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Association Rule Discovery
Market-basket model: 

Goal: Identify items that are bought together 
by sufficiently many customers 
Approach: Process the sales data  
to find dependencies among items 
A classic rule: 
▪ If someone buys diaper and milk,  

then he/she is likely to buy beer 
▪ Don’t be surprised if you find  

six-packs next to diapers!
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The Market-Basket Model
A large set of items 
▪ e.g., things sold in a  

supermarket 
A large set of baskets  
Each basket is a  
small subset of items 
▪ e.g., the things one  

customer buys on one day 
Want to discover  
association rules 
▪ People who bought {x,y,z} tend to buy {v,w}

Rules Discovered: 
    {Milk} --> {Coke} 
    {Diaper, Milk} --> {Beer}

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Output:
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Applications – (1)
Items = products; Baskets = sets of products 
someone bought in one trip to the store 
Real market baskets: Chain stores keep TBs of 
data about what customers buy together 
▪ Tells how typical customers navigate stores,  

lets them position tempting items 
▪ Suggests tie-in “tricks”, e.g.,  

run sale on diapers + raise the price of beer 
▪ Need the rule to occur frequently, or no $$’s 
Amazon’s people who bought X also bought Y
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Applications – (2)
Baskets = sentences; Items = documents 
containing those sentences 
▪ Items that appear together too often  

could represent plagiarism 
▪ Notice items do not have to be “in” baskets 

Baskets = patients; Items = drugs & side-effects 
▪ Has been used to detect combinations  

of drugs that result in particular side-effects 
▪ But requires extension: Absence of an item  

needs to be observed as well as presence
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More generally
A general many-to-many mapping 
(association) between two kinds of things 
▪ But we ask about connections among “items”,  

not “baskets” 

For example: 
▪ Finding communities in graphs (e.g., Twitter)
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Frequent Itemsets
Simplest question: Find sets of items that 
appear together “frequently” in baskets 
Support for itemset I: Number of baskets 
containing all items in I 
▪ (Often expressed as a fraction  

of the total number of baskets) 
Given a support threshold s,  
then sets of items that appear  
in at least s baskets are called  
frequent itemsets

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of  
{Beer, Bread} = 2
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 Example: Frequent Itemsets
Items = {milk, coke, pepsi, beer, juice} 
Support threshold = 3 baskets 
 B1 = {m, c, b}  B2 = {m, p, j} 

 B3 = {m, b}   B4 = {c, j} 
 B5 = {m, c, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}   B8 = {b, c} 
  

Frequent itemsets:  
   {m}:5, {c}:6, {b}:6, {j}:4, {m,b}:4,  
   {m,c}: 3, {c,b}:5, {c,j}:3, {m,c,b}:3
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Association Rules
If-then rules about the contents of baskets 
{i1, i2,…,ik} → j  means: “if a basket contains 
all of i1,…,ik then it is likely to contain j” 
In practice there are many rules, want to 
find significant/interesting ones! 
Confidence of this association rule is the 
probability of j given I = {i1,…,ik}

)support(
)support()conf(

I
jIjI ∪

=→
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Interesting Association Rules
Not all high-confidence rules are interesting 
▪ The rule X → milk may have high confidence 

because milk is just purchased very often 
(independent of X) 

Interest of an association rule I → j:  
difference between its confidence and the 
fraction of baskets that contain j 

▪ Interesting rules are those with high positive or 
negative interest values (usually above 0.5)

]Pr[)conf()Interest( jjIjI −→=→
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Example: Confidence and Interest
 B1 = {m, c, b}  B2 = {m, p, j} 
 B3 = {m, b}   B4 = {c, j} 
 B5 = {m, c, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}  B8 = {b, c} 

Association rule: {m} →b 
▪ Confidence = 4/5  
▪ Interest = 4/5 – 6/8 = 1/20 
▪ Item b appears in 6/8 of the baskets 
▪ Rule is not very interesting!



Many measures of interest

source: Tan, Steinbach & Kumar, “Introduction to Data Mining”, 
http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf 
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Table 6.12. Examples of asymmetric objective measures for the rule A −→ B.

Measure (Symbol) Definition

Goodman-Kruskal (λ)
( ∑

j maxk fjk − maxkf+k

)/(
N − maxk f+k

)

Mutual Information (M)
( ∑

i

∑
j

fij

N log Nfij

fi+f+j

)/(
−

∑
i

fi+

N log fi+

N

)

J-Measure (J) f11

N log Nf11

f1+f+1
+ f10

N log Nf10

f1+f+0

Gini index (G) f1+

N × ( f11

f1+
)2 + ( f10

f1+
)2] − ( f+1

N )2

+ f0+

N × [( f01

f0+
)2 + ( f00

f0+
)2] − ( f+0

N )2

Laplace (L)
(
f11 + 1

)/(
f1+ + 2

)

Conviction (V )
(
f1+f+0

)/(
Nf10

)

Certainty factor (F )
( f11

f1+
− f+1

N

)/(
1 − f+1

N

)

Added Value (AV ) f11

f1+
− f+1

N

Table 6.13. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370
E2 8330 2 622 1046
E3 3954 3080 5 2961
E4 2886 1363 1320 4431
E5 1500 2000 500 6000
E6 4000 2000 1000 3000
E7 9481 298 127 94
E8 4000 2000 2000 2000
E9 7450 2483 4 63
E10 61 2483 4 7452

Suppose the symmetric and asymmetric measures are applied to rank the
ten contingency tables shown in Table 6.13. These contingency tables are cho-
sen to illustrate the differences among the existing measures. The ordering
produced by these measures are shown in Tables 6.14 and 6.15, respectively
(with 1 as the most interesting and 10 as the least interesting table). Although
some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rank-
ings given by the φ-coefficient agree with those provided by κ and collective
strength, but are somewhat different than the rankings produced by interest

http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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Finding Association Rules
Problem: Find all association rules with 
support ≥s and confidence ≥c 
▪ Note: Support of an association rule is the 

support of the set of items on the left side 

Hard part: Finding the frequent itemsets! 
▪ If {i1, i2,…, ik} → j has high support and 

confidence, then both {i1, i2,…, ik} and 
{i1, i2,…,ik, j} will be “frequent”

)support(
)support()conf(

I
jIjI ∪

=→
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Mining Association Rules
Step 1: Find all frequent itemsets I 
▪ (we will explain this next) 

Step 2: Rule generation 
▪ For every subset A of I,  generate a rule A → I \ A  
▪ Since I  is frequent, A is also frequent 

▪ Variant 1: Single pass to compute the rule confidence 
▪ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B) 

▪ Variant 2:  
▪ Observation: If A,B,C→D is below confidence, so is A,B→C,D 

▪ Can generate “bigger” rules from smaller ones!  

▪ Output the rules above the confidence threshold
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Example: Mining Association Rules
 B1 = {m, c, b} B2 = {m, p, j} 
 B3 = {m, b}  B4= {c, j} 
 B5 = {m, c, b} B6 = {m, c, b, j} 
 B7 = {c, b, j}  B8 = {b, c} 

Support threshold s = 3, confidence c = 0.75 
1) Frequent itemsets: 
▪ {b,m}:4  {c,m}:3  {b,c}:5  {c,j}:3  {m,c,b}: 3 
2) Generate rules: 
▪ b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5 
▪ m→b: c=4/5            …               b,m→c: c=3/4 
▪                b→c,m: c=3/6



Finding Frequent Item Sets
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Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

Given k products, how many possible item sets are there?
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Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

Answer: 2k - 1 -> Cannot enumerate all possible sets 

Finding Frequent Item Sets
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Figure 6.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this

itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J = 2I be the power set of I. A measure f is monotone (or upward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(X) ≤ f(Y ),

Subsets of a frequent item set are also frequent

Observation: A-priori Principle



Corollary: Pruning of Candidates
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Figure 6.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y , then f(X) must not exceed f(Y ). On
the other hand, f is anti-monotone (or downward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(Y ) ≤ f(X),

which means that if X is a subset of Y , then f(Y ) must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

If we know that a subset is not frequent,  
then we can ignore all its supersets



A-priori Algorithm
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enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧ σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈ T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈ Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈ Ck ∧ σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.



Generating Candidates Ck

1. Self-joining: Find pairs of sets in Lk-1  
that differ by one element 

2. Pruning: Remove all candidates  
with infrequent subsets



Example: Generating Candidates Ck

• Frequent itemsets of size 2:  
{m,b}:4, {m,c}:3, {c,b}:5, {c,j}:3 

• Self-joining:  
{m,b,c}, {b,c,j} 

• Pruning:  
{b,c,j} since {b,j} not frequent

 B1 = {m, c, b} B2 = {m, p, j} 
 B3 = {m, b}  B4= {c, j} 
 B5 = {m, c, b} B6 = {m, c, b, j} 
 B7 = {c, b, j} B8 = {b, c}
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Compacting the Output
To reduce the number of rules we can  
post-process them and only output: 
▪ Maximal frequent itemsets:  

No immediate superset is frequent 
▪Gives more pruning 

▪ Closed itemsets:  
No immediate superset has same count (> 0) 
▪ Stores not only frequent information,  

but exact counts



Example: Maximal vs Closed

Frequent itemsets: 
{m}:5, {c}:6, {b}:6, {j}:4, 
{m,c}:3, {m,b}:4, {c,b}:5, {c,j}:3,  
{m,c,b}:3

 B1 = {m, c, b} B2 = {m, p, j} 
 B3 = {m, b}  B4= {c, j} 
 B5 = {m, c, b} B6 = {m, c, b, j} 
 B7 = {c, b, j} B8 = {b, c}

Closed
Maximal



Example: Maximal vs Closed
Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets
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Hash Tree for ItemsetsGenerate Hash Tree

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

1,4,7
2,5,8

3,6,9
Hash function

Suppose you have 15 candidate itemsets of length 3: 
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, 
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
You need:
• Hash function 
• Max leaf size: max number of itemsets stored in a leaf node (if number of 
candidate itemsets exceeds max leaf size, split the node)
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Hash Tree for ItemsetsAssociation Rule Discovery: Hash tree

1 5 9

1 4 5 1 3 6
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Hash Function Candidate Hash Tree

Hash on 
1, 4 or 7

Candidate Hash Tree
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Hash Tree for ItemsetsAssociation Rule Discovery: Hash tree
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Hash Tree for ItemsetsAssociation Rule Discovery: Hash tree
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Subset MatchingSubset Operation

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3
1 2 5
1 2 6

1 3 5
1 3 6 1 5 6 2 3 5

2 3 6 2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 
are the possible subsets of 
size 3?
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Subset Operation
Subset Operation Using Hash Tree
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Subset OperationSubset Operation Using Hash Tree
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Subset OperationSubset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
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Hash Function1 2 3 5 6
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5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

Yijun Zhao
DATA MINING TECHNIQUES Association Rule Mining
36 / 55


