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PROJECT

GUIDELINES
(updated)



Project Goals

Select a dataset / prediction problem

Perform exploratory analysis
and preprocesssing

Apply one or more algorithms
Critically evaluate results

Submit a report and present project



Proposals

Due: 28 October
Presentation:10+5 mins
Proposal: 1-2 pages
Describe

* Dataset

e Prediction task

* Proposed methods



Presentation and Report

e Due: 2 December

* Presentation

e 20mins + 10 discussion
* Report

 8-10 pages, 11 pts
* Code



Presentation and Report

e Due: 2 December

* Presentation

e 20mins + 10 discussion
* Report

 8-10 pages, 11 pts
* Code



Grading

Proposal: 15%

Problem and Results: 20%
Data and Code: 15%
Report: 35%

Presentation: 15%




Grading

e Problem and Results: 20%
* Novelty of task
e Own dataset vs UCI dataset

 Number of algorithms tested

* Novelty of algorithms



Grading

e Data and Code: 15%

 Documentation and Readability

e TAs should be able to run code

* Reproducibility
(can figures and tables be
generated by running code?)



Grading

* Report: 35%

Exploratory analysis of data

* Explain how properties of data
relate to choice of algorithm

Description of algorithms
and methodology

Discussion of results

e \Which methods work well,
which do not, and why?

 Comparison to state of art?



Example: Minimum Viable Project

e (Get 2-3 datasets
from UCI repository

* Figure out what pre-processing
(if any) is needed

* Run every applicable
algorithm in scikit learn

* Explain which algorithms work well
on which datasets and why



Example: More Ambitious Projects

 Find a new dataset or define a novel task
(/.e. not classification or clustering)

e Attack a problem from a Kaggle competition

* Implement a recently published method
(talk to me for suggestions)



Homework Updates

« HW3 now due on 2 November
(after midterm and proposals)

« Removed HW5 to give more
time to work on projects



MID TERM
REVIEW



List of Topics for Midterm

hitp://www.ccs.neu.edu/course/cs6220f16/sec3/midterm-topics.html

Northeastern University
College of Computer and Information Science

CS6220 - Fall 2016 - Section 3 - Data Mining Techniques

MIDTERM TOPIC LIST

LINEAR REGRESSION

e Problem definition

e Ordinary Least Squares, Pseudo-inverse
o Implementation
o Computational complexity

* Everything up until last Friday
(expect final to emphasize later topics)

* Open book, focus on understanding


http://www.ccs.neu.edu/course/cs6220f16/sec3/midterm-topics.html

BINOMIAL MIXTURES



Mixture of Binomials

Suppose we have two coins A and B (weighted).
We want to estimate the bias of the two coins. 1.e.

O pa(head) = 14
o ps(head) = g

@ Pick a coin at random
(simplified version, a equal mixture)

@ Flip 10 times and record 'H and 'T"

@ repeat the process until we have a good size of
training data



Mixture of Binomials

HTTTHHTHTH SH,5T
HHHHTHHHHH OH,1T
HTHHHHHTHH 8H,2T
HTHTTTHHTT 4H,6T

THHHTHHHTH 7H, 3T
/ 24H,6T 9H. 11T

5 sets, 10 tosses per set

M
Binomial(m |, M, u) = ( )Mm(l — )M
m



Gaussian Mixture Model

Generative Model

z., ~ Discrete( )
X, |2, =k ~ A (U, Ty )

Expectation Maximization
Initialize 6
Repeat until convergence

1. Expectation Step

q'(2) = argmax £(q(2),0'™")
q(2)
2. Maximization Step

0! = argmax %(q'(2),0)
0

_ p(X,|6)
#((=),0)= 2 a(=)log = 3




Binomial Mixture Model

Generative Model Expectation Maximization
2 ~ Discrete(7) Initialize @
X, |2, =k ~ Binomial(u;, M) Repeat until convergence

1. Expectation Step

HTTTHHTHTH q'(z) = argmax £(q(2),0")

q(2)
HHHHTHHHHH 2. Maximization Step
HTHHHHHTHH 91=af8£naXff(ql(Z),9)

HTHTTTHHTT

X,z|0
THHHTHHHTH —‘f(q(z),H)=Zq(z)logp(q(;| :




Binomial Mixture Model

Generative Model Expectation Maximization
2 ~ Discrete(7) Initialize @
X, |2, =k ~ Binomial(u;, M) Repeat until convergence

1. Expectation Step

- I _ —1 _i—1
C) HTTTHHTHTH Yo =P, =k|pw™, )
o HHHHTHHHHH 2. Maximization S’[ep

| . i _ 1 NN i X
@ HTHHHHHTHH b = 57 2ot Vi
O HTHTTTHHTT nl =NI/N

\ - i __ NV i

o THHHTHHHTH N=> .1




TOPIC MODELS

Borrowing from:
David Blel
(Columbia)




Review: Nalve Bayes

Features: Words in E-mail

1
0
0

a
aardvark
aardwolf

buy

Zygimurgy

Labels: Spam or not Spam

Y, €10,1}

Generative Model

v, ~ Bernoulli(u)

X,q|y, =k~ Bernoulli(¢,)

Maximum Likelihood

1 N
b= ;:1: Ly, =1]

Prg = Nik Zkf[xnd = 1]

n:y,=



Review: Nalve Bayes

Features: Words in E-mail

1
0
0

a
aardvark
aardwolf

buy

Zygimurgy

Labels: Spam or not Spam

Y, €10,1}

Generative Model (with pri

u ~ Beta(1,1

or)

)

¢kd ~ Beta(]_, ]

y,, ~ Bernoul.

)

i)

X4 |y, =k~ Bernoul

li(prq)

Posterior Mean for Parameters

M*’¢* — 4:P(Ma¢|x1:Na)’1:N)[‘l’L’¢]

>k

N +1

N, + 1

qbzd —

b =N +2

Ny + 2




Mixtures of Documents

Observations: Bag of Words

24 ] a
1 aardvark
0 aardwolf
X d= . X
4 buy
0 Zyemurgy

Clusters: Types of Documents




Mixtures of Documents

Observations: Bag of Words

24
1
0

a
aardvark
aardwolf

buy

Zygimurgy

Clusters: Types of Documents

z2,€{1,....K} d=1,...,D

Generative Model (with prior)

u ~ Beta(1, ]

¢ra ~ Beta(l,

y, ~ Bernou

1)

1)
i)

Hi(Prq)

X4 |y, =k~ Bernoul

How should we modity
the generative model?



Mixtures of Documents

Observations: Bag of Words

24
1
0

a
aardvark
aardwolf

buy

Zygimurgy

Clusters: Types of Documents

z2,€{1,....K} d=1,...,D

Generative Model (with prior)

0 ~ Dirichlet(a)
P ~ Dirichlet(n)
z4 ~ Discrete(0)
xq |24 =k ~ Mult(fB, Ng)



Topics

Topic Modeling

Topic proportions and

Documents .
assignments

gene 0.04
dna 0.02
genetic 0.01
life 8.0a2

evolve @ .Gl
organism 0.01

A

/

brain 0.04
neuron 0.02

nerve 0.01
data 0.02

number 0.02
computer 0.01

A I

/

Seeking Life’s Bare (Genetic) Necessities
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ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modern and ancient genomes.

SCIENCE e VOL. 272 ¢ 24 MAY 1996

 Naive Bayes: Documents belong a class
e Jopic Models: Words belong to a class




| atent Dirichlet Allocation

Proportions
parameter

Per-word
topic assignment

Per-document Observed _ Topic
topic proportions word Topics  parameter

NN
OTOTO-@—-10—C

. O Zd,n Wd,n N 1

D K

p:. ~ Dirichlet(n) k=1,...,K
0; ~ Dirichlet(a) d=1,...,D
Zq, ~ Discrete(6;) n=1,...,Ny
Wy nlZy,=k ~ Discrete(8,) n=1,...,N;




PLSI/PLSA: EM for LDA

Generative Model (no priors) Expectation Step

— — 1—1
Z 4, ~ Discrete( 6, Yd nk = (Z4 N = k| 0" B7)

W4 nlZg =k ~ Discrete(f;)
Maximization Step

" ey . ag=
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Variational Inference tor LDA (sketch)

Generative Model

3. ~ Dirichlet(n)

6, ~ Dirichlet(a) a |y | Zaw Wan Bk

N Ui
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Wd,n‘Zd,n =k ~ Discrete(ﬁk)
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6, ~ Dirichlet(1 ;)



Variational Inference tor LDA (sketch)

Generative Model

3. ~ Dirichlet(n)
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Variational Inference tor LDA (sketch)

One iteration of mean field variational inference for LDA
(1) For each topic k£ and term v:

) =n+ LL 1(14.n = 0)$5%.

d=1 n=1

(2) For each document d:
(a) Update Y4

(1+1 ;
(b) For each word n, update ¢y ,:
) B xexp {5”(1/)”“)) F Oy — (Y 0D }

where ¥ 1s the digamma function, the first derivative of the
log I function.




Example Inference

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes
in a simple parasite and esti-
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE o VOL. 272 * 24 MAY 1996

Mycoplasma =~
genome
1469 genes

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-

for Biotechnology Information (NCBI)

- \in Bethesda, Maryland. Comparing an
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Example

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
specles
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

INnference

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations



Example Inference

Chaotic Beetles

Charles Godfray and Michael Hassell

Ecologists have known since the pioneering
work of May in the mid-1970s (1) that the
population dynamics of animals and plants
can be exceedingly complex. This complex-
ity arises from two sources: The tangled web
of interactions that constitute any natural
community provide a myriad of different
pathways for species to interact, both di-
rectly and indirectly. And even in isolated
populations the nonlinear feedback pro-
cesses present in all natural populations can
result in complex dynamic behavior. Natural
populations can show persistent oscillatory
dynamics and chaos, the latter characterized
by extreme sensitivity to initial conditions. If
such chaotic dynamics were common in na-
ture, then this would have important ramifi-
cations for the management and conserva-
tion of natural resources. On page 389 of this
issue, Costantino et al. (2) provide the most

The authors are in the Department of Biology, Imperial
College at Silwood Park, Ascot, Berks, SL5 7PZ UK. E-
mail: m.hassell@ic.ac.uk

move over the surface of the attractor, sets of
adjacent trajectories are pulled apart, then
stretched and folded, so that it becomes im-
possible to predict exact population densities
into the future. The strength of the mixing
that gives rise to the extreme sensitivity to
initial conditions can be measured math-
ematically estimating the Liapunov expo-

convincing evidence to date of
complex dynamics and chaos
in a biological population—of
the flour beetle, Tribolium
castaneum (see figure).

It has proven extremely dif-
ficult to demonstrate complex
dynamics in populations in the
field. By its very nature, a cha-
otically fluctuating population
will superficially resemble a
stable or cyclic population buf-
feted by the normal random per-
turbations experienced by all
species. Given a long enough
time series, diagnostic tools
from nonlinear mathematics

nent, which is positive for cha-
otic dynamics and nonposi-
tive otherwise. There have been
many attempts to estimate at-
tractor dimension and Liap-
unov exponents from time se-
ries data, and some candidate
chaotic population have been
identified (some insects, ro-
dents, and most convinc-
ingly, human childhood dis-
eases), but the statistical diffi-
culties preclude any broad
generalization (3).

An alternative approach is
to parameterize population
models with data from natural

can be used to identify the tell-
tale signatures of chaos. In phase
space, chaotic trajectories come
to lie on “strange attractors,”
curious geometric objects with
fractal structure and hence
noninteger dimension. As they

SCIENCE o VOL. 275 o 17 JANUARY 1997

Cannibalism and chaos.
The flour beetle, Tribo-
lium castaneum, exhibits
chaotic population dy-
namics when the amount
of cannibalism is altered
in a mathematical model.

populations and then compare
their predictions with the dy-
namics in the field. This tech-
nique has been gaining popu-
larity in recent years, helped by
statistical advances in pa-
rameter estimation. Good ex-

323



Example Inference

problem
problems
mathematical
number
new
mathemadtics
university
two
first
numbers
work
time
mathematicians
chaos
chaotic

model
rate
constant
distribution
time
number
s1ze
values
value
average
rates
data
density
measured
models

selection
male
males
females
sex
species
female
evolution
populations
population
sexual
behavior
evolutionary
genetic
reproductive

species
forest
ecology
fish
ecological
conservation
diversity
population
natural
ecosystems
populations
endangered
tropical
forests
ecosystem




Performance Metric: Perplexity

Nematode abstracts Associated Press
34001 7000
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perplexity = exp
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Extensions of LDA

Latent dirichlet allocation

DM Blei, AY Ng, MI Jordan - Journal of machine Learning research, 2003 - jmir.org
Abstract We describe latent Dirichlet allocation (LDA), a generative probabilistic model for
collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian
model, in which each item of a collection is modeled as a finite mixture over an underlying ...

Cited by 15971 Related articles All 124 versions Cite Save

 EM inference (PLSA/PLSI) yields similar

results to Variational inference (LDA) on most data
* Reason for popularity of LDA:

can be embedded in more complicated models




Extensions: Correlated Topic Model

Soroe— o

Q/ Tld Zd,n Wd,n
N
o

Noconjugate prior
on topic proportions

D K

Estimate a covariance matrix 2 that parameterizes
correlations between topics in a document



Extensions: Dynamic Topic Models

1789 2009

My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

Track changes in word distributions
assoclated with a topic over time.



Extensions: Dynamic Topic Models
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Extensions: Dynamic Topic Models
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Extensions: Dynamic Topic Models

(1880 ) (1890 ) (1900 ) (1910 (1920 ) (1930 (1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam | electrical —®| engineering —» room —»| water [—¥| mercury »| laboratory

two machine water laboratory glass laboratory rubber

machines two construction engineer gas pressure pressure
iron system engineer made made made small

battery motor room gas laboratory gas mercury

| wire | __engine | feet ) | tube | | mercury | . small | gas |

v

(1950 ) ( 1960 | ( 1970 ) ( 1980 ) ( 1990 ) ( 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber heat —»| temperature | system || applications —» gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
. rubber |/ | control ) | design ) | large | ( heat | [ technology |




Extensions: Dynamic Topic Models

"Theoretical Physics"™ "Neuroscience™

FORCE OXYGEN
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Extensions: Supervised LDA

OFOF @O
. 04 Zan\ Wan Y, o7 P
N
O O
Y D| n,0°

@ Draw topic proportions 6 | a ~ Dir(«).
@ For each word

» Draw topic assignment z, | 8 ~ Mult(0).
o Draw word wy, | z,, 81.x ~ Mult(3z,).

© Draw response variable y | zy.n,n,0° ~ N(n'Zz,0%), where
z=(1/N)>0. zn.



Extensions: Supervised LDA

...........................................................................................................................
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Extensions: Ideal Point Topic Models

o
tn OO @+C
@ iy

D

Bill content Bill sentiment  Observed Legislator
(topic model) variables votes ideal points




Extensions: Ideal Point Topic Models

tax credit,budget authority,energy,outlays,tax - @
county,eligible,ballot,election,jurisdiction - o
bank,transfer,requires,holding company,industrial - o
housing,mortgage,loan,family,recipient - [
energy,fuel,standard,administrator,lamp - .
student,loan,institution,lender,school - o
medicare,medicaid,child,chip,coverage - o
defense,iraq,transfer,expense,chapter — o
business,administrator,bills,business concern,loan - [
transportation,rail,railroad,passenger,homeland security - [
cover,bills,bridge,transaction,following — [
bills,tax,subparagraph,loss,taxable - o
loss,crop,producer,agriculture,trade - °
head,start,child,technology,award — o
computer,alien,bills,user,collection — (]
science,director,technology,mathematics,bills - ®
coast guard,vessel,space,administrator,requires - o
child,center,poison,victim,abuse - o
land,site,bills,interior,river — ()
energy,bills,price,commodity,market - [
surveillance,director,court,electronic,flood - ®
child,fire,attorney,internet,bills - o
drug,pediatric,product,device,medical - [
human,vietham,united nations,call,people - o
bills,iran,official,company,sudan - o
coin,inspector,designee,automobile,lebanon - [
producer,eligible,crop,farm,subparagraph - .
people,woman,american,nation,school - ‘
veteran,veterans,bills,care,injury — o
dod,defense,defense and appropriation,military,subtitle - o



