
Data Mining Techniques
CS 6220 - Section 3 - Fall 2016

Lecture 20: Deep Learning
Jan-Willem van de Meent
(credit: CS 231n)

Perceptron

y = f (
P

i wixi + b)

f(z) =

⇢
1 z > 0
0 z  0

Simple classifier:
“Linear regression + Sign”

Perceptron

y = f (
P

i wixi + b)

f(z) =

⇢
1 z > 0
0 z  0

Mark I Perceptron. Used 20×20  
cadmium sulfide photocells  
to produce a 400-pixel image.

https://en.wikipedia.org/wiki/Perceptron

https://en.wikipedia.org/wiki/Cadmium_sulfide
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Perceptron

Multi-layer Perceptron

f(z) = �(z)

= 1/(1 + e�z)

Sigmoid Activation

Add a “hidden” layer

yj = f
⇣P

i W
(2)
ji hi + b(2)j

⌘

hj = f

⇣P
i W

(1)
ji xi + b

(1)
j

⌘

Basically like “stacked”  
logistic regression

Multi-layer Perceptron

f(z) = �(z)

= 1/(1 + e�z)

Sigmoid Activation

Multiple Hidden Layers

Number of parameters
in this example:
4*(3+1) + 4*(4+1) + 1*(4+1)
= 41

(quadratic in layer size)

yj = f

⇣P
i W

(y)
ji h

(N)
i + b

(y)
j

⌘

h

(n)
j = f

⇣P
i W

(n)
ji h

(n�1)
i + b

(n)
j

⌘

h

(1)
j = f

⇣P
I W

(1)
ji xi + b

(1)
j

⌘

Activation Functions

f(z) = �(z)

= 1/(1 + e�z)

Sigmoid Activation
f(z) = tanh(z) f(z) = max{0, z}
Tanh Activation ReLU Activation

“Rectified  
linear units”

Some Basic Questions

1. Why might this be a good idea?
2. How can we learn the parameters?

Reminder: Feature Maps

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

Kernels and feature space (1): XOR example

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

No linear classifier separates red from blue
Map points to higher dimensional feature space:
�(x) =

⇥
x1 x2 x1x2

⇤ 2 R3

Lecture 1: Introduction to RKHS

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

Kernels and feature space (1): XOR example

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

No linear classifier separates red from blue
Map points to higher dimensional feature space:
�(x) =

⇥
x1 x2 x1x2

⇤ 2 R3

Lecture 1: Introduction to RKHS

Feature space

Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

Kernels and feature space (1): XOR example

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

No linear classifier separates red from blue

Map points to higher dimensional feature space:

�(x) =
⇥

x1 x2 x1x2
⇤ 2 R3

Lecture 1: Introduction to RKHS

φ

Learning Feature Maps

• Make hidden layer wider than inputs
• “Learn” feature representation  

(by training parameters)
• Use multiple layers to learn “abstractions”

Training Neural Nets

• Define a loss function on output  
(e.g. regularized squared/logistic/hinge loss)

• Calculate gradients of loss w.r.t. weights
• Perform stochastic gradient descent

Back-propagation
(a.k.a. applying the chain rule)

yj = f
⇣P

i W
(2)
ji hi + b(2)j

⌘

hj = f

⇣P
i W

(1)
ji xi + b

(1)
j

⌘

1-Layer Perceptron

@L
b(1)k

=
X

i

@L
yi

X

j

@yi
@hk

@hk

b(1)k

+
@L
@b(1)k

Now minimize loss using Stochastic Gradient Descent

Batch gradient descent (evaluates all data)

Minibatch gradient descent (evaluates subset)

Converges under Robbins-Monro conditions

Reminder: Stochastic Gradient Descent

Improvements on SGD

• Momentum/NAG: Average gradients over multiple steps
• Adagrad/RMSprop: Approximate inverse of Hessian

(adapted from: http://cs231n.stanford.edu)

credit: Alec Radford

AdaGrad Update

Nesterov Momentum Update

vt = µvt�1 � ↵trf(✓t�1 + µvt�1)

✓t = ✓t�1 + vt

gt = rf(✓t)

Gt = Gt�1 + diag
⇥
gt�1g

>
t�1

⇤

✓t = ✓t�1 � ↵t
gt�1

G1/2
t + ✏

http://cs231n.stanford.edu

Challenges in Training

• SGD local optimum is sensitive to 
initialization method for weights

• The gradient signal may be too noisy  
to learn from for deeper layers

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201653

- Q: what happens when W=0 init is used?

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201658

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201659

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Weight initialization

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201660

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Size of weight proportional to square root of number inputs
(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Batch Normalization [Ioffe & Szegedy 2015]

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201665

Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Batch Normalization [Ioffe & Szegedy 2015]

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201666

Batch Normalization
“you want unit gaussian activations?
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Batch Normalization [Ioffe & Szegedy 2015]

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201667

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

Problem: do we
necessarily want a unit
gaussian input to a
tanh layer?

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201668

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

Batch Normalization [Ioffe & Szegedy 2015]

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Lecture 5 - 20 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201669

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

Batch Normalization [Ioffe & Szegedy 2015]

Dropout [Srivastava et al. 2014]

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201650

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et al., 2014]

Idea: For each gradient step, “turn off” random  
subset of units in each layer (i.e. multiply by zero)

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014]

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201653

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Waaaait a second…
How could this possibly be a good idea?

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014]

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201654

Another interpretation:

Dropout is training a large ensemble
of models (that share parameters).

Each binary mask is one model, gets
trained on only ~one datapoint.

Waaaait a second…
How could this possibly be a good idea?

http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014]

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201655

At test time….

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with
different dropout masks, average all
predictions

http://cs231n.stanford.edu

Dropout [Srivastava et al. 2014]

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201659

At test time….
Can in fact do this with a single forward pass! (approximately)

x y

Leave all input neurons turned on (no dropout).

during test: a = w0*x + w1*y
during train:
E[a] = ¼ * (w0*0 + w1*0

 w0*0 + w1*y
 w0*x + w1*0
 w0*x + w1*y)

 = ¼ * (2 w0*x + 2 w1*y)
 = ½ * (w0*x + w1*y)

a
With p=0.5, using all inputs
in the forward pass would
inflate the activations by 2x
from what the network was
“used to” during training!
=> Have to compensate by
scaling the activations back
down by ½ w0 w1

Inverted Dropout: Scale up activations at train time

http://cs231n.stanford.edu

Convolutional
Neural Nets

HoG/SIFT features in Computer Vision

Lecture 3 - 11 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 11 Jan 201672

Example: HOG/SIFT features

8x8 pixel region,
quantize the edge
orientation into 9 bins

�LPDJH�IURP�YOIHDW�RUJ�

State of the art before deep learning:
calculate histograms of gradients

Lecture 1 -

Fei-Fei Li & Andrej Karpathy & Justin Johnson 4-Jan-16 20

Histogram of Gradients (HoG)
Dalal & Triggs, 2005

Deformable Part Model
Felzenswalb, McAllester, Ramanan,

2009

Convolutional Neural Nets

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201671

A bit of history:
Gradient-based learning
applied to document
recognition
[LeCun, Bottou, Bengio, Haffner
1998]

LeNet-5
[Lecun, Bottou, Bengio & Haffner, 1998]

Convolutional Neural Nets

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201671

A bit of history:
Gradient-based learning
applied to document
recognition
[LeCun, Bottou, Bengio, Haffner
1998]

LeNet-5
[Lecun, Bottou, Bengio & Haffner, 1998]

3

4 4 4

4

34

8

3

C1 S2 C3 S4 C5

F6

Output

Used for handwriting recognition

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201622

preview:

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201612

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201613

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201621

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

one filter =>
one activation map

Convolution:
(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201614

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201615

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Convolutional Neural Nets

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201616

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutional Neural Nets
6 filters of size 5x5x3 yields a new 28x28x6 “image”

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201654

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Convolutional Neural Nets

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201655

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLINGMax-pooling: Subsample by taking maximum in window

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Feature Maps

(adapted from a slide by Yann LeCun)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201621

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

elementwise multiplication and sum of
a filter and the signal (image)

one filter =>
one activation map

Feature Abstractions

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201619

Preview [From recent Yann
LeCun slides]

(adapted from a slide by Yann LeCun)

Neural Nets Keep Getting Bigger

Lecture 1 -

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution
Pooling
Softmax
Other

GoogLeNet VGG MSRA SuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014 Year 2010

Dense grid descriptor:
HOG, LBP

Coding: local coordinate,
super-vector

Pooling, SPM

Linear SVM

NEC-UIUC

[Lin CVPR 2011] [Szegedy arxiv 2014] [Simonyan arxiv 2014]

4-Jan-16 31

Year 2015

(adapted from: http://cs231n.stanford.edu)

http://cs231n.stanford.edu

Case Study: LeNet-5 [Lecun et al 1998]

(adapted from: http://cs231n.stanford.edu)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201660

Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

http://cs231n.stanford.edu

Case Study: AlexNet [Krizhevsky et al 2012]

(adapted from: http://cs231n.stanford.edu)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201668

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201669

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

60M parameters

http://cs231n.stanford.edu

ImageNet Winners Keep Getting Deeper

(adapted from: http://cs231n.stanford.edu)Lecture 1 -

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution
Pooling
Softmax
Other

GoogLeNet VGG MSRA SuperVision

[Krizhevsky NIPS 2012]

Year 2012 Year 2014 Year 2010

Dense grid descriptor:
HOG, LBP

Coding: local coordinate,
super-vector

Pooling, SPM

Linear SVM

NEC-UIUC

[Lin CVPR 2011] [Szegedy arxiv 2014] [Simonyan arxiv 2014]

4-Jan-16 31

Year 2015

http://cs231n.stanford.edu

ImageNet Winners Keep Getting Deeper

(adapted from: http://cs231n.stanford.edu)
Lecture 7 - 27 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 201678

(slide from Kaiming He’s recent presentation)

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201673

Fast-forward to today: ConvNets are everywhere

[Krizhevsky 2012]

Classification Retrieval

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201674

Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201674

Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201676

Fast-forward to today: ConvNets are everywhere
[Taigman et al. 2014]

[Simonyan et al. 2014] [Goodfellow 2014]

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201678

Fast-forward to today: ConvNets are everywhere

[Ciresan et al. 2013] [Sermanet et al. 2011]
[Ciresan et al.]

http://cs231n.stanford.edu

Convolutional Nets are Everywhere

(adapted from: http://cs231n.stanford.edu)

Lecture 6 - 25 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 6 - 25 Jan 201679

Fast-forward to today: ConvNets are everywhere

[Denil et al. 2014]

[Turaga et al., 2010]

http://cs231n.stanford.edu

CNNs for Reinforcement Learning

Inputs: Time series of Atari images, Loss: Game score
difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

[Mnih et al., Nature 2015]

CNNs for Reinforcement Learning

CNNs for Reinforcement Learning

CNNs for Reinforcement Learning

Indeed, in certain games DQN is able to discover a relatively long-term
strategy (for example, Breakout: the agent learns the optimal strategy,
which is to first dig a tunnel around the side of the wall allowing the ball
to be sent around the back to destroy a large number of blocks; see Sup-
plementary Video 2 for illustration of development of DQN’s perfor-
mance over the course of training). Nevertheless, games demanding more
temporally extended planning strategies still constitute a major chal-
lenge for all existing agents including DQN (for example, Montezuma’s
Revenge).

In this work, we demonstrate that a single architecture can success-
fully learn control policies in a range of different environments with only
very minimal prior knowledge, receiving only the pixels and the game
score as inputs, and using the same algorithm, network architecture and
hyperparameters on each game, privy only to the inputs a human player
would have. In contrast to previous work24,26, our approach incorpo-
rates ‘end-to-end’ reinforcement learning that uses reward to continu-
ously shape representations within the convolutional network towards
salient features of the environment that facilitate value estimation. This
principle draws on neurobiological evidence that reward signals during
perceptual learning may influence the characteristics of representations
within primate visual cortex27,28. Notably, the successful integration of
reinforcement learning with deep network architectures was critically
dependent on our incorporation of a replay algorithm21–23 involving the
storage and representation of recently experienced transitions. Conver-
gent evidence suggests that the hippocampus may support the physical

realization of such a process in the mammalian brain, with the time-
compressed reactivation of recently experienced trajectories during
offline periods21,22 (for example, waking rest) providing a putative mech-
anism by which value functions may be efficiently updated through
interactions with the basal ganglia22. In the future, it will be important
to explore the potential use of biasing the content of experience replay
towards salient events, a phenomenon that characterizes empirically
observed hippocampal replay29, and relates to the notion of ‘prioritized
sweeping’30 in reinforcement learning. Taken together, our work illus-
trates the power of harnessing state-of-the-art machine learning tech-
niques with biologically inspired mechanisms to create agents that are
capable of learning to master a diverse array of challenging tasks.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.

Received 10 July 2014; accepted 16 January 2015.

1. Sutton, R. & Barto, A. Reinforcement Learning: An Introduction (MIT Press, 1998).
2. Thorndike, E. L. Animal Intelligence: Experimental studies (Macmillan, 1911).
3. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and

reward. Science 275, 1593–1599 (1997).
4. Serre, T., Wolf, L. & Poggio, T. Object recognition with features inspired by visual

cortex. Proc. IEEE. Comput. Soc. Conf. Comput. Vis. Pattern. Recognit. 994–1000
(2005).

5. Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36,
193–202 (1980).

V

Figure 4 | Two-dimensional t-SNE embedding of the representations in the
last hidden layer assigned by DQN to game states experienced while playing
Space Invaders. The plot was generated by letting the DQN agent play for
2 h of real game time and running the t-SNE algorithm25 on the last hidden layer
representations assigned by DQN to each experienced game state. The
points are coloured according to the state values (V, maximum expected reward
of a state) predicted by DQN for the corresponding game states (ranging
from dark red (highest V) to dark blue (lowest V)). The screenshots
corresponding to a selected number of points are shown. The DQN agent

predicts high state values for both full (top right screenshots) and nearly
complete screens (bottom left screenshots) because it has learned that
completing a screen leads to a new screen full of enemy ships. Partially
completed screens (bottom screenshots) are assigned lower state values because
less immediate reward is available. The screens shown on the bottom right
and top left and middle are less perceptually similar than the other examples but
are still mapped to nearby representations and similar values because the
orange bunkers do not carry great significance near the end of a level. With
permission from Square Enix Limited.

RESEARCH LETTER

5 3 2 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

CNNs for Reinforcement Learning

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

CNNs for Reinforcement Learning

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

