Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 17: Link Analysis

Jan-Willem van de Meent (credit: Yijun Zhao, Yi Wang, Tan et al., Leskovec et al.)

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

(adapted from:: Mining of Massive Datasets, http://www.mmds.org)

Schedule Updates

8	26 Oct	Midterm exam			
	28 Oct	Project Proposal presentations		Proposals due	
9	04 Nov	Frequent Pattern Mining 1: Apriori			HKP: 6; HTF: 14; Aggarwal: 4,5; TSK: 6
	07 Nov	Frequent Pattern Mining 2: PCY, FP-Growth			HKP: 6; HTF: 14; Aggarwal: 4,5; TSK: 6
10	09 Nov	Link Analysis: Page-rank, Trust-rank			LRU: 5; Aggarwal: 18.4
	11 Nov	(Veteran's Day)	#3 due		
11	16 Nov	Time Series: Hidden Markov Models			Bishop: 13.1-2; HKP: 13.1.1
	18 Nov	Community Detection: Betweenness, Spectral Clustering	#4 due		LRU: 10
12	23 Nov	(Thanksgiving Holiday)			
	25 Nov	(Thanksgiving Holiday)			
13	30 Nov	Bonus Topic: Deep Learning			
	02 Dec	Project Presentations			
14	07 Dec	(Review)			
	09 Dec	(Review)		Reports	
				due	
15	14 Dec	Final Exam			
16	19 Dec	(Final grades posted)			

Web search before PageRank

- Human-curated (e.g. Yahoo, Looksmart)
 - Hand-written descriptions
 - Wait time for inclusion
- Text-search (e.g. WebCrawler, Lycos)
 - Prone to term-spam

Web as a Directed Graph

(adapted from:: Mining of Massive Datasets, http://www.mmds.org)

PageRank: Links as Votes

Not all pages are equally important

- Pages with more inbound links are more important
- Inbound links from important pages carry more weight

Example: PageRank Scores

Simple Recursive Formulation

- A link's vote is proportional to the importance of its source page
- If page *j* with importance *r_j* has *n* out-links, each link gets *r_j* / *n* votes
- Page *j*'s own importance is the sum of the votes on its in-links

Equivalent Formulation: Random Surfer

- At time t a surfer is on some page i
- At time *t+1* the surfer follows a link to a new page at random
- Define rank r_i as fraction of time spent on page i

PageRank: The "Flow" Model

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

"Flow" equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

- 3 equations, 3 unknowns
- Impose constraint: $r_y + r_a + r_m = 1$
- Solution: $r_y = 2/5$, $r_a = 2/5$, $r_m = 1/5$

PageRank: The "Flow" Model

 $r_j = \sum_{i=1}^{j} \frac{r_i}{d_i}$

"Flow" equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

 $\boldsymbol{r} = \boldsymbol{M} \cdot \boldsymbol{r} \qquad \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix}$

Matrix *M* is stochastic (i.e. columns sum to one)

PageRank: Eigenvector Problem

- PageRank: Solve for eigenvector r = M rwith eigenvalue $\lambda = 1$
- Eigenvector with $\lambda = 1$ is guaranteed to exist since *M* is a stochastic matrix (i.e. if a = M b then $\Sigma a_i = \Sigma b_i$)
- Problem: There are billions of pages on the internet. How do we solve for eigenvector with order 10¹⁰ elements?

PageRank: Power Iteration

Model for random Surfer:

- At time t = 0 pick a page at random
- At each subsequent time *t* follow an outgoing link at random

Probabilistic interpretation:

$$p(z_0 = i) = 1/N$$

$$p(z_t = i | z_{t-1} = j) = M_{ij}$$

$$p(z_t = i) = \sum_j p(z_t = i, z_{t-1} = j)$$

$$= \sum_j M_{ij} p(z_{t-1} = j)$$

PageRank: Power Iteration

 p^t converges to r. Iterate until $|p^t - p^{t-1}| < \varepsilon$

Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

$$r = Mr$$
 $p^{t} = Mp^{t-1}$ $\lim_{t \to \infty} p^{t} = r$

Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

$$p(z_t = i) = \sum_j M_{ij} p(z_{t-1} = j)$$
$$\lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^T I[z_t = i]\right] = r_i$$

Aside: Ergodicity

- PageRank is assumes a random walk model for individual surfers
- Equivalent assumption: flow model in which equal fractions of surfers follow each link at every time
- *Ergodicity:* The equilibrium of the flow model is the same as the asymptotic distribution for an individual random walk

Averaging over individuals is equivalent to averaging single individual over time

PageRank: Problems

- Nodes with no outgoing links.
- Where do surfers go next?
- 2. Spider Traps
 - Subgraph with no outgoing links to wider graph
 - Surfers are "trapped" with no way out.

Power Iteration: Dead Ends

$$\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 1/6 \end{bmatrix} \begin{bmatrix} 3/12 \\ 1/12 \\ 1/12 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Probability not conserved

Power Iteration: Dead Ends

Fixes "probability sink" issue

(adapted from:: Mining of Massive Datasets, http://www.mmds.org)

Power Iteration: Spider Traps

 $\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 2/6 \\ 1/6 \\ 3/6 \end{bmatrix} \begin{bmatrix} 3/12 \\ 2/12 \\ 7/12 \end{bmatrix} \begin{bmatrix} 5/24 \\ 3/24 \\ 16/24 \end{bmatrix} \dots \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Probability accumulates in traps (surfers get stuck)

Solution: Random Teleports

Model for teleporting random surfer:

- At time t = 0 pick a page at random
- At each subsequent time *t*
 - With probability β follow an outgoing link at random
 - With probability $1-\beta$ teleport to a new initial location at random

PageRank Equation [Page & Brin 1998]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

Power Iteration: Teleports

$$p^{t} = \beta M p^{t-1} + (1-\beta)p^{0} = \tilde{M}p^{t-1}$$
$$\tilde{M} = \beta M + (1-\beta) \begin{bmatrix} -p_{1}^{0} & -\\ & \cdots \\ -p_{N}^{0} & - \end{bmatrix}$$
(can use power iteration as normal)

a

Power Iteration: Teleports

$$p^{t} = \beta M p^{t-1} + (1-\beta)p^{0} = \tilde{M} p^{t-1}$$
$$\tilde{M} = \beta M + (1-\beta) \begin{bmatrix} - p_{1}^{0} & - \\ & \ddots & \\ - & p_{N}^{0} & - \end{bmatrix}$$
(can use power iteration as normal)

$$\tilde{M} = 4/5 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 1 \end{bmatrix} + 1/5 \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{7}{15} & \frac{7}{15} & \frac{1}{15}\\ \frac{7}{15} & \frac{1}{15} & \frac{1}{15}\\ \frac{1}{15} & \frac{7}{15} & \frac{1}{15} \end{bmatrix}$$

a

Power Iteration: Teleports

$$\boldsymbol{p}^{t} = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} \begin{bmatrix} 0.33 \\ 0.20 \\ 0.46 \end{bmatrix} \begin{bmatrix} 0.24 \\ 0.20 \\ 0.56 \end{bmatrix} \dots \begin{bmatrix} 7/33 \\ 5/33 \\ 21/33 \end{bmatrix}$$

Computing PageRank $p^{t} = \beta M p^{t} + \frac{1 - \beta}{N}$

- *M* is sparse only store nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

(adapted from:: Mining of Massive Datasets, http://www.mmds.org)

Block-based Update Algorithm

- Break rnew into k blocks that fit in memory
- Scan M and rold once for each block

Block-Stripe Update Algorithm

Break M into stripes: Each stripe contains only destination nodes in the corresponding block of rnew

rold

В

5

First Spammers: Term Spam

- How do you make your page appear to be about movies?
 - (1) Add the word movie 1,000 times to your page
 - Set text color to the background color, so only search engines would see it
 - (2) Or, run the query "movie" on your target search engine
 - See what page came first in the listings
 - Copy it into your page, make it "invisible"
- These and similar techniques are term spam

Google's Solution to Term Spam

- Believe what people say about you, rather than what you say about yourself
 - Use words in the anchor text (words that appear underlined to represent the link) and its surrounding text
- PageRank as a tool to measure the "importance" of Web pages

Google vs. Spammers: Round 2!

- Once Google became the dominant search engine, spammers began to work out ways to fool Google
- Spam farms were developed to concentrate PageRank on a single page
- Link spam:
 - Creating link structures that boost PageRank of a particular page

Link Spamming

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., blog comments pages
 - spammer can post links to his pages
 - Owned pages
 - Completely controlled by spammer
 - May span multiple domain names

Link Farms

- Spammer's goal:
 - Maximize the PageRank of target page t
- Technique:
 - Get as many links from accessible pages as possible to target page t
 - Construct "link farm" to get PageRank multiplier effect

Link Farms

One of the most common and effective organizations for a link farm

PageRank: Extensions

$$\boldsymbol{p}^{t} = \beta M \boldsymbol{p}^{t-1} + (1-\beta)\boldsymbol{p}^{0} = \tilde{M} \boldsymbol{p}^{t-1}$$

- *Topic-specific PageRank*:
 - Restrict teleportation to some set *S* of pages related to a specific topic
 - Set $p^{0_i} = 1/|S|$ if $i \in S$, $p^{0_i} = 0$ otherwise
- Trust Propagation
 - Use set S of trusted pages for teleport set