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CS 6220 - Section 3 - Fall 2016

| ecture 19: Social Networks
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Community Detection

Problem: Can we identity groups
of densely connected nodes”

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Communities: Football Conferences

Mid American
Big East

Atlantic Coast
SEC

Conference USA
Big 12

Western Athletic
Pacific 10
Mountain West
Big 10

Sun Belt

O @ ® OO0 0 e OO0 e e o

Independents

Nodes: Football Teams, Edges: Matches,
Communities: Conferences

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Communities: Academic Citations
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Source: Citation networks and Maps of science [Borner et al., 2012]

Nodes: Journals, Edges: Citations,
Communities: Academic Disciplines

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Communities: Protein-Protein Interactions

Nodes: Proteins, Edges: Physical interactions,
Communities: Functional Modules

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Community Detection

Graph Partitioning Overlapping Communities

We will work with undirected (unweighted) networks

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Centrality Measures
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* Betweenness: Number of shortest paths
* Closeness: Average distance to other nodes

* Degree: Number of connections to other nodes



Betweenness

Edge Strength (call volume) Edge Betweenness

* Betweenness: Number of shortest paths
passing through a node or edge

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Edge Betweenness
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e Count number of shortest paths
passing through each edge
(can be done with weighted edges)

* |f there are multiple paths of equal
length, then split counts



Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Repeat until k clusters found
1. Calculate betweenness
2. Remove edge(s) with highest betweenness

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Girvan-Newman Algorithm

(hierarchical divisive clustering according to betweenness)

Step

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Girvan-Newman: Physics Citations

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Girvan-Newman

Iwo problems

1. How can we compute the
betweenness for all edges?

2. How can we choose the
number of components k*?

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Calculating Betweenness

How can we count all shortest paths?
* Loop over nodes in graph

* Perform breadth-first search to find
shortest paths to other nodes

* |[ncrement counts for edges traversed
by shorts paths

* Divide final betweenness by 2
(since all paths counted twice)



Counting Shortest Paths

Count number of Accumulate credit
shortest paths from upwards, dividing
(E) to each node across shortest paths

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)



http://www.mmds.org

Counting Paths: Larger Example

Original Graph Breadth-first Ordering from A

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Counting Paths: Larger Example

# shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths

# shortest A-K paths
= # shortest A-l paths
+ # shortest A-J paths

Step 1. Count number of shortest paths from to each node

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Counting Paths: Larger Example
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Step 2. Propagate credit upwards, splitting
according to number of paths to parents

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Counting Paths: Larger Example
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Step 2. Propagate credit upwards, splitting
according to number of paths to parents

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Counting Paths: Larger Example
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b b 1+0.5 paths to J
Split 1:2
t(j g 1 pathtoK.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting
according to number of paths to parents

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Counting Paths: Larger Example

b b 1+0.5 paths to J
Split 1:2
t(j g 1 pathtoK.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting
according to number of paths to parents

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Counting Paths: Larger Example

b b 1+0.5 paths to J
Split 1:2
t(j g 1 pathtoK.
Split in ratio 3:3

Step 2. Propagate credit upwards, splitting
according to number of paths to parents

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Determining the Number of Communities

Hierarchical decomposition Choosing a cut-off

Analogous problem to deciding on number
of clusters in hierarchical clustering

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Modularity

[dea: Compare fraction of edges within module to fraction
that would be observed for random connections

1 koK.,
Q) = — Z A O(Cy, Cy)

- 2m 2m

uv -

 m: Number of edges in graph

e Auw: Adjacency matrix (1 if edge exists O otherwise)
e ku: Degree of node u

e cu. Cluster assignment for node u

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Modularity
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Use modularity to optimize connectivity within modules

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Spectral Clustering



Graph Partitioning

What makes a good partition”

Maximize the within-group connections

Minimize the between-group connections

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Graph Cuts

Degree Volume

. — Z A;;  vol(A) = Z d;  cut(A, B)
J

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Minimal Cuts

“Optimal cut”
/ Minimum cut

arg min, g cut(A,B)

Problem: minimal cut Is not
necessarily a good splitting criterion

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)



http://www.mmds.org

Normalized Cuts

cut(A,B) cut(A4,B)

t(A, B) = -
neut(4, B) = =1 vol(B)
Degree Volume Cut
dz' — Z Af,;j VOl(A) — Z dz CU.t(A B Z A’LJ
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(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)



http://www.mmds.org

Find Optimal Cut [Fiedler’ 73]

Back to finding the optimal cut
Express partition (A,B) as a vector
- (+1 ifi€eA
Yi = {—1 ifi €B
We can minimize the cut of the partition by
finding a non-trivial vector x that minimizes:

y*=argmin Y (y;—y;)?
yE{—l,l}n (l,])EE

Can’t solve exactly. Let’s relax y and M

allow it to take any real value. y; =—10 y; = +1

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Matrix Representations

Adjacency matrix (A):
nx n Matrix
A=la;], a;= 1 If edge between node i and j

N | U MW N —

Important properties:

Symmetric matrix
-lgenvectors are real and orthogonal

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Matrix Representations

Degree matrix (D):
nx n diagonal matrix

D=|d;], d;;= degree of node i

Nl U | MW —

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Matrix Representations

Laplacian matrix (L):

nx n symmetric matrix

What is trivial eigenpair?
x=(1,...,1)thenL-x=0andsoAdA=4, =0
Important properties:

Eigenvalues are non-negative real numbers
Eigenvectors are real and orthogonal

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Second Eigenvalue

Fact: For symmetric matrix M:

T
. X M x
A, = mIn—
XX

What is the meaning of min xTLx on G?

T _
=D¥ Diixi — Z(i,j)EE zxixj

2
= Z(i,j)engiz + szj— 2XiX;) = Z(i,j)EE(xi — xj)
Y

Node i has degree d;. So, value x> needs to be summed up d; times.
But each edge (i,j) has two endpoints so we need xj +x;

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Second Eigenvector of Laplacian

What else do we know about x?

x is unit vector: Y; x7 = 1

X is orthogonal to 1%t eigenvector (1, ..., 1) thus:
2iXxi 1=2;x;=0

Remember:

All labelings xz
of nodes i s0 I ]
that Y x; = 0

We want to assign values x; to nodes / such
that few edges cross 0.
(we want x; and x; to subtract each other)

Balance to minimize

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Rayleigh Theorem

min f(y)= Y (y,—-y,) =y Ly

yEh =

A, = min f(y): The minimum value of f(y) is
y

given by the 2" smallest eigenvalue A, of the
Laplacian matrix L

X = argmin, f(y): The optimal solution for y
Is given by the corresponding eigenvector X,
referred as the Fiedler vector

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Spectral Clustering Algorithms

Three basic stages:

1) Pre-processing
Construct a matrix representation of the graph
More generally, construct similarity matrix

2) Decomposition

Compute eigenvalues and eigenvectors of the matrix

Map each point to a lower-dimensional representation
based on one or more eigenvectors

3) Grouping

Assign points to two or more clusters, based on the new
representation

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Spectral Partitioning Algorithm

1) Pre-processing:
Build Laplacian

matrix L of the M —)>

graph

2) Decomposition:

Find eigenvalues A
and eigenvectors x
of the matrix L

Map vertices to
corresponding
components of A,

< .
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How do we now
find the clusters?

(Adapted from: Mining of Massive Datasets, http://www.mmds.org)
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Spectral Partitioning
3) Grouping:

Sort components of reduced 1-dimensional vector

dentify clusters by splitting the sorted vector in two
ow to choose a splitting point?

Naive approaches:
Split at O or median value
More expensive approaches:

Attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

1 | 03 Split at 0: A
c 2 | 06 Cluster A: Positive points ‘

3 | 03 ‘ Cluster B: Negative points

4 | 03 1 | 03 4 | -03

5 | -03 2 | 06 5 | -03

6 | -06 3 | 03 6 | -06




Example: Spectral Partitioning

Value of x,

é 10 15 2IO
Rank in X,

(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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Example: Spectral Partitioning
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(Adapted from: Mining of Massive Datasets, http://www.mmds.orQ)
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k-Way Spectral Clustering

How do we partition a graph into k clusters?

Two basic approaches:

Recursive bi-partitioning [Hagen et al., '92]

Recursively apply bi-partitioning algorithm in a
hierarchical divisive manner

Disadvantages: Inefficient, unstable
Cluster multiple eigenvectors [Shi-Malik, "'00]

Build a reduced space from multiple eigenvectors
Commonly used in recent papers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 43



Spectral Clustering as General-purpose Method
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source: Ng, Jordan and Weiss, NIPS 2001

Detine “edge weight™ W using some similarity metric
e.g. a kernel function



