Data Mining lechnigues

CS 6220 - Section 3 - Fall 2016

Lecture 20: Deep Learning

Jan-Willem van de Meent
(credit: CS 231n)




Perceptron
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Simple classifier:
“Linear regression + Sign”




Perceptron
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hitps://en.wikipedia.org/wiki/Perceptron

Mark | Perceptron. Used 20x20
cadmium sulfide photocells
to produce a 400-pixel image.


https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Perceptron

Multi-layer Perceptron

Add a “hidden” layer

7 RS
: 2 . \\/E : Yi = / (ZZ W](’?) hi + b§2))
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input layer ie e hJ — f (ZZ W](Z )CBZ T b§ )>
hidden layer

Sigmoid Activation

Basically like “stacked”
logistic regression f(z) = o(2)
—1/(14e¢7)



Multi-layer Perceptron

Multiple Hidden Layers
= £ (SwPn 40

(n) _ (n)  (n—1) , 7 (n)
3 _f(Zini P 4 )

input layer 1 1
. hidden layer 1 hidden layer 2 h§l) — f (ZI WJ(’L )ZC'L + b.g )>
Number of parameters Sigmoid Activation
INn this example:
4*(3+1) + 4*(4+1) + 1*(4+1) f(z) = o(2)
= 41 =1/(1+4+e %)

(quadratic in layer size)



Activation Functions
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Sigmoid Activation Tanh Activation RelLU Activation
f(z) = o(2) f(z) =tanh(z)  f(z) = max{0, 2}
=1/ +e™) “Rectified

linear units”



Some Basic Questions

iInput layer

hidden layer 1 hidden layer 2

1. Why might this be a good idea?

2. How can we learn the parameters?



. Feature Maps

Reminder
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L earning Feature Maps
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. output layer

hidden layer 1 hidden layer 2

iInput layer

* Make hidden layer wider than inputs

 “Learn” feature representation
(by training parameters)

* Use multiple layers to learn "abstractions”



Training Neural Nets

iInput layer

hidden layer 1 hidden layer 2

* Define a loss function on output
(e.g. regularized squared/logistic/hinge loss)

» Calculate gradients of loss w.r.t. weights

* Perform stochastic gradient descent



Back-propagation
(a.k.a. applying the chain rule)

1-Layer Perceptron

S gy = F (S WP + 657

output layer h] — f (ZZ W](Zl)$z 4 bgl))

input layer

hidden layer

Zaﬁ dy; Oy, OL
b“) Ohy, p1) oY

Now minimize loss using Stochastic Gradient Descent



Reminder: Stochastic Gradient Descent

Batch gradient descent (evaluates all data)

w,=w_;—a/V,E(y; W)lw:wt_1

Minibatch gradient descent (evaluates subset)

W :Wt—l_atvwE(yt;WNw:Wt_l Ye CY

Converges under Robbins-Monro conditions

©,0) . @) 2 . OLO
thl a, = 00 thl ad; < 00 A = (T4t)x



lmprovements on SGD

= Nesterov Momentum Update

momentum ||
nag | Ut — UU¢t—1 — Oétvf(et—l + ,lwt—l)
adagrad |
adadelta NN (975 — (975—1 + Uy

N
rmsprop

\\\\ AdaGrad Update
gt = V [(0;)

: G, = G;_1 + diag [Qt—lgtT_ﬂ

gt—1
8‘0 160 120 Gt _|_ €

credit: Alec Radford

* Momentum/NAG: Average gradients over multiple steps
 Adagrad/RMSprop: Approximate inverse of Hessian

(adapted from: http://cs231n.stanford.edu)


http://cs231n.stanford.edu
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Challenges in Training

 SGD local optimum is sensitive to

initialization method for weights

* The gradient signal may be too noisy

to learn from for deeper layers



Welignt initialization

- Q: what happens when W=0 init is used?

output layer
iInput layer

hidden layer

(adapted from: http://cs?231n.stanford.edu)


http://cs231n.stanford.edu

Welignt initialization

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

(adapted from: http://cs231n.stanford.edu)
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input layer had mean ©.000927 and std 0.998388

Welignt initialization

hidden layer 1 had mean -0.000117 and std ©.213081
hidden layer 2 had mean -0.000001 and std ©.047551 - .
hidden layer 3 had mean -0.000002 and std 0.010630
hidden layer 4 had mean 0.000001 and std 0.002378 aC Iva IOnS
hidden layer 5 had mean 0.000002 and std 0.000532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean 0.000000 and std 0.000026 '
hidden layer 8 had mean -0.000000 and std ©.000006 eCOI I le Ze ro
hidden layer 9 had mean 0.000000 and std 0.000001 =
hidden layer 10 had mean -0.000000 and std 0.000000

A layer mean layer std

000000 » — g ———¢ * - -

| Q: think about the
iy backward pass.

IR What do the
oo e 1 gradients look like?

Hint: think about backward
pass for a W*X gate.

(adapted from: http://cs231n.stanford.edu)
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Welignt initialization

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

input layer had mean 0.001800 and std 1.001311

hidden layer 1 had mean -0.000430 and std ©.981879
hidden layer 2 had mean -0.000849 and std ©0.981649
hidden layer 3 had mean 0.000566 and std ©.981601
hidden layer 4 had mean 0.000483 and std ©.981755 * . *
hidden layer 5 had mean -0.000682 and std 0.981614 1 O I nstead Of O O 1
hidden layer 6 had mean -0.000401 and std ©.981560 - -
hidden layer 7 had mean -0.000237 and std ©.981520
hidden layer 8 had mean -0.000448 and std ©.981913
hidden layer 9 had mean -0.000899 and std ©.981728
hidden layer 10 had mean 0.000584 and std ©.981736
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Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

(adapted from: http://cs231n.stanford.edu)
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Welignt initialization

input layer had mean ©.001800 and std 1.001311
hidden layer 1 had mean 0.001198 and std 0.627953
hidden layer 2 had mean -0.000175 and std 0.486051
hidden layer 3 had mean 0.000055 and std 0.407723
hidden layer 4 had mean -0.000306 and std 0.357108
hidden layer 5 had mean 0.000142 and std 0.320917
hidden layer 6 had mean -0.000389 and std ©0.292116
hidden layer 7 had mean -0.000228 and std 0.273387
hidden layer 8 had mean -0.000291 and std ©.254935
hidden layer 9 had mean 0.000361 and std ©0.239266
hidden layer 10 had mean 0.000139 and std 0.228008

layer mean

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
: assumes linear activations)

Size of weight proportional to square root of number inputs

(adapted from: http://cs231n.stanford.edu)
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Batch Normalization [loffe & Szegedy 2015]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

z(F) — E[z®)]

V/ Var[z(F)] this is a vanilla
differentiable function...

7k)

(adapted from: http://cs231n.stanford.edu)
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Batch Normalization [loffe & Szegedy 2015]

“you want unit gaussian activations?
just make them so.”

1. compute the empirical mean and
variance independently for each

dimension.
N X :
2. Normalize
~(F) _ r(k) _ E[x(k)]
D v/ Var[z(k)]

(adapted from: http://cs231n.stanford.edu)
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Batch Normalization [loffe & Szegedy 2015]

FC Usually inserted after Fully
BlN Connected / (or Convolutional, as
we’ll see soon) layers, and before
tal”h nonlinearity.
FC
1 k k
BN Problem: do we ~(k) * — E[:IZ( )]
necessarily want a unit o (k)
tanh gaussian input to a \/Vglr[x ]
| tanh layer?

(adapted from: http://cs231n.stanford.edu)
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Batch Normalization [loffe & Szegedy 2015]

Normalize:

(k) _ E[(k)

k
\/VM[x( )] Note, the network can learn:

And then allow the network to squash 7(k) — \/Var[:lj(k)]
the range if it wants to:

to recover the identity
mapping.

y®) = A(R)Z(k) | (k)

(adapted from: http://cs231n.stanford.edu)
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Batch Normalization [loffe & Szegedy 2015]

Input: Values of z over a mini-batch: B = {1, };
Parameters to be learned: v,

Output: {y; = BN, g(z;)}

1 m
,LLB(—E;Z'Z

1 m
o = ) (i — ps)
=1

// mini-batch mean

// mini-batch variance

A~ x _ B -
Ts 4 A // normalize

;i < 7%; + B = BN, (=)

// scale and shift

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,
maybe




Dropout [Srivastava et al. 2014
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(b) After applying dropout.

a) Standard Neural Net

[dea: For each gradient step, “turn off” random
subset of units in each layer (i.e. multiply by zero)

(adapted from: http://cs231n.stanford.edu)
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Dropout [Srivastava et al. 2014

Waaaait a second...
How could this possibly be a good idea?

Forces the network to have a redundant representation.

G - has an ear X
- has a tall k
- is furry X—  cat

()
@,
G " has claws — PP
O

x/

- mischievous
look

(adapted from: http://cs231n.stanford.edu)



http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014

Waaaait a second...
How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

(adapted from: http://cs231n.stanford.edu)
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Dropout [Srivastava et al. 2014

At test time....

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with
different dropout masks, average all

predictions

(adapted from: http://cs231n.stanford.edu)


http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014

At test time....
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

during test: a = wO*x + w1 *y With p=0.5, using all inputs

in the forward pass would

2 during train: inflate the activations by 2x
— 1/ * %* %* from what the network was
E[a] - A (WO 0+ w170 “used to” during training!
* * => Have to compensate b
- P y
WO O W1 y scaling the activations back
w0 w1 wO*x + w1*0 down by

wO*X + w1*y)
=% ™ (2w0™ + 2 wl*y)
= * (W0*x + w1*y)

Inverted Dropout: Scale up activations at train time

(adapted from: http://cs231n.stanford.edu)
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Convolutional
Neural Nets



HoG/SIFT features in Computer Vision

PRy a2 R Ry 8x8 pixel region,

e e NN e S ke e quantize the edge
oo e e e e SN N e orientation into 9 bins
'_"‘L"L—_ t““_"} : -;:-’){:- T = i -.}J‘*-:_;- \k- S

A \

frequency

orientation

State of the art before deep learning:
calculate histograms of gradients



Convolutional Neural Nets

C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
Q2.0 maps r O 76 layer OUTPUT

6@14x14
.-
I

Full conAectlon Gaussuan connections
Convolutions Subsampling Convolutions Subsamphng Full oonnect:on

[Lecun, Bottou, Bengio & Haffner, 1998]

Gradient-based learning applied to document recognition

Y LeCun, L Bottou, Y Bengio... - Proceedings of the ..., 1998 - ieeexplore.ieee.org
Multilayer neural networks trained with the back-propagation algorithm constitute the best
example of a successful gradientbased learning technique. Given an appropriate network
architecture, gradient-based learning algorithms can be used to synthesize a complex
decision surface that can classify high-dimensional patterns, such as handwritten
characters, with minimal preprocessing. This paper reviews various methods applied to ...
Cited by 6350 Related articles All 53 versions Cite Save




Convolutional Neural Nets

C3:f. maps 16@10x10

INPUT ggggggemmﬁ S4: 1. maps 16@5x5
3232 S2: f. maps CS:layer g OUTPUT
6@14x14 120 8& layer o
| \

— I
| Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

[Lecun, Bottou, Bengio & Haffner, 1998]
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Convolutional Neural Nets

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl
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(adapted from: http://cs231n.stanford.edu
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Convolutional Neural Nets

COnVOI Ution Layer Filters always extend the full

_———— depthofthe input volume
32x32x3 Image /

5x5x3 filter

32

Convolve the filter with the image
l.e. “slide over the image spatially,
computing dot products”

32

(adapted from: http://cs231n.stanford.edu)
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Convolutional Neural Nets

Convolution Layer

__— 32x32x3 image

5x5x3 filter w
=

™~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
3
w'z + b
Convolution: flx.yl*glx,yl = >, Y fln.n,-glx—n.y—n,]

Ny =—c0 M, =—00
| : A

(adapted from: http://cs231n.stanford.edu)
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Convolutional Neural Nets

Convolution Layer

__— 32x32x3 Image
5x5x3 filter

V

Z7:>O

32

convolve (slide) over all
spatial locations

(adapted from: http://cs231n.stanford.edu)

activation map

£

.

28
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Convolutional Neural Nets

Convolution Layer

__— 32x32x3 image
5x5x3 filter

V

——0

convolve (slide) over all
spatial locations

32

(adapted from: http://cs231n.stanford.edu)

consider a second, green filter

activation maps

y

o

28
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Convolutional Neural Nets

o filters of size 5x5x3 yields a new 28x28x6 “image”

activation maps

32

28

Convolution Layer

32 A

3 6

We stack these up to get a “"new image” of size 28x28x0!

(adapted from: http://cs231n.stanford.edu)
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Convolutional Neural Nets

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

—’

> o 112
224 downsampling

224

(adapted from: http://cs231n.stanford.edu)
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Convolutional Neural Nets

Max-pooling: Subsample by taking maximum in window

Single depth slice

1112 | 4

max pool with 2x2 filters
51 6|7 | 8 and stride 2
312|110
112 |3 | 4

(adapted from: http://cs231n.stanford.edu)
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Feature Maps

“ YECINEESDNIITN HESESASTIERERESRS
one filter => :
one activation map example 5x5 filters
’ = (32 total)

Activations: 4

(adapted from a slide by Yann LeCun)



Feature Abstractions

Low-Level Mid-Level [ Trainable
Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

(adapted from a slide by Yann LeCun)



Neural Nets Keep Getting Bigger

IMAGENE T Large Scale Visual Recognition Challenge

Year 2010 Year 2012 Year 2014 Year 2015
NEC-UIUC SuperVision GoogLeNet VGG MSRA
34-layer residual
- image |
g conv-64
=]
Pl == conv-64
m E maxpool
B
3 &5 5 B e conv-128
§ JU gg;ﬁg conv-128
[ Dense grid descriptor: } @E';;S'E maxpool
HOG, LBP =< - I conv-256
¢ J 8 |L>J i E;S‘ = conv-256
Coding: local coordinate, ) Lo ﬁgii makpool
super-vector "gga —= = [ conv-512
\ v 1 = |2 e ]
¢ 8 = e S e conv-512
( N Lo Lo/ sazia maxpool
Pooling, SPM ;—H:— T conv-512
\ y, 3 g’ ' g gg g g AW conv-512
¢ g gl >< l : ";‘ maxpool
( . )  m—T = - FC-4096
Linear SVM § i >§< l EAES = e
b ‘ T = e i e B FC-1000
g 8 Convolutidn= softmax
Pooling "
Other
[Lin CVPR 2011] [Krizhevsky NIPS 2012] [Szegedy arxiv 2014]  [Simonyan arxiv 2014]

(adapted from: http://cs231n.stanford.edu)
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Case Study: LeNet-5 [Lecun et al 1998]

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

A o r CS: layer F6:layer QUTPUT

6@14x14
r

| Full conAectnon Gaussuan connections
Convolutions Subsampling Convolunons Subsamplnng Full oonnecnon

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

(adapted from: http://cs231n.stanford.edu)
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Case Study: AlexNet [Krizhevsky et al 2012]

Full (simplified) AlexNet architecture: 1
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
27x27x96] MAX POOL1: 3x3 filters at stride 2
27x27x96] NORM1: Normalization layer

27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POQOL2: 3x3 filters at stride 2
[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
6x6x256] MAX POOLS3: 3x3 filters at stride 2

24\[lirig

-of4

4090] 4096 neurons
40906] 4096 neurons
[1000] 1000 neurons (class scores)

85

48

5 & s 3|' 1% B o
."‘:\._..'.'.. _,,_:,:— d 3 X
o R —Tg3 192 128 2048 20as \dense
128 R e i T

AN 13 \ 13

ROt 2 3 < >, .\ 3 . '.... 4'_._._'._& i
57 oo Q” El AR Z 13 dense | [dense
&E Y 1000
192 192 128 Max L ||
2048 2048

Max
pooling

128 Max pooling  *

pooling

Details/Retrospectives:

- first use of ReL.U

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

oOM parameters

(adapted from: http://cs231n.stanford.edu)
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ImageNet Winners Keep Getting Deeper

Year 2010
NEC-UIUC

Dense grid descriptor:
HOG, LBP

J

v

Coding: local coordinate,
super-vector

J

¥

e N
Pooling, SPM
\ Y,
v
r ™
Linear SVM
\ Y,

[Lin CVPR 2011]

Year 2012

SuperVision

[Krizhevsky NIPS 2012]

[Szegedy arxiv 2014]

Year 2014

GooglLeNet

Blen]ne

B B
9 E3 E3 £
i
B 29 £
25 B3 29 21
et
B3
B 1 B
e e e o)
==
= e Yo
[Eof=rl=r ==l
] -]
B EEEE
- rup s f e o)
iy
B S B
e s R v
iy
B e e b
N e Eh Sl B
E4 By
1 ==
- B e
3 23 3 23
piei
[ |
B B3 B9 B
Convolution®

Pooling "

Other

(adapted from: http://cs231n.stanford.edu)

VGG

conv-64
conv-64
maxpool

conv-128
conv-128
maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096
FC-1000
softmax

[Simonyan arxiv 2014]

Year 2015

MSRA

34-layer residual
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ImageNet Winners Keep Getting Deeper

‘Research

Revolution of Depth 282

25.8

: 152 layers

[ 22 layers y { 19 Iayers

\67

357 l__ ' 8 layers | | 8layers ! shallow

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

ICCV

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

(adapted from: http://cs231n.stanford.edu)
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Convolutional Nets are Everywhere

Classification

motor scooter

motor scooter

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
» N
:

grilie mushroom cherry adagascar ca
vertible agaric el monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus dshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

(adapted from: http://cs231n.stanford.edu)

Retrieval

[Krizhevsky 2012]
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Convolutional Nets are Everywhere

Segmentation
7? P s‘ iy 90 gin

e . b iifing j
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[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

(adapted from: http://cs231n.stanford.edu)
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Segmentation
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[Faster R-CNN: Ren, He, Girshick, Sun 2015] [Farabet et al., 2012]

(adapted from: http://cs231n.stanford.edu)
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Convolutional Nets are Everywhere

REPRESENTATION
SFC labels

: M2: C3: L4: LS: L6: F8
Calista Flockhart 0002.}'pg Frontalization: 3I2x11x11x3 32x3x3x32 16x9%9x%32 16x9x%x16 16x7x7x16 16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21Xx21

-
b

Spatial stream ConvNet
convi || conv2 || conv3 || conv4 || conv5 fullé full7 IsAﬂmax

7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || sfride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2

pool 2x2 || pool 2x2

Temporal stream ConvNet

‘ convi || conv2 || conv3 || conv4 || conv5 fullé full7 [oﬂmax

7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

input norm. ||pool 2x2 pool 2x2
video multi-frame pool 2x2

. optical flow

[Simonyan et al. 2014]

[Goodfellow 2014]

(adapted from: http://cs231n.stanford.edu)
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Convolutional Nets are Everywhere
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[Sermanet et al. 2011]

[Ciresan et al.]

[Ciresan et al. 2013]

nford.

231n.

(adapted from: http:
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Convolutional Nets are Everywhere

[Turaga et al., 2010]

Human
segmentation

COnnected components
CN affini

I caught this movie on the Sci-Fi channel recently. It actually turned out to be pretty decent as far as B-list horror/suspense films go. Two guys (one naive and one
loud mouthed a **) take a road trip to stop a wedding but have the worst possible luck when a maniac in a freaky, make-shift tank/truck hybrid decides
to play cat-and-mouse with them. Things are further complicated when they pick up a ridiculously whorish hitchhiker. What makes this film unique is that the
combination of comedy and terror actually work in this movie, unlike so many others. The two guys are likable enough and there are some good chase/suspense
scenes. Nice pacing and comic timing make this movie more than p ble for the h /slash ff. itely worth checking out.

2 s

1 just saw this on a local independent station in the New York City area. The cast showed promise but when I saw the director, George Cosmotos, I became

Andmmugh.nmmwsumwumwnuﬂdumwmmvhlmnw_ He’s like a stupid man’s
Michael Bey — with all the awfulness that ladk i There’s no point to the conspiracy. no burning issues that urge the conspirators on. We are left to
ourselves to connect the dots from one bit of graffiti un various walls in the film to the next. Thus, the current budget crisis, the war in Iraq, Islamic extremism, the
fate of social security, 47 million Americans without health care, stagnating wages, and the death of the middle class are all subsumed by the sheer terror of graffiti. A
truly. stunningly idiotic film.

Graphics is far from the best part of the game. This is the number one best TH game in the series. Next to Underground. It deserves strong love. It is an insane
game. There are massive levels, massive unlockable characters... it’s just a massive game. Waste your money on this game. This is the kind of money that is
wasted properly. And even though graphics suck, thats doesn’t make a game good. Actually, the graphics were good at the time. Today the graphics are crap. WHO
CARES? As they say in Canada, This is the fun game, aye. (You get to go to Canada in THPS3) Well, I don’t know if they say that, but they might. who knows. Well,
Canadian people do. Wait a minute, I'm getting off topic. This game rocks. Buy it, play it, enjoy it, love it. It's PURE BRILLIANCE.

The first was good and original. I was a not bad horror/comedy movie. So I heard a second one was made and I had to watch it . What really makes this movie work
is Judd Nelson's character and the sometimes clever script. A pretty good script for a person who wrote the Final Destination films and the direction was okay.
Sometimes there’s scenes where it looks like it was filmed using a home video camera with a grainy - look. Great made - for - TV movie. It was worth the rental
and probably worth buying just to get that nice eerie feeling and watch Judd Nelson’s Stanley doing what he does best. I suggest newcomers to watch the first
one before watching the sequel, just so you'll have an idea what Stanley is like and get a little history background.

[Denil et al. 2014]

(adapted from: http://cs231n.stanford.edu)
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CNNSs for Reinforcement Learning
[Mnih et al., Nature 2015]

Convolution Convolution Fully connected Fully connected
v v v v

No input

dootonn  dooonnn

AINMNIRE€C VIV
+ I+ Q++0+0+0+0+
@] (@] (©) (@] (@] (@] (©)] (C

Figure 1 | Schematic illustration of the convolutional neural network. The  symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural  layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0,x)).

map ¢, followed by three convolutional layers (note: snaking blue line

Inputs: Time series of Atari images, Loss: Game score
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CNNSs for Reinforcement Learning

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher
Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot
Enduro |
Fishing Derby |
Up and Down |
lce Hockey |
Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |

1

—

At human-level or above

Below human-level




CNNSs for Reinforcement Learning

Q*bert |
H.E.R.O. |
Asterix |

Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist
River Raid |
Zaxxon |
Amidar

Alien

Venture |
Seaquest |
Double Dunk |
Bowling

Ms. Pac-Man
Asteroids |
Frostbite |
Gravitar |
Private Eye |
Montezuma's Revenge |

At human-level or above

Below human-level

DQN

Best linear learner
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