giving control back to the user. In general, 
COOL Aide can use this “fighting” detection to switch 
between multiple hypotheses about its user’s intent – 
causing a corresponding switch in the control strategy.    

 
Figure 5. “Fighting” scenario: user disagreed with the guidance of 

the controller 
 

The speed of approach to an obstacle is an important 
factor for the control, in addition to the relative distance. 
The system considers a slow approach to an object not be a 
potential harm to the user, and thus the controller will not 
activate when this case happens (see figure 6). This could 
happen when the elderly user was aware of the object and 
wanted to dock onto it. 
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Figure 6. No control action will happen when the user approaches 

an obstacle slowly.  
 

In figure 7, the user walks along a hallway and wants to 
turn and go through the doorway on the left. The controller 
detects that the user’s desired path is toward a tight 
corridor and so switches to an appropriate control strategy. 
In this case, obstacle avoidance is inappropriate. Instead, 
COOL Aide turns the wheel to a slightly different angle 
than that indicated by the user’s input and holds the front 
wheel there until the door has been passed. This is an 
example of how COOL Aide can be used to pro-actively 
perform control actions to help in navigating in tight 
spaces in cluttered environments and beyond simple 
obstacle avoidance. It is hoped that COOL Aide will be 
able to take important control actions that are only slightly 



differing from the user’s desired actions (i.e. the user 
knows approximately what to do) and so the user will not 
necessarily be aware that they did not achieve the desired 
result alone.  
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Figure 7. Door passing scenario: controller detects the user’s goal 
and provides corresponding assistance 

5 Conclusions and Future Work 
Shared control and user’s intent detection were 
implemented on the COOL Aide platform, an intelligent 
pedestrian mobility aid for the elderly. This paper used 
walker system dynamics as the foundation for determining 
parameters needed to generate control commands. The 
commands, for shared local navigational control, took into 
consideration both the user’s input and the influence from 
the surrounding environment. Using heuristic rules, the 
controller detected the conflict between user and machine 
and solved this conflict accordingly. User’s intent detection 
from the natural walking process is a key part for shared 
control scheme. It is the foundation from which the system 
makes proactive control to help user. The test results show 
that the controller of COOL Aide successfully detected the 
user’s navigational intent and took the suitable control 
action to help user achieve his/her goal or avoid danger. 
Also when the conflict of user’s intent and controller’s 
intent occurred, the controller detected this conflict and 
took appropriate action, namely yielding the user’s will. 
Future work will entail evaluating the navigation system 
with elder walker users.   
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