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Linear Dimensionality Reduction
Lots of high-dimensional data...

face images

Zambian President Levy

Mwanawasa has won a

second term in o�ce in

an election his challenger

Michael Sata accused him

of rigging, o�cial results

showed on Monday.

According to media reports,

a pair of hackers said on

Saturday that the Firefox

Web browser, commonly

perceived as the safer

and more customizable

alternative to market

leader Internet Explorer,

is critically flawed. A

presentation on the flaw

was shown during the

ToorCon hacker conference

in San Diego.

documents

gene expression data

MEG readings

2

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U

>
x

z 2 R10

5

Idea: Project high-dimensional vector  
onto a lower dimensional space



Problem SetupDimensionality reduction setup

Given n data points in d dimensions: x1, . . . ,xn 2 Rd

X = ( x1 · · · · · · xn ) 2 Rd⇥n

Want to reduce dimensionality from d to k

Choose k directions u1, . . . ,uk

U = ( u1 ·· uk ) 2 Rd⇥k

For each uj, compute “similarity” zj = u

>
j x

Project x down to z = (z1, . . . , zk)> = U

>
x

How to choose U?
Principal component analysis (PCA) / Basic principles 8
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Principal Component Analysis

Basic idea of linear dimensionality reduction

Represent each face as a high-dimensional vector x 2 R361

x 2 R361

z = U

>
x

z 2 R10

How do we choose U?

5

Two Objectives
1. Minimize the reconstruction error 
2. Maximize the projected variance



PCA Objective 1: Reconstruction ErrorPCA objective 1: reconstruction error

U serves two functions:

• Encode: z = U

>
x, zj = u

>
j x

• Decode: x̃ = Uz =
Pk

j=1 zjuj

Want reconstruction error kx� x̃k to be small

Objective: minimize total squared reconstruction error

min
U2Rd⇥k

nX

i=1

kxi �UU

>
xik2

Principal component analysis (PCA) / Basic principles 9
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PCA Objective 2: Projected Variance
PCA objective 2: projected variance

Empirical distribution: uniform over x1, . . . ,xn

Expectation (think sum over data points):

ˆE[f(x)] =

1
n

Pn
i=1 f(xi)

Variance (think sum of squares if centered):

cvar[f(x)] + (

ˆE[f(x)])

2
=

ˆE[f(x)

2
] =

1
n

Pn
i=1 f(xi)

2

Assume data is centered: ˆE[x] = 0

(what’s ˆE[U

>
x]?)

Objective: maximize variance of projected data

max

U2Rd⇥k,U>U=I

ˆE[kU>
xk2

]

Principal component analysis (PCA) / Basic principles 10
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Equivalence of two objectivesEquivalence in two objectives

Key intuition:

variance of data| {z }
fixed

= captured variance| {z }
want large

+ reconstruction error| {z }
want small

Pythagorean decomposition: x = UU

>
x + (I �UU

>)x

kUU

>
xk

k(I �UU

>)xk
kxk

Take expectations; note rotation U doesn’t a↵ect length:

Ê[kxk2] = Ê[kU>
xk2] + Ê[kx�UU

>
xk2]

Minimize reconstruction error $ Maximize captured variance

Principal component analysis (PCA) / Basic principles 11
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Finding one principal componentFinding one principal component

Input data:

X =

(

x1 . . . xn
)

Objective: maximize variance
of projected data

= max

kuk=1

ˆE[(u

>
x)

2
]

= max

kuk=1

1

n

nX

i=1

(u

>
xi)

2

= max

kuk=1

1

n
ku>Xk2

= max

kuk=1
u

>
✓

1

n
XX

>
◆

u

= largest eigenvalue of C
def
=

1

n
XX

>

(C is covariance matrix of data)
Principal component analysis (PCA) / Basic principles 12
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How many components?
How many principal components?

• Similar to question of “How many clusters?”

• Magnitude of eigenvalues indicate fraction of variance captured.

• Eigenvalues on a face image dataset:

2 3 4 5 6 7 8 9 10 11

i

287.1

553.6

820.1

1086.7

1353.2

�i

• Eigenvalues typically drop o↵ sharply, so don’t need that many.

• Of course variance isn’t everything...

Principal component analysis (PCA) / Basic principles 15
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Computing PCA
Computing PCA

Method 1: eigendecomposition

U are eigenvectors of covariance matrix C = 1
nXX>

Computing C already takes O(nd2) time (very expensive)

Method 2: singular value decomposition (SVD)

Find X = Ud⇥d⌃d⇥nV>
n⇥n

where U>U = Id⇥d, V>V = In⇥n, ⌃ is diagonal

Computing top k singular vectors takes only O(ndk)

Relationship between eigendecomposition and SVD:

Left singular vectors are principal components (C = U⌃2U>
)

Principal component analysis (PCA) / Basic principles 16
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Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

•
Each xi 2 Rd

is a face image

• xji = intensity of the j-th pixel in image i

Xd⇥n u Ud⇥k Zk⇥n

( . . . ) u ( ) ( z1 . . . zn )
Idea: zi more “meaningful” representation of i-th face than xi

Can use zi for nearest-neighbor classification

Much faster: O(dk + nk) time instead of O(dn) when n, d� k

Why no time savings for linear classifier?

Principal component analysis (PCA) / Case studies 18
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Latent Semantic Analysis [Deerwater 1990]
Latent Semantic Analysis [Deerwater, 1990]

• d = number of words in the vocabulary

• Each xi 2 Rd is a vector of word counts

• xji = frequency of word j in document i

Xd⇥n u Ud⇥k Zk⇥n

( stocks: 2 · · · · · · · · · 0
chairman: 4 · · · · · · · · · 1

the: 8 · · · · · · · · · 7
· · · ... · · · · · · · · · ...

wins: 0 · · · · · · · · · 2
game: 1 · · · · · · · · · 3

) u ( 0.4 ·· -0.001
0.8 ·· 0.03

0.01 ·· 0.04
... ·· ...

0.002 ·· 2.3
0.003 ·· 1.9

) ( z1 . . . zn )
How to measure similarity between two documents?

z

>
1 z2 is probably better than x

>
1 x2

Applications: information retrieval
Note: no computational savings; original x is already sparse

Principal component analysis (PCA) / Case studies 19
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Network anomaly detection [Lakhina 2005]Network anomaly detection [Lakhina, ’05]

xji = amount of tra�c on

link j in the network

during each time interval i

Model assumption: total tra�c is sum of flows along a few “paths”

Apply PCA: each principal component intuitively represents a “path”

Anomaly when tra�c deviates from first few principal components

Principal component analysis (PCA) / Case studies 20
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Multi-task learning [Ando & Zhang 2005]
Multi-task learning [Ando & Zhang, ’05]

• Have n related tasks (classify documents for various users)

• Each task has a linear classifier with weights xi

• Want to share structure between classifiers

One step of their procedure:
given n linear classifiers x1, . . . ,xn,
run PCA to identify shared structure:

X = ( x1 . . . xn ) u UZ

Each principal component is a eigen-classifier

Other step of their procedure:
Retrain classifiers, regularizing towards subspace U

Principal component analysis (PCA) / Case studies 22
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PCA Summary
PCA summary

• Intuition: capture variance of data or minimize

reconstruction error

• Algorithm: find eigendecomposition of covariance

matrix or SVD

•
Impact: reduce storage (from O(nd) to O(nk)), reduce

time complexity

• Advantages: simple, fast

• Applications: eigen-faces, eigen-documents, network

anomaly detection, etc.
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Probabilistic Interpretation
Probabilistic modeling

So far, deal with objective functions:

min

U
f(X,U)

Probabilistic modeling:

max

U
p(X | U)

Invent a generative story of how data X arose

Play detective: infer parameters U that produced X

Advantages:

• Model reports estimates of uncertainty

• Natural way to handle missing data

• Natural way to introduce prior knowledge

• Natural way to incorporate in a larger model

Example from last lecture: k-means ) GMMs

Principal component analysis (PCA) / Probabilistic PCA 31

Probabilistic PCA

Generative story [Tipping and Bishop, 1999]:

For each data point i = 1, . . . , n:
Draw the latent vector: zi ⇠ N (0, Ik⇥k)
Create the data point: xi ⇠ N (Uzi, �2Id⇥d)

PCA finds the U that maximizes the likelihood of the data

Advantages:
• Handles missing data (important for collaborative

filtering)

• Extension to factor analysis: allow non-isotropic noise
(replace �2Id⇥d with arbitrary diagonal matrix)

Principal component analysis (PCA) / Probabilistic PCA 32
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Limitations of Linearity
Limitations of linearity

PCA is e↵ective PCA is ine↵ective

Problem is that PCA subspace is linear:

S = {x = Uz : z 2 Rk}

In this example:

S = {(x1, x2) : x2 = u2
u1

x1}

Principal component analysis (PCA) / Kernel PCA 25
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Nonlinear PCAGoing beyond linearity: quick solution

Broken solution Desired solution

We want desired solution: S = {(x1, x2) : x2 = u2
u1

x

2
1}

We can get this: S = {�(x) = Uz} with �(x) = (x2
1, x2)>

Linear dimensionality reduction in �(x) space

,

Nonlinear dimensionality reduction in x space

In general, can set �(x) = (x1, x
2
1, x1x2, sin(x1), . . . )>

Problems:

(1) ad-hoc and tedious

(2) �(x) large, computationally expensive

Principal component analysis (PCA) / Kernel PCA 26
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Idea: Use kernels



Kernel PCA

Towards kernels

Representer theorem:

PCA solution is linear combination of xis

Why?

Recall PCA eigenvalue problem: XX

>
u = �u

Notice that u = X↵ =

Pn
i=1 ↵ixi for some weights ↵

Analogy with SVMs: weight vector w = X↵

Key fact:

PCA only needs inner products K = X

>
X

Why?

Use representer theorem on PCA objective:

max

kuk=1
u

>
XX

>
u = max

↵>
X

>
X↵=1

↵>
(X

>
X)(X

>
X)↵
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Kernel PCA

Kernel PCA

Kernel function: k(x1,x2) such that

K, the kernel matrix formed by Kij = k(xi,xj),
is positive semi-definite

Examples:

Linear kernel: k(x1,x2) = x

>
1 x2

Polynomial kernel: k(x1,x2) = (1 + x

>
1 x2)2

Gaussian (RBF) kernel: k(x1,x2) = e�kx1�x2k2
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Solving kernel PCA

Direct method:

Kernel PCA objective:

max

↵>K↵=1
↵>K2↵
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Kernel PCASolving kernel PCA

Direct method:

Kernel PCA objective:

max

↵>K↵=1
↵>K2↵

) kernel PCA eigenvalue problem: X

>
X↵ = �0↵

Modular method (if you don’t want to think about kernels):

Find vectors x

0
1, . . . ,x

0
n such that

x

0>
i x

0
j = Kij = �(xi)

>�(xj)

Key: use any vectors that preserve inner products

One possibility is Cholesky decomposition K = X

>
X
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Canonical Correlation 
Analysis (CCA)



Motivation for CCA [Hotelling 1936]Motivation for CCA [Hotelling, 1936]

Often, each data point consists of two views:

• Image retrieval: for each image, have the following:

–
x: Pixels (or other visual features)

– y: Text around the image

• Time series:

– x: Signal at time t

– y: Signal at time t + 1
• Two-view learning: divide features into two sets

–
x: Features of a word/object, etc.

– y: Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly

Canonical correlation analysis (CCA) 35
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CCA ExampleAn example

Setup:

Input data: (x1,y1), . . . , (xn,yn) (matrices X,Y)

Goal: find pair of projections (u,v)

In figure, x and y are paired by brightness

Dimensionality reduction solutions:

Independent Joint

Canonical correlation analysis (CCA) 36
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CCA DefinitionCanonical correlation analysis (CCA)

Definitions:

Variance: cvar(u>x) = u

>
XX

>
u

Covariance: ccov(u>x,v>y) = u

>
XY

>
v

Correlation: ccov(u>x,v>y)p
cvar(u>x)

p
cvar(v>y)

Objective: maximize correlation between projected views

max

u,v
dcorr(u>x,v>y)

Properties:

• Focus on how variables are related, not how much they vary

• Invariant to any rotation and scaling of data

Canonical correlation analysis (CCA) 38



From PCA to CCA
From PCA to CCA

PCA on views separately: no covariance term

max

u,v

u>XX>u
u>u

+

v>YY>v
v>v

PCA on concatenation (X>,Y>
)

>
: includes covariance term

max

u,v

u>XX>u + 2u>XY>v + v>YY>v
u>u + v>v

Maximum covariance: drop variance terms

max

u,v

u>XY>vp
u>u

p
v>v

Maximum correlation (CCA): divide out variance terms

max

u,v

u>XY>vp
u>XX>u

p
v>YY>v

Canonical correlation analysis (CCA) 37
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Importance of Regularization
Regularization is important

Extreme examples of degeneracy:

•
If x = Ay, then any (u,v) with u = Av is optimal

(correlation 1)

•
If x and y are independent, then any (u,v) is optimal

(correlation 0)

Problem: if X or Y has rank n, then any (u,v) is optimal

(correlation 1) with u = X

†>
Yv ) CCA is meaningless!

Solution: regularization (interpolate between

maximum covariance and maximum correlation)

max

u,v

u

>
XY

>
vp

u

>
(XX

>
+ �I)u

p
v

>
(YY

>
+ �I)v

Canonical correlation analysis (CCA) 41
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Canonical Correlation Forests
CANONICAL CORRELATION FORESTS, RAINFORTH AND WOOD 2

(a) Single CART (unpruned) (b) RF with 200 Trees

 

 

(c) Single CCT (unpruned) (d) CCF with 200 Trees

Fig. 1: Decision surfaces for artificial spirals dataset. (a) Shows the hierarchical partitions and surface for a single axis aligned tree while
(b) shows the effect of averaging over a number of, individually randomized, axis aligned trees. (c) Shows a single canonical correlation
tree (CCT) and (d) demonstrates that averaging over CCTs to give a canonical correlation forest leads to “smoother” decision surfaces
which better represent the data than the axis aligned equivalent.

that different trees are trained in a different coordinate system.
Although this was shown to given significant improvement in
predictive performance over RF, they require all features to be
considered for splitting at every node, leading to a computationally
relatively expensive algorithm for more than a modest number of
features.

2 CANONICAL CORRELATION FORESTS

Canonical correlation forests (CCFs) are a new tree ensemble
method for classification. Individual canonical correlation trees
(CCTs) are oblique decision trees, trained by using canonical cor-
relation analysis (CCA) [17] to find feature projections that give
the maximum correlation between the features and a coordinate
free representation of the class labels, and then selecting the best
split in this projected space. Unlike many previous oblique forest
methods, CCFs are equally suited to both binary and multi-class
classification, have the same computational complexity as RFs and
calculate the splitting hyperplanes in a numerically stable manner.
We also introduce the projection bootstrap, a novel alternative to
bagging. Open source code for CCFs is available online1. Both
training and testing of the algorithm require only a single short line
of code without the need for parameter tuning (although there are
a small number of parameter which can be changed, all presented
results are created using default values).

2.1 Forest Definition and Notation
Although the model we introduce can easily be extended to
regression problems, our focus will be on classification. Our aim
will be to predict class labels y

n

2 {1, . . . ,K} given a vector
of input features x

n

2 RD for each data point n 2 {1, . . . , N}.
We will denote the set of labels Y = {y

n

}N
n=1

and the set of
feature vectors X = {x

n

}N
n=1

. Let T = {t
i

}
i=1...L

denote
a forest comprised of binary trees t

i

, where L is a user set
parameter dictating the ensemble size. The model operates in a
train / test fashion, in which T is learnt using training data and out
of sample predictions are made independently of the training data
conditioned on T . Each individual tree t = { ,⇥} is defined by
a set of discriminant nodes  = { 

j

}
j2J\@J and a set of leaf

nodes ⇥ = {✓
j

}
j2@J where J ⇢ Z�0 is a set of node indices

and @J ✓ J is the subset of leaf node indices. Each discriminant

1. http://www.robots.ox.ac.uk/⇠twgr/

node is defined by the tuple  

j

= {�
j,1

,�

j,2

,�

j

, s

j

} where
{�

j,1

,�

j,2

} ✓ J \j are the two child node ids, �
j

2 RD

is a weight vector used to project the input features and s

j

is
the point at which the splitting occurs in the projected space
X

T

�

j

. Note that for orthogonal trees only a single element of
�

j

will be non-zero, whereas oblique trees will have multiple
non-zero elements. Let B (j, t) denote the partition of the input
space associated with node j such that B (0, t) = RD and
B (j, t) = B (�

j,1

, t) [ B (�
j,2

, t). The partitioning procedure
is then defined such that

B (�
j,1

, t) = B (j, t) \
n

z 2 RD : zT�
j

 s

j

o

B (�
j,2

, t) = B (j, t) \
n

z 2 RD : zT�
j

> s

j

o

.

(1)

Thus  defines a hierarchical partitioning procedure that deter-
ministically assigns data points to leaf nodes, with prediction
then based on the corresponding local leaf model. Although more
complicated leaf models are possible (e.g. logistic regression
models [11]), in this paper we only consider the case where the
leaf models are deterministic assignments to a particular class,
thus ✓

j

2 {1, . . . ,K} 8j 2 @J .
As for RFs, out of sample prediction is done using an equally

weighted voting scheme of the tree predictions. The predictive
probability assigned to a certain class is thus the number of trees
that predicted that class divided by the total number of trees.

2.2 Canonical Correlation Analysis
Canonical correlation analysis (CCA) [17] is a deterministic
method giving of pairs of linear projections that maximise the
correlation between two matrices in the co-projected space.
Let us consider applying CCA between the arbitrary matrices
W 2 Rn⇥d and V 2 Rn⇥k, and let a 2 Rd⇥1

, kak
2

= 1 and b 2
Rk⇥1

, kbk
2

= 1 be arbitrary vectors on the (d� 1)-hypersphere
and (k � 1)-hypersphere respectively. Denote the set of solutions
for the canonical coefficients as {A

⌫

, B

⌫

}
⌫2{1,...,⌫

max

} where
each A

⌫

and B

⌫

are in the space of a and b respectively and
⌫

max

= min (rank (W ) , rank (V )). The first pair of canonical
coefficients are given by

{A
1

, B

1

} = argmax
a,b

(corr (Wa, V b)) (2)

and the corresponding canonical correlation components are given
by WA

1

and V B

1

. The second pair of coefficients, {A
1

, B

1

} is

Example: RF that uses CCA to determine axis for splits



SummarySummary

Framework: z = U

>
x, x u Uz

Criteria for choosing U:

• PCA: maximize projected variance

• CCA: maximize projected correlation

•
FDA: maximize projected

interclass variance

intraclass variance

Algorithm: generalized eigenvalue problem

Extensions:

non-linear using kernels (using same linear framework)

probabilistic, sparse, robust (hard optimization)

Fisher discriminant analysis (FDA) 48
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