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Atomic sentences in FOL

function(term,,...,term,)
or constant or variable

« Term

- A term with no variables is a ground term

- Examples
 Brother(KingJohn, RichardTheLionheart)
« >(AgeOf(Richard), AgeOf(John))
- Brother(AgeOf(Richard), AgeOf(John))

- Atomic sentence = predicate(term,,...,term,)
or term, = term,

- An atomic sentence has value true or false



Complex and quantified sentences

- Complex sentences are made from atomic sentences using
connectives
« Connectives have same semantics as propositional logic
=5 5,05,5,vS,5,=5,5,<S,
- Examples
- Sibling(John,Richard) < Sibling(Richard,John)
- >(1,2) A £(1,2)
- >(1,2) A =>(1,2)

- A quantified sentence adds quantifiers V and 3

- A well-formed formula (wff) is contains no “free”
variables—all variables are "bound "~ by quantifiers
(Vx)P(x,y) has x bound as a universally quantified variable, but y is free



L
Substitution and Unification in FOL

- A substitution is a set of variable-term pairs: {x/term,y/
term, ...}
- Often referred to using the symbol 0 [theta]
+ No variable can occur more than once.

- Two formulas A and B unify if there is a substitution 6 such
that A6 = BO

- If 6, is a unifier for formulas 4 and B, itis a MOST GENERAL
UNIFIER (MGU) iff:

There is no other unifier 8, for A and B s.t. 40,
subsumes A0,

- A formula F subsumes a formula G if there is a non-trivial
substitution I1s.t. FII= G



L
Review: Find a MGU for the following pairs (if

one exists)
1. Isa(Oliver,Dog)
Isa(x, Dog)

2. Isa(x,Dog)
Isa(y,z)

3. Likes(x,0wner(x))
Likes(Joey, Owner(Oliver))

4. Likes(x,0wner(y))
Likes(Joey, z)

5. Likes(x,0wner(y))
Likes(Oliver, Sister(Amy))



L
Review: Find a MGU for the following pairs (if

one exists)
1. Isa(Oliver,Dog) 0 = {x/0Oliver}
Isa(x, Dog)
2. Isa(x,Dog) _
ar2) 6 = {x/y, z/Dog}
3. Likes(x,0wner(x))
Likes(Joey, Owner(Oliver)) None
4. Likes(x,0wner(y)) _
Likes(Joey, 2) 6 = {x/Joey, z/Owner(y)}
5. Likes(x,0wner(y)) None

Likes(Oliver, Sister(Amy))



Inference in FOL with Lifted Resolution

- Rules of inference same as in propositional logic in ground
cases

- Generalize (lift) rules to FOL case with variables and
quantifiers
 Use Existential and Universal Instantiation rules to ground a KB

 First-order resolution rule:

LLv..vl,m,v..vm,

(yveevigviggve-vhvmyvee-vm gvm,v-=-vm,)o

where Unify(l;, ~-m;) = 6



Logic of events—the situation calculus

- We can model dynamic behavior with logic and resolution
- FOL representation of the events over time
- Resolution to find a solution

- Key idea: represent a snapshot of the world, called a
“situation” explicitly

- Fluents—statements that are true or false in any given
situation, e.g., “I am at home”

« Actions map situations to situations

- When an agent performs action A4 in situation S,, the result is a new
situation S,



Situations in the Wumpus world

- Each action leads to a new situation
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Describing actions and effects

- Situation—snapshot of the world at an interval of time
where nothing changes

- Every true or false statement is made w.r.t. a particular
situation
- Add situation variables to every predicate

- At(Agent,1,1) becomes At(Agent,1,1,s0)—At(Agent,1,1) is true in
situation (i.e., state) s0

- Result function, Result(a,s), mapping situation s into a new
situation as a result of performing action a



Advancing to the next situation

* Result(a,s) is the successor state (situation) that follows s

after we execute action a

- Advances to the next state in the dynamic world

* Result(forward, s,) = s,

(i.e. result of moving forward in state s,)
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Advancing to the next situation

* Result(a,s) is the successor state (situation) that follows s
after we execute action a
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Advancing to the next situation

* Result(a,s) is the successor state (situation) that follows s

after we execute action a ~
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Advancing to the next situation

* Result(a,s) is the successor state (situation) that follows s
after we execute action a ~
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Monkeys and bananas problem

- The monkey-and-bananas problem is faced by a monkey
standing under some bananas which are hanging out of
reach from the ceiling. There is a box in the corner of the
room that will enable the monkey to reach the bananas if
he climbs on it.

- Use situation calculus to
represent this problem

- Once we have a representation
in FOL, we can solve it using
resolution




Representation of Monkey/banana problem

A loc, 5
On (X'hy ! ZI) BANANAS
2eac able(x, Bananas, s) MONKEY
~ Has(x, y, s) BOX
~_ Other Predicates  JEEAY
Moveable(x) Corner
Climbable(x) UNDER-BANANAS
Can-move(x) : ’

Climb-on(x, y) Move(x, loc)
Reach(x, y) Push(x, y, loc)




Describe axioms of the world in FOL

1 Ifaperson (or monkey!) can reach the bananas ,then the result
of reaching them is to have them

2 Ifaboxis under the bananas and the monkey is on the box then
the monkey can reach the bananas

3 The result of moving to a location is to be at that location



Describe axioms of the world in FOL

1 Ifaperson (or monkey!) can reach the bananas ,then the result
of reaching them is to have them

Vx1, s1 [ Reachable(x1, BANANAS, s1) =
Has(x1, BANANAS, Result(Reach(x1, BANANAS), s1)) ]

2 Ifaboxis under the bananas and the monkey is on the box then
the monkey can reach the bananas

Vs2 [At(BOX, UNDER-BANANAS, s2) n On(MONKEY, BOX, s2) =
Reachable(MONKEY, BANANAS, s2)

3 The result of moving to a location is to be at that location

Vx3,loc3,s3 [ Can-move(x3) =
At(x3, loc, Result(Move(x3, loc3), s3)) |



Describe axioms of the world in FOL

4 The result of climbing on an object is to be on the object

5 Theresult of x pushing y to a location is y is at that location

6 The result of x pushing y to a location is x is at that location



Describe axioms of the world in FOL

4 The result of climbing on an object is to be on the object

Vx4, y4, s4 [Aloc4 [At(x4, loc4, s4) A At(y4, loc4, s4)] A
Climbable(y4) = On(x4, y4, Result(Climb-on(x4, y4), s4))]

5 Theresult of x pushing y to a location is y is at that location

Vx5, y5, loc5, s5 [dloc [At(x5, locO, s5) a At(y5, loc0, s5) | A
Moveable(y5) = At(y5, loc5, Result(Push(x5, y5, loc5), s5))

6 The result of x pushing y to a location is x is at that location
<same> = At(x6, loc6, Result(Push(x6, y6, loc6), s6)) ]



How does the monkey get the bananas?

Initial State (s0)
Moveable(BOX) ﬁﬁ
Climbable(B0OX)

Can-move(MONKEY) ‘

At(BOX, CORNER, SO)
At(MONKEY, UNDER-BANANAS, S0)

- Prove Has(MONKEY, BANANAS, Result(Reach( ...),
Result(..) ..), S0)

- Can use resolution
- Will give the actions from s0O to goal in reverse order

- For the proof to work, we need two additional frame
axioms...

Has(MONKEY, BANANAS, s)




Frame axioms for monkey/bananas problem

- Frame axioms keep track of what does not change from one
situation to the next

7 The location of an object does not change as a result of someone
moving to the same location

8 The location of an object does not change as a result of someone
climbing on it



Frame axioms for monkey/bananas problem

- Frame axioms keep track of what does not change from one
situation to the next

7 The location of an object does not change as a result of someone
moving to the same location

Vx, y, loc, s [ At(x, loc, s) =
At(x, loc, Result(Move(y, loc), s)) |

8 The location of an object does not change as a result of someone
climbing on it

Vx, y, loc, s [ At(x, loc, s) =
At(x, loc, Result(Climb-on(y, x), s)) ]



Limitation of situation calculus

- Frame problem (it’s back again!!)
- [ go from home to the store—new situation §’
- In S’

- The store still sells chips

« My age is still the same
- Los Angeles is still the largest city in California...

- How can we efficiently represent everything that doesn’t
change?
Successor state axioms...



Successor state axioms

- Normally, things stay true from one state to the next—
unless an action changes them

At(p, loc, Result(a, s)) iff a = Go(p, x)
or [At(p, loc, s) and a !'= Go(p, y)]

- We need one or more of these for every fluent

- Now we can infer an agent’s course of action
- Still not very practical

- Need for effective heuristics for situation calculus



Temporal reasoning in dynamic domains

- Situation calculus describes actions and events
- Resolution can provide a sequence, but no real temporal data

- Time is crucial part of common sense and fundamental to
natural phenomena
- Behavioral modeling involves dynamic information
- Changing environments require temporal reasoning

- Formal theory of time for reasoning about temporal
information, changes over time, and knowledge about how
these changes occur



Components of a temporal representation

 Theory of time
« Structure of the temporal representation—primitive units
- Expressiveness of the language and what we can reason about

- Temporal incidence

- Domain independent properties for determining truth-value

- How we determine what propositions are true or false relative to time
(i.e., P and - P cannot both be true in the same instant)

- Temporal propositions
« Fluents—propositions that can change over time

“the light is on”, “the ball is moving at speed v”, “the battery is
charging”

- Events/Actions—occurrences that happen in the world and can
change its state



Theories of time

- Requirements for a formal theory of time
- Represent commonsense notions of time

- Represent events and changing values of fluents without
contradicting intuitions about time

- What is going to be the primitive unit of time?

Instants (or points)—instants of time with no duration

Periods—intervals with positive duration
Events
Hybrid (instants AND intervals)



Instant-based theories of time

- Traditional structure for time adopted from classical physics
« Time is continuum of consecutive instants

- Instant—durationless pieces of time (beginning and end
not distinct)

- Defined on a structure (7, <) where
- 7 is a set of instants and
- < is an order(partial or total) over the instants

- Example models:
- Real-numbers time (R, <)
- Integer-numbers time (Z, <)



Application-specific properties of instant theory

- Linear vs. Non-linear (parallel, circular, etc.)
+ Linear time has only one possible time line
s (iI<)v(i=1)v([{’'<Ii)
« Can restrict linearity to only the past (i.e., left-linear time)
« Branching time allows multiple possible time lines when uncertain

>
Linear Time Branching Time l 5

> >

- Boundedness vs. infinite set of possible instants
- Bounds allow for more efficient computation

 Discrete vs. Dense
- Discrete—instants are adjacent, but not continuous
- Each instant has a single previous and next instant

- Dense—there is an instant between any two instants
c Vi I'(i<i"'=3i"(i<i”"<71)



Period-based theories of time

- Periods (intervals) are associated with events that take time
 Primitive time unit more related to our intuitive experiences

- Defined on a structure (7, R) where
- Pis a set of periods
- Ris a set of relationships between periods

- Example models
« Allen’s Interval Theory (7 AR)
- Allen & Hayes Interval Theory (7, Meets)



Allen’s Interval Theory

James F. Allen: Maintaining knowledge about temporal intervals. In: Communications of the ACM. 26 November 1983. ACM Press. pp. 832-843.)

- Structure (7, AR) where

- AR is the set of 13 primitive period relationships corresponding to
all possible qualitative relationships between two intervals

Axioms for Allen’s Interval Theory

A1 Given any period, there is another period related to it by each
relationship in AR

VPEP,REAR IAP'R(P, P)

A2 The relationships in AR are mutually exclusive
VPP°eP,REARVYR' €EAR-R, (R(P,P)= -R'(P, P))

A3 The relationships in AR have transitive behavior
(e.g., p1 BEFORE pZ2 and p2 MEETS p3 then p1 BEFORE p3)



Qualitative interval relationships AR

A BEFORE B B AFTER A A_ *
A MEETS B B MET BY A A—B
A OVERLAPS B B OVERLAPPED BY 4 m
B
__
B
___
A DURING B B CONTAINS 4 A—
B
___
A FINISHES B B FINISHED BY 4 —A
B
A
A EQUALS B BEQUALS A
: ? o




Allen-Hayes Interval Theory

- Structure (£, Meets) where

- Intuitive meaning of Meets(p1,p2) is that p1 is one of the immediate
predecessors (though not necessarily the unique one) of p2

- All other 12 relations can be represented by Meets

- Axioms (|| indicates Meets and is xor)

I e—
- Vp,qrspllgapl|lsar|lg=r]||s) s
"Ypgrspllgar|ls=3tlplltlls)epllse3c(r|lt]lq)

p_| d ., 4 1

L e o L s s
I

cwpagrqllpllr e - -
Every period has a direct previous and next period

- Vp,g,rnspllgllsapllrils=q=r)
Periods with the same begin and end are equal

Vo, q(pllg=3r,st(rilpllqllsa rilt]ls)
Periods can be concatenated to form a single period



Challenges caused by periods

- Instantaneous events
- Some events naturally represented as instants rather than periods

)«

E.g., “shoot the gun”, “start moving”
- How do we represent sequences of instantaneous events when there
is also continuous change—what happens “first”?
- Fluents that hold at an instant
- E.g., “The patient’s temperature was 99 degrees at 10:00am”
- What is truth value at instant of change?

Tossed ball scenario v=0
v > 0 when ball moving up,

v < 0 when moving down,

v = 0 at point of change v>0

v<O0

- How to represent the durationless instant where v = 0?



Dividing instant problem

- What if proposition holds for a period and is false in the
next? How do we decide truth value at instant in between?

- A fire that has been burning is later burnt out. What happens at the

intermediate instant between the two successive states of burning and
being extinguished?

« A light that has been off, and becomes on dfter it is switched on. Is the
light on or off at the switching instant?

- Period-based theories ignore question of whether instant is
member of an interval

- Ambiguity about the end points

« Closed periods lead to inconsistency (both fand —ftrue at meeting)
« Open periods lead to truth gap (neither f nor —f true at meeting)



Event-based theories of time

- Time is the relationship between events and processes
- Similar to period-based theories
- Events that happen at the same time not necessarily the same

- Defined on a structure (£ <, 0) where
- Fis a set of events,
- <is a precedence relation, and
« Ois an overlapping relation

- Event theories based directly on perceived phenomena—
events that take time

+ Do not distinguish between occurrences and their times of occurrence
« Might be more intuitive to think of time as a separate entity



Hybrid theories with periods and instants

- Include instants and periods in a single theory of time
- Real-world involves both instantaneous and durable events—natural
expression for both
- Efficient computation—use representation and relations that are
most efficient for the particular event

- Defined on a structure (7 7, <:7 x4, begin, end:7 x P)where
- 7is an infinite set of instant symbols,
- Pis an infinite set of period symbols disjoint from 7,
-+ < is an order relation over the instants, and
- the relations begin, end define the instants defining the beginning and
ending of periods

- Periods are ordered pairs of instants



L
Axioms of a hybrid theory

- < is a strict linear order over instants—single time line
- =(i<1)
ci<i’= ("< 1)
cI<IAT<T"=10<1"
cIi'vi'<ivi=T
- Instants are unbounded
<7< 0), A (i< i)
- End points of periods are ordered—no durationless periods
« begin(i,p) A end(i'p) =i <1
- All periods have unique beginning and ending instants
- i begin(i,p), di end(i,p)
* begin(i,p) A begin(i',p) =1i=1,end(ip) A end(i'p) =1i=1
- All ordered pairs of instants define a unique period
- i <i"=dp (begin(i,p) A end(i',p))
« begin(i,p) A end(i',p) A begin(i,p’) A end(i'"p)=p=p’



Incorporating time into logic

- Temporal incidence—how do we represent and determine
what is true at a given time?

- Several ways of incorporating time into logic s.t. inference is
still sound and complete
- Temporal arguments
- Modal temporal logics
- Reified temporal logics



Temporal arguments in FOL

- Adds time as argument to FOL functions and predicates
- Similar to adding state to predicates in the Situation Calculus

“The patient’s temperature is 99 degrees at 10:00 on Sept. 18” as
Temperature(P, 99,09/18/2012 10:00am)

- No special status for time
- Not expressive enough for general temporal assertions

- Cannot represent commonsense notions of time e.g., “effects cannot
precede their causes”



Modal temporal logics

- Extend propositional logic with additional modal operators
- Referred to as tense logic in philosophy

- Indicate temporal relationships between propositions

- Example modal operators

F¢ : formula ¢ “will be true”
P¢ : formula ¢ “was true”

G¢ : formula ¢ “will always be true”
H¢ : formula ¢ “was always true”

“The patient’s temperature is 99 degrees at 10:00 on Sept. 18" as
Temperature(P, 99,09/18/2012 10:00am)



Reified temporal logics

- Reify standard propositional or first-order logic
- Use “meta-predicates” such as Holds, Occur, Cause, etc.
- Relate predicates to temporal information

“The patient’s temperature is 99 degrees at 10:00 on Sept. 18” as
Holds(Temperature(P, 99),09/18/2012 10:00am)

- Accords special status to time

- Describe different types of temporal occurrence
- Negation easy to represent

- Represent causal relationships between events and their
effects



L
Reified hybrid temporal model (C7)

- Hybrid structure (7 7, <:7 x4, begin, end: 7 xP)
« Temporal primitives—instants and periods

 Define instant-period (e.g., within) and period-period relations (e.g.,
MEETS) using <, begin, end

- Instants and periods are both primitives

 Avoid dividing instant problem because can represent interior of
periods and the instants at end points in separate predicates

- Temporal propositions for continuous fluents, discrete

fluents, and events

- Fluents classified by whether change they represent is continuous
(e.g., charging battery) or discrete (i.e., light on or off)

- Reified temporal incidence relations for each combination
of temporal proposition and temporal primitive



(D Temporal incidence predicates

- Reify each possible relationship between primitives
(instants and periods) and predicates (fluents and events)

- HOLDS,,(f,r) The continuous fluent f holds throughout period p
- HOLDS ,(f,p) The discrete fluent f holds throughout period p

- HOLDS (f,i)  The continuous fluent f holds at instant i

- HOLDS (f,i)  The discrete fluent fholds at instant i

- OCCURS,,(e,p) The event e occurs on the period p

« OCCURS ,(e,i) The event e occurs at the instant /

- Use the begin and end relations in a functional form i = begin(p)



e
(D Axioms and properties

- Fluent holds during a period iff it holds at its inner instants
- HOLDS, (fp) < (Within(i,p) =HOLDS,,(f))

- Discrete fluents cannot hold at an isolated instant

- Has some value for one period, change event occurs at the instant, and
then has another durable value w.r.t. a period

- HOLDS ,(f;i) = 3p (HOLDS,  (f,p) A (Within(i,p) v begin(i,p) v end(i,p)))

- No special rules for events in general—application specific
(e.g., a war can occur at multiple periods, but only if they
meet; represent an election as instantaneous or durable)

- Non-atomic fluents— CDis compositional
- HOLDS, (~fi) <> =HOLDS,(f.i)
- HOLDS, (f Af,i) < HOLDS, ,(f.i) A HOLDS,(fi)
- HOLDS, (f v f,i) < HOLDS,(f.i) v HOLDS. (f.i)



e
Modeling a (green!) circuit with C'D

ik

Signal
e e d

Relay
V.

- Description of a simple solar powered circuit

1.

If the sun is shining and the relay is closed, then the solar array acts
as a constant current source and the battery accumulates charge

If the relay is closed, when the signal from the controller goes high
the relay opens.

[f the relay is open, when the signal from the controller goes low
the relay closes.

If the signal is low, when the controller detects that the charge level
in the battery has reached threshold g2 the controllers turns on the
signal to the relay



The challenge of sequences of events

- Initial state: signal = low, relay = closed, sun is shining
- How can we model the temporal incidence of the following:

“The signal goes high and immediately after the relay opens.”

using the environment rules from the previous slide?

s0 (t1, t2) <q2 low closed

s1 t2 =q2 low closed
s1.1 t2.1 ? high closed
s1.2 t2.2 ? high open

s2 (t2.2,_) <q2 high open



The challenge of sequences of events

- Initial state: signal = low, relay = closed, sun is shining
- How can we model the temporal incidence of the following:

“The signal goes high and immediately after the relay opens.”

using the environment rules from the previous slide?

signal s0 (t1,t2) <q2 low

closed
relay
g(.)es s1 t2 =q2 low closed opens
high
s1.1 t2.1 ? high closed
s1.2 t2.2 ? high open
s2 (t2.2,_) <q2 high open

dividing instant!



Model instantaneous and continuous change

- What we intuitively want to model is much simpler

s0

s1

s2

(t1, t2) <q2
t2 =q2
(t2.2,_) <q2

- Can formalize this with ¢D

sO

sl

S2

HOLDS,,(Qss < 42, p1)
HOLDS_, (signal = low, p2)
HOLDS (relay = closed, p3)

HOLDS,(Qg, = 42, end(p1))
OCCURS,,(turn_on(signal), end(p1))
HOLDS_, (signal = on, p4)

OCCURS,,(open(relay), end(p3))
HOLDS,, (relay = open, p5)

low closed
? ?
high open

end(pl) = end(p2)
MEETS(p2,p4)
end(p2) = end(p3)
MEETS(p3,p5)



