Data Mining lechnigues

CS 6220 - Section 3 - Fall 2016

| ecture 160; Assoclation Rules

Jan-Willem van de Meent
(credit: Yijun Zhao, Yi Wang,
Tan et al., Leskovec et al.)

Apriori: Summary

All

Count AII_pairs Count
the items of items the pairs

items from L,

1.
2.
3.
4
5

0.

Set k=0
Define Cq as all size 1 item sets
While Ck+1 is not empty

Set k=k+ 1

Scan DB to determine subset Lk € Ck

with support = s
Construct candidates Ck+1 by combining
sets in L that differ by 1 element

All pairs of sets

that differ by
1 element

Apriori: Bottlenecks

Count All pairs All pairs of sets
All the(?’:Jenms of items th%ou;itrs that differ by
items from L, P 1 element
1. Setk=0
2. Define Cqas all size 1 item sets
3. While Ci+1 Is not empty
4. Setk=k+ 1
5. Scan DB to determine subset Lk C Ck (1/0O limited)

with support = s
6. Construct candidates Cx+1 by combining (Memory
sets in L, that differ by 1 element limited)

Apriori: Main-Memory Bottleneck

-or many frequent-item
main-memory Is the cri

set algorithms,

'lcal resource

As we read baskets, we need to count
something, e.g., occurrences of pairs of items

The number o

- di

IS limited by

alr

fferent things we can count
memory

For typical market-baskets and reasonable
support (e.g., 1%), k = 2 requires most memory

Swapping counts in/out is a disaster (why?)

Counting Pairs in Memory

Two approaches:
Approach 1: Count all pairs using a matrix

Approach 2: Keep a table of triples
[/, J, c] = “the count of the pair of items {/, j} Is ¢.”

If integers and item ids are 4 bytes, we need
approximately 12 bytes for pairs with count > 0

Plus some additional overhead for the hashtable
Note:
Approach 1 only requires 4 bytes per pair

Approach 2 uses 12 bytes per pair
(but only for pairs with count > 0)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Comparing the 2 Approaches

4 bytes per pair t2 Per

occurring pair
O
O O
Triangular Matrix Triples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Comparing the two approaches

Approach 1: Triangular Matrix
n = total number items
Count pair of items {J, j} only if i<
Keep palr counts in lexicographic order:
{1,2}, {1,3},..., {1,n}, {2,3}, {2,4},....12,n}, {3,4},...
Pair {/, j} is at position (/—=1)(rn—1/2) + j—1
Total number of pairs n(n—1)/2; total bytes= 2n?

Triangular Matrix requires 4 bytes per pair

Approach 2 uses 12 bytes per occurring pair
(but only for pairs with count > 0)

Beats Approach 1 if less than 1/3 of
possible pairs actually occur

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Main-Memory: Picture of Apriori

ltem counts Frequent items

Counts of
pairs of frequent
items (candidate

pairs)

Main memory

Pass 1 Pass 2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

PCY (Park-Chen-Yu) Algorithm

Observation: In pass 1 of Apriori,
most memory Is idle

We store only individual item counts

Can we reduce the number of candidates Co
(therefore the memory required) in pass 27

Pass 1 of PCY:
maintain a has
buckets as fit |

ﬂ

ﬁ

N addition to item counts,
table with as many

Mme

Keep a count for eac
pairs of items are hashed

mory

N bucket into which

For each bucket just keep the count, not the actual
pairs that hash to the bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

PCY Algorithm — First Pass

FOR (each basket):
FOR (each item in the basket):
add 1 to item’s count;
- FOR (each pair of items):
hash the pair to a bucket;
R add 1 to the count for that bucket:

New in |
PCY

Few things to note:

Palirs of items need to be generated from
the input file; they are not present in the file

We are not just interested in the presence of a pair,
but whether it Is present at least s (support) times

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Eliminating Candidates using Buckets

Observation: If a bucket contains a frequent pair,
then the bucket is surely frequent

However, even without any frequent pair,
a bucket can still be frequent

S0, we cannot use the hash to eliminate any
member (pair) of a “frequent” bucket

But, for a bucket with total count less than s,
none of its pairs can be frequent

Pairs that hash to this bucket can be eliminated as candidates
(even if the pair consists of 2 frequent items)

Pass 2:
Only count pairs that hash to frequent buckets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

PCY Algorithm — Between Passes

Replace the buckets by a bit-vector:

1 means the bucket count exceeded s
(call it a frequent bucket); O means it did not

4-byte integer counts are replaced by Dbits,
so the bit-vector requires 1/32 of memory

Also, decide which items are frequent
and list them for the second pass

ets, http://www.mmds.org

PCY Algorithm — Pass 2

Count a
condaitio

| pairs {i, j} that meet the

ns for being a candidate pair:

Both i and j are frequent items

The pair {i, j} hashes to a bucket whose bit In
the bit vector is 1 (i.e., a frequent bucket)

Both conditions are necessary for the

pair to have a chance of being frequent

ts, http://www.mmds.org

PCY Algorithm — Summary

New in
PCY

O O

Set k=0
Define Cq as all size 1 item sets
Scan DB to construct L1 € Cq

and a hash table of pair counts
Convert pair counts to bit vector
and construct candidates Co
While Ck+1 is not empty
Set k=Kk+ 1
Scan DB to determine subset Lk c Ck

with support = s
Construct candidates Ck:+1 by combining
sets in L that differ by 1 element

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Main-Memory: Picture of PCY

ltem counts Frequent items
Bitmap

o

O

-

()

E Hfisrh :ilge Counts of

ke P candidate

= pairs

Pass 1 Pass 2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Main-M

Suckets

emory Detalls

require a few bytes each:

Note: we do not have to count past s

On seco

count) tri
triangular matrix approach,)

#buckets is O(main-memory size)

nd pass, a table of (item, item,

ples is essential (we cannot use

Nus, hash table must eliminate approx. 2/3
of the candidate pairs for PCY to beat A-Priori

Refinement: Multistage Algorithm

Limit the number of candidates to be counted
Remember: Memory is the bottleneck

Still need to generate all the itemsets but we only want
to count/keep track of the ones that are frequent

Key Idea: Af

er Pass 1 of PCY, rehash only

those pairs t

nat qualify for Pass 2 of PCY

land J are frequent, and

{I, |} hashes to a frequent bucket from Pass 1

On middle pass, fewer pairs contribute to
buckets, so fewer false positives

Requires 3 passes over the data

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Main-memory: Multistage PCY
Freq. tems |

Main memory

omoounts | | Frea fems |
Bitmap 1
First
Second
hash I
ash table hash table
Pass 1 Pass 2
Hash pairs {i,j}
Count items into Hash?2 iff:

Hash pairs {i,j} {i.j} hashes to

freq. bucket in B1

I,j are frequent,

Bitmap 1

Bitmap 2

Counts of
candidate
pairs

Pass 3

Count pairs {i,j} iff:
I, are frequent,
{i,j} hashes to

freq. bucket in B1
{i,j} hashes to

freq. bucket in B2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Apriori: Bottlenecks

All pairs All pairs of sets

Al th(;(?’?enr:\s of ifems th%osgits that differ by
items from L, / 1 element
pom-pEE-

1. Setk=0

2. Define Cq1as all size 1 item sets

3. While Ci+1 Is not empty

4, Setk=k+ 1

5. Scan DB to determine subset Lx C Ck (/O limited)

with support= s
6. Construct candidates Ci:+1 by combining (Memory

sets in Lk that differ by 1 element [imited)

FP-Growth Algorithm — Overview

* Apriori requires one pass for each k
(2+ on first pass for PCY variants)

 Can we find all frequent item sets
iNn fewer passes over the data?

FP-Growth Algorithm:
 Pass 1. Count items with support = s

» Sort frequent items in descending
order according to count

 Pass 2. Store all frequent itemsets
in a frequent pattern tree (FP-tree)

* Mine patterns from FP-Tree

FP-Tree Construction

TID = 1 TID =2 TID =3
null
a:l
b:1
TID | ltems Bought | Frequent ltems
1 {a,b,f} {a,b}
2 {b,g,c,d} {b,c,d}
3 {h, a,c,d,e} {a,c,d,e}
4 {a,d, p,e} {a,d,e}
5 {a,b,c} {a,b,c}
6 {a,b,q,c,d} {a,b,c,d}
7 {a} {a}
8 {a,m,b,c} {a,b,c}
9 {a,b,n,d} {a,b,d}
10 {b,c,e} {b,c.e}

a:8,b:7,c:6,d: 5, e: 3,
=1 g1 b1, m1 At

Mining Patterns from the FP-Tree

Step 1: Extract subtrees ending in each item

Full Tree Subtree e Subtree d

null

Subtree ¢ Subtree b Subtree a

null null null

i

-7 b2 a:8

a:8,b:7,c:6,d:5,e:3, &1, g1, h—1, m=—1, a1

Mining Patterns from the FP-Tree

Step 2: Construct Conditional FP-Tree for each item

Full Tree Subtree e Conditional e

null

Conditional Pattern Base for e Conditional Node Counts
acd: 1, ad: 1, bc: 1 a.2,b—+,c:2,d:2

» Calculate counts for paths ending in e
e Remove leaf nodes
e Prune nodes with count < s

Mining Patterns from the FP-Tree

Step 3: Recursively mine conditional FP-Tree for each item

Conditional e Subtree de Conditional de
null null i
a2
c:1
- a2
g1cy”” di
Subtree ce Subtree ae

null null
a2

cl1O=—===-- c:1 a:2

Mining Patterns from the FP-Tree

null O
(g = b:2
b:5 ‘ --—" ‘ _________ ‘ c:2
X~ c:1 W~ =o
c3(r” D---0 d:1 O
’ d:1 d:1
SR« 5 R N N O
Jd:1 O e:1
O e:1 e
Suffix Conditional Pattern Base Suffix Frequent Itemsets
e acd:1; ad:1; bc:1 e | {e}, {d.e}, {a.de}, {ce}, {ae}
d abc:1; ab:1; ac:1; a:1; bc:1 d | {d}, {cd}, {b,cd}, {a,cd}, {bd} {abd}, {a,d}
C ab:3; a:1; b:2 c | {c}, {bc}, {abc}, {a,c}
b a:b b | {b}, {a,b}
a ¢ a | {3}

Projecting Sub-trees

e “Cutting” and “pruning” trees requires that we
create copies/mirrors of the subtrees

* Mining patterns requires additional memory

FP-Growth vs Apriori

Simulated data 10k baskets, 25 items on average

100 '

90 + D1 FP-grow th runtime

— —— — D1 Apriori runtime
80

70

i ————— —

60 ‘
50 \
40 \

Run time(sec.)

30 \

20 % \\

10 > S

o+— TR —-

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

(from: Han, Kamber & Pei, Chapter 6)

FP-Growth vs Apriori

File Apriori FP-Growth
Simple Market Basket test file 3.66s 3.08s
"Real" test file (1 Mb) 8.87 s 3.25s
"Real" test file (20 Mb) 34 m 5.07 s

Whole "real" test file (86 Mb) 4+ hours (Never finished, crashed) 8.82s

http://singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining

http://singularities.com/blog/2015/08/apriori-vs-fpgrowth-for-frequent-item-set-mining

FP-Growth vs Apriori

Advantages of FP-Growth

 Only 2 passes over dataset

o Stores “compact” version of dataset
 No candidate generation

e Faster than A-priori

Disadvantages of FP-Growth

 [he FP-Tree may not be "compact”
enough to fit iIn memory

 Even more memory required to
construct subtrees in mining phase

