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Post-Midterm lopics



Topic Models

e Bag of words representations of documents
o Multinomial mixture models
¢ | atent Dirichlet Allocation
o (Generative model
o Expectation Maximization (PLSA/PLSI)
o Variational inference (high level)
e Perplexity
e Extensions (high level)
o Dynamic Topic Models
o Supervised LDA
o |deal Point Topic Models




Dimensionality Reduction

Principal Component Analysis
o Interpretation as minimization of reconstruction error
o Interpretation as maximization of captured variance
o Interpretation as EM Iin generative model
o Computation using eigenvalue decomposition
o Computation using SVD
o Applications (high-level)

= Eigenfaces

» Latent Semantic Analysis

= Relationship to LDA

= Multi-task learning
o Kernel PCA

= Direct method vs modular method




Dimensionality Reduction

e Canonical Correlation Analysis
o Objective
o Relationship to PCA
o Regularized CCA
= Motivation
= Objective
e Singular Value Decomposition
o Definition
o Complexity
o Relationship to PCA
e Random Projections
o Johnson-Lindenstrauss Lemma



Dimensionality Reduction

e Stochastic Neighbor Embeddings
o Similarity definition in original space
o Similarity definition in lower dimensional space
o Definition of objective in terms of KL divergence
o (Gradient of objective



Recommender Systems

e Motivation: The long tail of product popularity
e Content-based filtering
o Formulation as a regression problem
o User and item bias
o Temporal effects
e Matrix Factorization
o Formulation of recommender systems
as matrix factorization
o Solution through alternating least squares
o Solution through stochastic gradient descent



Recommender Systems

e Collaborative filtering
o (User, user) vs (item, item) similarity
» Pro’s and cons of each approach
o Parzen-window CF
o Similarity measures
» Pearson correlation coefficient
= Regularization for small support
= Regularization for small neigborhood
» Jaccard similarity
= Regularization
» Observed/expected ratio
= Regularization



Assoclation Rules

® Problem formulation and examples
o Customer purchasing
o Plagiarism detection
e Frequent ltemset
o Definition of (fractional) support
e Association Rules
o Confidence
o Measures of interest
» Added value
= Mutual information



Assoclation Rules

e A-priori
o Base principle
o Algorithm
o Self-joining and pruning of candidate sets
o Maximal vs closed itemsets

O
O
O

Hash tree implementation for subset matching
/O and memory limited steps

PCY method for reducing candidate sets

e FP-Growth

o FP-tree construction

o Pattern mining using conditional FP-trees
e Performance of A-priori vs FP-growth



Aside: PCY vs PFP (parallel FP-Growth)

[ asked an actual expert

| notice that Spark MLib ships PFP as its main algorithm and | notice you benchmark against
this as well. That said | can imagine there are might be different regimes where these
algorithms are applicable. For example | notice you look at large numbers of transactions
(order 1077) but relatively small numbers of frequent items (1073-1074). The MMDS guys
seem to emphasize the case where you cannot hold counts for all candidate pairs in memory,
which presumably means numbers of items of order (1075-1076). Is it the case that once you
are doing this at Walmart or Amazon scale, you in practice have to switch to PCY-variants?

Hi Jan,

This is a good question.

In my opinion, it is not true that if you have million of items then you need to use PCY-variants.
FP-Growth and its many of variants are most likely going to perform better anyway, because

available implementations have been seriously optimized. They are not really creating and
storing pairs of candidates anyway, so that’s not really the problem.

Matteo
Riondato

Hope this helps,

Matteo

PARMA: a parallel randomized algorithm for approximate association rules
mining in MapReduce

M Riondato, JA DeBrabant, R Fonseca... - Proceedings of the 21st ..., 2012 - dl.acm.org
Abstract Frequent ltemsets and Association Rules Mining (FIM) is a key task in knowledge
discovery from data. As the dataset grows, the cost of solving this task is dominated by the
component that depends on the number of transactions in the dataset. We address this issue
Cited by 68 Related articles All 16 versions Cite Save




LINnk Analysis

o Recursive formulation
= Interpretation of links as weighted votes
» |Interpretation as equilibrium condition
IN population model for surfers
(inflow equal to outflow)
= [nterpretation as visit frequency of random surfer
o Probabillistic model
o Stochastic matrices
o Power iteration
o Dead ends (and fix)
o Spider traps (and fix)
o PageRank Equation
= Extension to topic-specific page-rank
» Extension to TrustRank




Times Series

® [ime series smoothing

o Moving average

o Exponential
e Definition of a stationary time series
e Autocorrelation
e AR(p), MA(q), ARMA(p,q) and ARIMA(p,d,q) models
e Hidden Markov Models

o Relationship of dynamics to

random surfer in page rank
o Relatinoship to mixture models
o Forward-backward algorithm (see notes)




Social Networks

e Centrality measures
o Betweenness
o Closeness
o Degree
e Girvan-Newman algorithm for clustering
o Calculating betweenness
o Selecting number of clusters using the modularity



Social Networks

e Spectral clustering
o Graph cuts
o Normalized cuts
o Laplacian Matrix
= Definition in terms of Adjacency and Degree matrix
= Properties of eigenvectors
= Eigenvalues are >= 0
= First eigenvector
= Eigenvalue is O
= Eigenvectoris [1 ... 1]AT
= Second eigenvector (Fiedler vector)
= Elements sum to O
= Eigenvalue is normalized sum
of squared edge distances
o Use of first eigenvector to find normalized cut



Pre-Midterm lopics



Conjugate Distributions

Binomial: Probability of m heads in N flips




Conjugate Distributions

Posterior probability for uy given flips

| | | [
24 heads, 26 tails

16 heads, 14 tails

-———
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Oheads O1als /il -
.0 OI.2 0.4 0.6 \;8 1.0
- p(m, u)
p(u|m) =
p(m)

o< Bin(m | N, u)Beta(u | a, b)
OC ‘um+(a—1)(1 . ‘u)(N—m)+(b—1)

p(u|m)=Beta(a +m, b+ (N —m))



INnformation Theoretic Measures

KL Divergence Perplexity
q(x)
KL = log —= — 9=, P(x)log, p(x)
(q1lp) Eq(x) 08 Per(p) = 2
Mutual Information Perplexity (of a model)
p(x, .Y) N
I(X;Y)= , V)1 — Zn:11082CI(yn)
(X;Y) XZJ:P(X y) %8 I O) Per(q) = 2
. 1 <N
Entropy p(y) = N D1 IYn=Y]
X Per(q) — eH(ZA?:CI)



squared loss:
Zero-one:
logistic loss:

hinge loss:

| 0SS Functions

s(w'x —y)’
7(Sign(w 'x) — y)?
log(l + exp(—wax))

max{0,1—yw 'x}

y €R

y €{—1
y €{—1
y e{—1

Linear Regression
Perceptron
Logistic Regression

Soft SVMs



[igh Bias

Bias-Variance Trade-Off

Error on test set

Variance

Optimum Model Complexity

5 -
Model Complexity

Variance of what exactly”?



Bias-Variance Trade-Off

Assume classifier predicts expected value for vy

f(x) =Eylylz] =y

Squared loss of a classifier

[y — f(@)?z] = Eylly—y+7— f(2)’|
(y —9)°|z] + Ey[(7 — f(x))?|x]




Bias-Variance Trade-Off

Training Data Classifier/Regressor

N
T={(z"y)|i=1,...,n} Yy :argminZL(yi,f(xi))
i=1

;
Expected value for y Expected prediction
g =Eylyl|z] f(x) = Er[fr(z)]

Bias-Variance Decomposition

Ly rl(y — fr(z))*lz] = Ey[(y — 7)
+Ey r[(f(x) — fr(z))?|z]

+Ey[(5 — f(x))?|x]

= var, (y|x) + varp(f(z)) + bias(fr(x))?

2

]




Bagging and Boosting

Bagging Boosting
- 1 B 1 B
Fp80) = ) fr, () FP(x) = = )ty fi, ()
b=1 b=1
 Sample B datasets Tp e Seqguential training

at random with replacement . Assign higher weight

from the full data 7 to previously misclassified
* T[rain on classifiers data points
independently on each

« Combines weighted weak
dataset and average results

learners (high bias) into
 Decreases variance a strong learner (low bias)
(i.e. overfitting) does not

o e Also some reduction of
affect bias (i.e. accuracy).

variance (in later iterations)



