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| inear Dimensionality Reduction

[dea: Project high-dimensional vector
onto a lower dimensional space

HiE




Problem Setup

Given n data points in d dimensions: X1, ..., X, € RY




Problem Setup

Given n data points in d dimensions: X1, ...,x, € R?

Want to reduce dimensionality from d to &
Choose k directions uy, ..., u

| |
U(U—l”uk c Rexk




Problem Setup

Given n data points in d dimensions: X1, ...,x, € R?

Want to reduce dimensionality from d to &
Choose k directions uy, ..., u

| |
U(ul--uk c Rexk

| |
-

For each u;, compute “similarity” z; = u,




Problem Setup

Given n data points in d dimensions: X1, ...,x, € R?

Want to reduce dimensionality from d to &
Choose k directions uy, ..., u

| |
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For each u;, compute “similarity” z; = u, x

Project x down to z = (21,...,2;)' = U'x

How to choose U?



Principal Component Analysis

x € R361
z=U'x

7z ¢ RV

/’%/ How do we choose U?

Two Objectives
1. Minimize the reconstruction error
2. Maximize the projected variance
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PCA Objective 1: Reconstruction Error

U serves two functions:

® Enhcode: z = UTX, Pg = ujTX
~ k
® Decode: x=Uz=> . . z:u,
1=173"J

Want reconstruction error ||x — x|| to be small

Objective: minimize total squared reconstruction error
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PCA Objective 2: Projected Variance

Empirical distribution: uniform over x4, ..., X,
Expectation (think sum over data points):

Lfx)] =230 f(xi)

Variance (think sum of squares if centered):

Var[f(x)] + (E[f(x)])? = E[f(x)?] = 1 37| f(x:)°

Assume data is centered: E[x] = 0 (what's E[U ' x]?)

Objective: maximize variance of projected data

max 33[|\UTXH2]
UertxHUTO=T
(ul:u]> 5i,j
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Equivalence of two objectives

Key intuition:

variance of data = captured variance + reconstruction error
—_— | T

fixed want large want small
Pythagorean decomposition: x = UU 'x + (I — UU " )x

Ix]|

|(I -UU x|

|[UU x|

Take expectations; note rotation U doesn't affect length:
~ T 5 T2
[[|x[1] = E[|U " x[°] + E[||x — UU "x]|*

Minimize reconstruction error <— Maximize captured variance
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FINdIiNng one principal component

Objective: maximize variance
of projected data

— max E[(u'x)?|
lul|=1

1
= max — Z(U.TXZ')Q

[ul|=17 <=
1=1

Input data: — max lHuTXH2

- ‘ lull=17
_ 1
- | ul|=1 n

of 1
= largest eigenvalue of C L xxT

n
(C' is covariance matrix of data)
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How many components”

e Similar to question of “How many clusters?”
e Magnitude of eigenvalues indicate fraction of variance captured.

e Eigenvalues on a face image dataset:
1353.2 |

1086.7
820.1
Ai

553.6

287.1

> 3 4 5 6 7 & 6 10 o

7
e Eigenvalues typically drop off sharply, so don't need that many.
e Of course variance isn't everything...
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Computing PCA

Method 1: eigendecomposition
U are eigenvectors of covariance matrix C' = %XXT
Computing C' already takes O(nd?) time (very expensive)

Method 2: singular value decomposition (SVD)
Find X = UgxaSaxnV,

nXxn

where U'U = I;q, V'V = .o, X is diagonal
Computing top k singular vectors takes only O(ndk)

Relationship between eigendecomposition and SVD:
Left singular vectors are principal components (C' = UZQUT)
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Eigen-faces [Turk & Pentland 1991]

e d = number of pixels

® Each x; € R? is a face image
e x;; = Intensity of the j-th pixel in image ¢

Xdxn Ugxk i n

|ldea: z; more “meaningful” representation of ¢-th face than x;

&

Can use z; for nearest-neighbor classification
Much faster: O(dk + nk) time instead of O(dn) when n,d > k

Why no time savings for linear classitier?
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e d = number of words in the vocabulary

® Each x; € R% is a vector of word counts
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Latent Semantic Analysis [Deerwater 1990]

e d = number of words in the vocabulary

® Each x; € R% is a vector of word counts
e x;; = frequency of word j in document ¢

XdX’I’L ~ Uka ZkXTL
/ o 0 \ / 0.4 ..-0.001 \
R 1 0.8-- 0.03 ( | | )
8. 7| | 001- 004
......... | = L Z1 ... Zn
(PR 2 0.002 - 2.3 | |
\ Lo, 3 / \ 0.003.. 1.0 /

How to measure similarity between two documents?

7| 7o is probably better than x| x5

Applications: information retrieval
Note: no computational savings; original x Is already sparse



Network anomaly detection [Lakhina 2005

lelelele

xj; = amount of traffic on 3

||nk] N the network H.;m Link o3
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Network anomaly detection [Lakhina 2005

VN

;::m' S unu-:l—z

link 7 In the network HEJ o
' ' ' ;2 M/ﬁ%m’w

during each time interval 7

2N NS

Model assumption: total traffic is sum of flows along a few “paths”

Apply PCA: each principal component intuitively represents a “path’
Anomaly when traffic deviates from first few principal components

[ S = Y

xj; = amount of traffic on

Anomalous
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Multi-task learning [Ando & Zhang 200

e Have n related tasks (classify documents for various users)
e Each task has a linear classifier with weights x;
e \Want to share structure between classifiers

One step of their procedure:
given n linear classitiers xq,...,x,,
run PCA to identify shared structure:

X = X1 ... Xp ~ UZ

Each principal component is a eigen-classifier

Other step of their procedure:
Retrain classifiers, regularizing towards subspace U

O



PCA Summary

e Intuition: capture variance of data or minimize
reconstruction error

e Algorithm: find eigendecomposition of covariance
matrix or SVD

e Impact: reduce storage (from O(nd) to O(nk)), reduce
time complexity

e Advantages: simple, fast

e Applications: eigen-faces, eigen-documents, network
anomaly detection, etc.



Propbabilistic Interpretation

Generative Model [Tipping and Bishop, 1999].

For each data pointz=1,...,n:
Draw the latent vector: z; ~ N (0, I xx)

Create the data point: x; ~ N (Uz;, 0%13%q)

PCA finds the U that maximizes the likelihood of the data

max p(X | U)



Propbabilistic Interpretation

Generative Model [Tipping and Bishop, 1999].

For each data pointz=1,...,n:
Draw the latent vector: z; ~ N (0, I xx)

Create the data point: x; ~ N (Uz;, 0%13%q)

PCA finds the U that maximizes the likelihood of the data

max p(X | U)
U
Advantages:
e Handles missing data (important for collaborative
filtering)

e Extension to factor analysis: allow non-isotropic noise
(replace 021,54 with arbitrary diagonal matrix)
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~ .CA Is effective PCA is ineffective

Problem is that PCA subspace is linear:
S ={x="Uz:zcRF}

In this example:

S ={(x1,x2) : x2 = Z—i:z:l}
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Nonlinear PCA

Broken solution Desired solution

We want desired solution: S = {(xz1,x2) : 22 = Z—fl‘%}

We can get this: S = {¢(x) = Uz} with ¢(x) = (2%, 7o)

Linear dimensionality reduction in ¢(x) space

)

Nonlinear dimensionality reduction in x space

Idea: Use kernels
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Kernel PCA

Representer theorem:
XX 'u=\u u=Xo = S‘?_l QX

4

Kernel function: k(x1,X2) such that
K, the kernel matrix formed by K;; = k(x;,%,),
Is positive semi-definite

max u' XX 'u= max o (X'X)(X'X)a
Jul|=1 aTX X=1

— max o Ko
o' Ka=1



Kernel PCA

Direct method:
Kernel PCA objective:

max o' K2«
o' Ka=1

— kernel PCA eigenvalue problem: X'Xa = N«

Modular method (if you don’t want to think about kernels):

Find vectors x,...,x’ such that
T T
X; X5 = Kij = ¢(xi)  p(x;5)
Key: use any vectors that preserve inner products

One possibility is Cholesky decomposition K = X' X’



1.5
1.0
0.5
0.0
0.5
1.0

Kernel PCA

Origina

|

| space

0.4
0.3
0.2
0.1
0.0
0.1
0.2
0.3
0.4

1

5 1 1 1 1 1
-1.5-1.0-0.50.0 0.5 1.0 1.5

I

Projection by KPCA

2nd component

|

= O o ©

o v o wu
I

Projection by PCA

o \

5 ] ] ] ] |
-1.5-1.0-0.50.0 0.5 1.0 1.5
1st principal component

-
w

-
o
T

I
|

- —

|

o]
Y
Soote ;5-
o}

|

|

5 1 1
-0.8 -0.6 -0.4 -0.2 0.0

0.2 04 0.6




Canonical Correlation
Analysis (CCA)
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Motivation for CCA [Hotelling 1936]

Often, each data point consists of two views:
e I[mage retrieval: for each image, have the following:
—x: Pixels (or other visual features)

—vy: Text around the image
e [ ime series:
—x: Signal at time ¢

—vy: Signal at time t + 1
e Two-view learning: divide features into two sets

—x: Features of a word/object, etc.
—vy: Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly
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Input data: (x1,¥4),...,(Xn,¥,,) (matrices X,Y)

Goal: find pair of projections (u, v)



CCA Example

Setup:
Input data: (x1,¥4),...,(Xn,¥,,) (matrices X,Y)

Goal: find pair of projections (u, v)

Dimensionality reduction solutions:

°
o®

Independent . Joint

x and y are paired by brightness



CCA Definition

Definitions:
Variance: var(u'x) =u' XX 'u
Covariance: cov(u'x,v'y)=u'XY'v

cv(u' x,v'y)

\/\Ta\r(uTX) \/\Ta\r(v_ry)

Correlation:

Objective: maximize correlation between projected views

T

max corr(u ' x,v ' y)

u,v
Properties:

e Focus on how variables are related, not how much they vary
e Invariant to any rotation and scaling of data



From PCA to CCA

PCA on views separately: no covariance term
u'XX'u v'YY'v

max |
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From PCA to CCA

PCA on views separately: no covariance term
u'XX'u v'YY'v

max |
u,v u'u

v'iv
PCA on concatenation (X', Y ")": includes covariance term
u' XX'u42u'XY'v+v'YY'v
max

u,v u'u —+ v v

Maximum covariance: drop variance terms
u' XY 'v
v vauluvv v
Maximum correlation (CCA): divide out variance terms
u'XY'v
max

v /T XXTuvv' ' YY v
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Importance of Regularization

Extreme examples of degeneracy:

o If x = Ay, then any (u,v) with u = Av is optimal
(correlation 1)

o If x and y are independent, then any (u, v) is optimal
(correlation 0)

Problem: if X or Y has rank n, then any (u, v) is optimal

(correlation 1) with u = X' Yv = CCA is meaningless!
Solution: regularization (interpolate between
maximum covariance and maximum correlation)
u' XY 'v
max

wyv uT (XXT + AM)uy/vT(YY T + M)v




Canonical Correlation Forests

(a) Single CART (unpruned) (b) RF with 200 Trees (¢) Single CCT (unpruned) (d) CCF with 200 Trees

5

4
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Canonical Correlation Forests

Tom Rainforth, Frank Wood
(Submitted on 20 Jul 2015 (v1), last revised 5 Dec 2015 (this version, v5))

We introduce canonical correlation forests (CCFs), a new decision tree ensemble method for classification. Individual canonical
correlation trees are binary decision trees with hyperplane splits based on canonical correlation components. Unlike axis-aligned
alternatives, the decision surfaces of CCFs are not restricted to the coordinate system of the input features and therefore more naturally
represent data with correlation between the features. Additionally we introduce a novel alternative to bagging, the projection bootstrap,
which maintains use of the full dataset in selecting split points. CCFs do not require parameter tuning and our experiments show that
they out-perform axis-aligned random forests, other state-of-the-art tree ensemble methods and all of the 179 popular classifiers
considered in a recent extensive survey.

Example: RF that uses CCA to determine axis for splits



summary

Framework: z = U x, x = Uz

Criteria for choosing U:
e PCA: maximize projected variance

e CCA: maximize projected correlation

Algorithm: generalized eigenvalue problem
Extensions:

non-linear using kernels (using same linear framework)

probabilistic, sparse, robust (hard optimization)



