Data Mining lechnigues

CS 6220 - Section 3 - Fall 2016

L ecture 9

Jan-Willem van de Meent
(credit. Yijun Zhao, Carla Brodley, Eamon
Keogh, Tan + Steinbach + Kumar)

Two Types of Clustering

Hierarchical Partitional

e
;‘,-“:?c
5y e
\ / ‘ L

Create a hierarchical Construct partitions and
decomposition using evaluate them using
‘some criterion” ‘'some criterion”

+we Four Types of Clustering

1. Connectivity-based (Hierarchical)

o .0 ® \. ...::J 0. o
kX X
o. ., . .‘4&0 o
a7 %o“. :.k L ~. ...o
’ .&’ M Dy o . 'ﬁ‘?“' .
<) .* o ¥ «° y o @o
. L] «°8 .) . 3N
S '::g,o : ° *° Ea TR :.:{"‘
o.. - ..0. - 0... °®
..‘ .. }.:'..'..og o. 2 'o:... ?}‘.0. ::
‘°0 ".‘25 i o™, . 0"\3 *
? o ’... o’ Q
.0.0.*: :o°‘..‘.$.o. o 'g‘ ‘$.
T .1"?3' o St
:oo * ..‘.’ o‘ * .
oo '’

Notion of Clusters: Cut off dendrogram at some depth

+we Four Types of Clustering

2. Centroid-based (K-means, K-medoids)

Notion of Clusters: Voronoi tesselation

+we Four Types of Clustering

3. Density-based (DBSCAN, OPTICS)

- .m- wi o1
0s ..
..’. ® .
e ¢ ° :Q"r'.r. .
. ~.. g }‘ .o o‘.
0. d.h ‘ Yoo h ':‘O.oo"
L :’.s’
L B L) ©
« ¢ " H y o
R Lt 2 i
“ °qe ”
:)‘:;":d'.. ., :t.
9 e, 00, “%w .}.‘o.):.
o ‘o ‘o‘ L) s
.. “..' .. K oi’
& py "% - Yoo
Pe*h " e
[ehe) ‘1 o ‘.
o.o.. ..‘.’ °‘
o

Notion of Clusters: Connected regions of high density

+we Four Types of Clustering

4. Distribution-based (Mixture Models)

Notion of Clusters: Distributions on features

K-Means Clustering

K-means Clustering

|[dea: Minimize Sum of Squares

SSEi =" || x — g |2

xe C;

K
SSE = S SSE,
=1

J

Brute force search: NP-hard
How many partitions?

K-means Clustering

|[dea: Minimize Sum of Squares

SSEi =" || x — g |2

xe C;

K
SSE = S SSE,
=1

J

Use heuristic search
(as in hierarchical case)

K-means Clustering

IS IS
. IS ‘0‘
C“ IS
1 L 4 ®
3
IS
® @
2 “2 'Y . 2
IS ® ¢
. IS
1 0‘ o IS
o0 ® oo ¢
M3 M
0 |
0 1 2 3 4 5

Randomly initialize K centroids ik

K-means Clustering

&
IS
® IS
1 ® ¢
IS
oo / ® o

0

Assign each point to closest centroid,
then update centroids to average of points

K-means Clustering

@ ¢ o
4 °© o 0“
Hy
@
3
@
IS
2 O *
o ® ® ¢
o @ M3
| PR
1 Oké ~ &
TS
oo IS o
0
0 1 2 3 4 5

Assign each point to closest centroid,
then update centroids to average of points

K-means Clustering

@ ® o
4 * o> .°
U3 o
@
3
IS
IS
2 O *
¢ \ 'S ‘ 4
*@® J He®
1 oMo ¢
° ¢
XS o ¢ o
0
0 1 2 3 4 5

Repeat until convergence
(no points reassigned, means unchanged)

K-means Clustering

® ® o
4 A 0°
‘U1 °
®
3
®
®
2 ¢ L 4
o @ ¢
JIP ¢ ® o
1 ® M3 Y
IS ¢ o
® o ® ‘
0 |
0 1 2 3 4 5

Repeat until convergence
(no points reassigned, means unchanged)

K-means Algorithm

Input: X ={x1,X,...,Xn}
Number of clusters K

Initialize: K random centroids pi1, (o, . .., lik
Repeat Until Convergence

@ Fori=1,... Kdo

= X|i = | — ;|2
Ci = 1x € X]|i=arg min || x—; ||}

Q Fori=1,..., K do
pi=argmin > ||z —x |’

xeC;

Output: Ci, G, ..., Ck

K-means Algorithm

Input: X ={x1,X,...,Xn}
Number of clusters K

Initialize: K random centroids pi1, (o, . .., lik
Repeat Until Convergence

@ Fori=1,... Kdo

= X|i = | — ;|2
Ci = 1x € X]|i=arg min || x—; ||}

Output: Ci, G, ..., Ck

e K-means: Set pyto mean of points in C
o K-medoids: Set y=xfor point in C with minimum SSE

K-means Complexity

Cost function

K

Cost =33 | x— s |

1 xeC;

What is the computational complexity (per iteration)
for N points with D features and K clusters?

K-means Complexity

Cost function

K
Cost =33 | x— s |

1 xeC;

Complexity: O(N K D #iterations)

Minl-patch K-means

Web-scale k-means clustering

D Sculley - Proceedings of the 19th international conference on ..., 2010 - dl.acm.org
Abstract We present two modifications to the popular k-means clustering algorithm to
address the extreme requirements for latency, scalability, and sparsity encountered in user-
facing web applications. First, we propose the use of mini-batch optimization for k-means ...
Cited by 152 Related articles All 11 versions Cite Save

Minl-patch K-means

WWW 2010 * Poster

April 26-30 * Raleigh « NC « USA

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT

‘We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast e-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors

1.5.3 [Computing Methodologies|: Pattern Recognition—
Clustering

General Terms

Algorithms, Performance, Experimentation

Keywords

unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THE WEB

Unsupervised clustering is an important task in a range
of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS

The k-means optimization problem is to find the set C' of
cluster centers ¢ € R™, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x € R™ the following objective function:

min Y~ [|£(C,x) — x|

xeX

Here, f(C,x) returns the nearest cluster center ¢ € C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations ¢, data set X

2: Initialize each ¢ € C with an x picked randomly from X
3:ve—0

4: fori=1tot do

5. M < b examples picked randomly from X

6: for x € M do

T d[x] < f(C,x) // Cache the center nearest to x
8: end for

9: for xe€ M do

10: c —d[x] // Get cached center for this x

11: v[c] —v[c]+1 // Update per-center counts

12: N g // Get per-center learning rate
13: c— (I—nec+nx // Take gradient step
14: end for

15: end for

‘We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against

both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 * Poster

April 26-30 * Raleigh * NC « USA

Erorfrom Best teans Onecie Function Vlue

i
§
H

Erorrom Best K Hans Obecive Functon Value
2

071
Traiing CPU se

o
00 [T—T oor

03 T
Traiing GPU secs

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS

‘We modify mini-batch k-means to find sparse cluster cen-
ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point ¢ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an Ll-ball of radius A\ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ¢-L1: an e-Accurate Projection to L1 Ball.

1: Given: ¢ tolerance, L1-ball radius A, vector ¢ € R™

2: if ||c||i < A+ € then exit

3: upper — ||c|| ; lower «— 0 ; current «— ||c||1

4: while current > A(1 + ¢€) or current < XA do

5: § « uppertlower // Get L1 value for this 6
6: current — 3 o max(0,[ci| — 0)

7: if current < X\ then upper — 0 else lower — 6

8: end while

9: for i =1 to m do

0: ¢; « sign(c;) *max(0, |c;| — 0) // Do the projection
1: end for

= =

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value 6 that
projects ¢ to an L1 ball with radius between A and (14 €)\.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

METHOD A #NON-ZERO’S | TEST OBJECTIVE | CPUs
full batch | - 200,319 0 (baseline) | 133.96
LTL1P 5.0 46,446 | .004 (.002-.006) 0.51
e-L1 5.0 44,060 | .007 (.005-.008) 0.27
LTL1P 1.0 3,181 | .018 (.016-.019) 0.48
e-L1 1.0 2,547 | .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our e-accurate projection
for mini-batch k-means, with a range of A values. The value
of € was arbitrarily set to 0.01. We report values for k£ = 10,
b = 1000, and ¢t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES

[1] L. Bottou and Y. Bengio. Convergence properties of the
kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.

Efficient projections onto the 11-ball for learning in high

dimensions. In ICML ’08: Proceedings of the 25th

international conference on Machine learning, 2008.

C. Elkan. Using the triangle inequality to accelerate

k-means. In ICML ’03: Proceedings of the 20th international

conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Revl: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

2

)

2-page abstract

Minl-patch K-means

WWW 2010 * Poster

April 26-30 * Raleigh « NC « USA

Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA
dsculley@google.com

ABSTRACT

‘We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast e-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors

1.5.3 [Computing Methodologies|: Pattern Recognition—
Clustering

General Terms

Algorithms, Performance, Experimentation

Keywords

unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THE WEB

Unsupervised clustering is an important task in a range
of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS

The k-means optimization problem is to find the set C' of
cluster centers ¢ € R™, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x € R™ the following objective function:

min Y~ [|£(C,x) — x|

xeX

Here, f(C,x) returns the nearest cluster center ¢ € C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.
: Given: k, mini-batch size b, iterations ¢, data set X
: Initialize each ¢ € C' with an x picked randomly from X
v—0
: fori=1totdo
M «— b examples picked randomly from X
for x € M do
d[x] < f(C,x) // Cache the center nearest to x
end for
for x € M do
c —d[x] // Get cached center for this x
v[c] —v[c]+1 // Update per-center counts
n— // Get per-center learning rate
// Take gradient step

vle
c— (I—nec+nx

end for

15: end for

1
2
3:
4
5:
6:
7
8:
9:
10:
11:
12:
13:
14:

‘We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against

both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 * Poster

April 26-30 * Raleigh * NC « USA

Erorfrom Best teans Onecie Function Vlue

i
§
H

Erorrom Best K Hans Obecive Functon Value

071
Traiing CPU se

03 T
Traiing GPU secs

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS

‘We modify mini-batch k-means to find sparse cluster cen-
ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point ¢ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an Ll-ball of radius A\ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ¢-L1: an e-Accurate Projection to L1 Ball.

1: Given: ¢ tolerance, L1-ball radius A, vector ¢ € R™

2: if ||c||i < A+ € then exit

3: upper — ||c|| ; lower «— 0 ; current «— ||c||1

4: while current > A(1 + ¢€) or current < XA do

5: § « uppertlower // Get L1 value for this 6
61 current « 3. o max(0, |ci| —)

7 if current < X\ then upper — 0 else lower «— 0

8: end while

9: for i =1 to m do

0: ¢; « sign(c;) *max(0, |c;| — 0) // Do the projection
1: end for

= =

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value 6 that
projects ¢ to an L1 ball with radius between A and (14 €)\.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

METHOD A #NON-ZERO’S | TEST OBJECTIVE | CPUs
full batch | - 200,319 0 (baseline) | 133.96
LTL1P 5.0 46,446 | .004 (.002-.006) 0.51
e-L1 5.0 44,060 | .007 (.005-.008) 0.27
LTL1P 1.0 3,181 | .018 (.016-.019) 0.48
e-L1 1.0 2,547 | .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our e-accurate projection
for mini-batch k-means, with a range of A values. The value
of € was arbitrarily set to 0.01. We report values for k£ = 10,
b = 1000, and ¢ = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES

[1] L. Bottou and Y. Bengio. Convergence properties of the
kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the 11-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Revl: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

2-page abstract

Minl-patch K-means

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations ¢, data set X
2: Initialize each ¢ € (' with an x picked randomly from X
3: v+—20
4: for 1 =1tot do
5. M <+ b examples picked randomly from X
6: forxe M do
7 d[x] «— f(C,x) // Cache the center nearest to x
8: end for
9: forxe M do
10: c — d[x] // Get cached center for this x
11: vic|] < v|c] +1 // Update per-center counts
12: n «— ﬁ // Get per-center learning rate
13: c— (1—n)c+nx // Take gradient step
14: end for
15: end for

Complexity: O(NM K D t)

Mini-patch K-means

KMeans

MiniBatch KMeans
train tlme..ﬂ,g

Difference

. train tlme.. Q,p
inertia: 247-@,} y

Wt .

Importance of Initia

25r
1.5

0.5

251
1.5F

0.5

lteration 1 lteration 2
¢ o 3t ¢ o
»
O ¢ Y4
N/ ’00’.3. h 25+ o“.,o" N
] ‘e ““}0 .
+ Q‘ 2 ‘ Q‘:’ “ P
o"b W‘. o
157 ‘e
. > * "Lo
1+
.
0.5F
[| [|
w* of w*
‘ ‘ .‘l | | ‘ ‘ ‘ .‘l | | ‘
15 -1 05 0 05 1 15 2 15 - 05 0 05 1 1.5
X X
lteration 4 lteration 5
* * 3r * *
» »
0 ' 4
i/ ’: S I 25+ I 0: RN
4 4
LI} 0’:] LAY T
* 0".&,‘0“, 2 . ,Q’ * s’
¢ o W0t 0 *e ov»
’Q"’ * P A 1.5F 0 ’ ‘
1 .
. .
+ 0.5¢
4'» [| ‘ ' [|
.I.‘I 0 .f.‘
|] |]
L L .\. . L L L .\. . L
15 1 0.5 0 0.5 1 1.5 2 -15 1 0.5 0 0.5 1 1.5

| Centroids

251

1.5¢

0.5

251

1.5¢

0.5

lteration 3
* *

»

. 4
0"’ 0" L
‘0‘0% 4
) ’2’~0‘¢“
¢ Q“‘“

LI I o,

lteration 6
¢ o

‘Q
O‘Q’Q‘s .

‘00
‘0 \t

0%‘& w

‘00 ‘

"Good”

Initial choice

Importance of Initial Centroids

lteration 1 lteration 2
3r % 3r
25+ ‘\ L] 25+ L]
3 PR
2 4 ‘0* 21 “: :‘0 »
¢ 0‘3‘90) AR o w0t 0
15 **0 0 %0 15r AU
[4
1 . 1r .
05 ° ¢ 0.5 ° ¢
| N « | °..‘ -
° .M w, 0 Y A . &
e - e -
H nm H nm
‘ ° ‘ ‘ ‘ ° ‘
2 -15 -1 05 0 0.5 1 1.5 2 2 15 -1 0.5 0 0.5 1 1.5 2
X X
lteration 3 lteration 4 Iteration 5
3 3r 3r
2.5 2.5 25
'S " * *
oF L) oF L) 2F 9,
¢ " “ " “ v " “
» ¢ * ¢
. 0‘.9 .o” o RS YOS w’. o I YEX' N .o” o
1.5F +%0 ¢ %0 A 1.5¢ e%0 ¢ %0 A 1.5¢ e%0 ¢ %0 .
> ¢ > ¢ > ¢
* [2 * * ¢ * * ¢ ¢
1 . 1 . 1 .
° L4 ° ¢ ° ¢
0.5 o ° 0.5 ° ° 0.5 °
o o,] oo 4, o L
[J a [] | | o n
: wte | W : A R : e |
) - ® - e -
H nm H nm H nm
L ' L ‘ L L L L L .
2 -15 -1 0.5 0 0.5 1 1.5 z 2 15 -1 05 0 0.5 1 1.5 2 2 -15 1 05 0 0.5 1 1.5 2
X X X

“Bad” Initial choice

Importance of Initial Centroids

What is the chance of randomly selecting
one point from each of K clusters”

(assume each cluster has size n = N/K)

Importance of Initial Centroids

What is the chance of randomly selecting
one point from each of K clusters?

(assume each cluster has size n = N/K)

ways to select one from each cluster K!n® K!
KK

ways to select K centroids - (Kn)X

Implication: We will almost always have
multiple initial centroids in same cluster.

Importance of Initial Centroids

Iteration 1 Iteration 2

8t .

61 6l

4t 4+

2l 2t

[69))

>l >0

2r 27

-4+ 4+

6" -6

0 5 10 15 20 0 5 10 15 20
Iteration 3 Iteration 4

8 I 8,

61 6l

41 4+

2+ \ 2r |

| |

>0t >0k

20 2

-4+ 4+

6F 6

0 5 10 15 20 0 5 10 15 20
X X

5 pairs of clusters, two initial points in each pair

Importance of Initial Centroids

Iteration 1 Iteration 2
8+ 8+
61 61
4r 4
2k 2k
>0 >0l
2k 2k
4+ 4+
6F 6F
0 5 10 15 20 0 5 10 15 20
Iteration 3 Iteration 4
8+ 8
6 6
4r 4+
21 20
>\0, >\0,
2k 2k
-4 - 4+
6F 6F
0 5 10 15 20 0 5 10 15 20
X X

Some pairs have 3 initial centroids, some have 1

Importance of Initial Centroids

Iteration 1 Iteration 2
8+ 8+
61 61
4r 4
2k 2k
>0 >0l
2k 2k
4+ 4+
6F 6F
0 5 10 15 20 0 5 10 15 20
Iteration 3 Iteration 4
8+ 8
6 6
4r 4+
21 20
>\0, >\0,
2k 2k
-4 - 4+
6F 6F
0 5 10 15 20 0 5 10 15 20
X X

Conclusion: Heuristic search leads to local optima

Importance of Initial Centroids

Initialization tricks
* Use multiple restarts
* |nitialize with hierarchical clustering

e Select more than K points,
keep most widely separated points

Choosing K

K=1, 5SSE=873

12 3 4 5 6 7 8 910

K=2, SSE=173

12 3 45 6 7 8 910

K=3, 5SoE=134

. ..r.'.;:.
SN '

1 2 3 4 5 6 7 8 910

Choosing K

1.00E+03
9.00E+02
8.00E+02
7.00E+02
6.00E+02
5.00E+02
4.00E+02
3.00E+02

2.00E+02

Cost Function

1.00E+02
0.00E+00

“Elbow finding” (a.k.a. “knee finding”)
Set K to value just above “abrupt” increase

K-means Limitations: Differing Sizes

hd

Original Points

K-means Limitations: Differing Sizes

b hd

Original Points K-means (3 Clusters)

K-means Limitations

W o

= E‘E’:‘éﬁ

uﬁ: -"F;,E!;_;

"

Original Points

- Differing Densities

K-means Limitations: Differing Densities

"

Original Points

K-means (3 Clusters)

K-means Limitations: Non-globular Shapes

15}

10

10 13

Original Points

K-means Limitations: Non-globular Shapes

15 15

10 10}

= 5F

8 -

of ob

Sk SF
L i i L i i __l'l i i i
-15 10 15 -15 -10 -3 0 5 10 15

Original Points K-means (2 Clusters)

Overcoming K-means Limitations

| %o E =
| hl ! " TRl it
L
- " 'S | T | i L
. i F o : FEo ¢
- & | N | V% & | —|— g 1 "
:lt_ s E I .
S) Sr I
! -« % g |
T e L
X X

Intuition: “Combine” smaller clusters into larger clusters

e One Solution: Hierarchical Clustering
e Another Solution: Density-based Clustering

Density-based
Clustering

DBSCAN

. <— nhoise

A

/

arbitrarily shaped clusters

[PDF] A density-based algorithm for discovering clusters in large spatial

databases with noise.

M Ester, HP Kriegel, J Sander, X Xu - Kdd, 1996 - aaai.org

Abstract Clustering algorithms are attractive for the task of class identification in spatial
databases. However, the application to large spatial databases rises the following
requirements for clustering algorithms: minimal requirements of domain knowledge to ...
Cited by 8901 Related articles All 70 versions Cite Save More

(one of the most-cited clustering methods)

. <— noise

arbitrarily shaped clusters

Intuition
e A clusteris a region of high density
e Noise points lie in regions of low density

Defining “"High Density”

Naive approach

For each point in a cluster there are at least a minimum number (MinPts)
of points in an Eps-neighborhood of that point.

cluster

Defining “"High Density”

Eps-neighborhood of a point p

Neos(P) = {q €D | dist (p, q) <Eps}

Defining “"High Density”

* |n each cluster there are two kinds of points: ° o

— points inside the cluster (core points) . ::.. o

— points on the border (border points) e o ° o

cluster

An Eps-neighborhood of a border point contains significantly less points than
an Eps-neighborhood of a core point.

Defining “"High Density”

Better notion of cluster

For every point p in a cluster C there is a point g € C,
so that

(1) p is inside of the Eps-neighborhood of g

and
(2) Ngys(q) contains at least MinPts points.

border points are connected to core points

— core points = high density

Density Reachabillity

Definition

A point p is directly density-reachable from a point g
with regard to the parameters Eps and MinPts, if

1) p e Ng,la) (reachability)

2) | Ngys(a) | 2 MinPts (core point condition)

Parameter: MinPts=5

p directly density reachable from q

o P e NEps(q)
o | Ngps(d) | =6 25 =MinPts (core point condition)

g not directly density reachable from p

| Ngps (P) | =4 <5 =MinPts (core point condition)

Note: This Is an asymmetric relationship

Density Reachabillity

Definition

A point p is density-reachable from a point g

with regard to the parameters Eps and MinPts

if there is a chain of points p4, p,, ... ,ps With p,=q and p,=p
such that p.., is directly density-reachable from p; for all 1 <i < s-1.

° ° MinPts = 5
y * . | Neps(@) | =5 = MinPts (core point condition)

° . N | Neps(Pq) [=6 25 = MinPts (core point condition)

Density Connectivity

Definition (density-connected)
A point p is density-connected to a point g

with regard to the parameters Eps and MinPts
if there is a point v such that both p and q are density-reachable from v.

MinPts = 5

Note: This Is a symmetric relationship

Definition of a Cluster

A cluster with regard to the parameters Eps and MinPts
IS a non-empty subset C of the database D with

1) Forall p, q € D: (Maximality)
If peC and qis density-reachable from p
with regard to the parameters Eps and MinPts,

then g € C.

2) Forall p,q e C: (Connectivity)
The point p is density-connected to g
with regard to the parameters Eps and MinPts.

Definition of Noise

Let C,,...,C, be the clusters of the database D
with regard to the parameters Eps, and MinPts (i=1,...,k).

The set of points in the database D not belonging to any cluster C,,...,C,
Is called noise:

Noise={peD|p¢gC forall i=1,...,k}

/
Cluster

DBSCAN Algorithm

(1) Start with an arbitrary point p from the database and
retrieve all points density-reachable from p
with regard to Eps and MinPts.

(2) If p is a core point, the procedure yields a cluster

with regard to Eps and MinPts
and all points in the cluster are classified.

(3) If p is a border point, no points are density-reachable from p
and DBSCAN visits the next unclassified point in the database.

DBSCAN Algorithm

IR
% o i T
BT R 3

Point types: core,
border and noise

Original Points

DBSCAN Complexity

* [ime complexity: O(N2) it done naively,
O(N log N) when using a spatial index
(works in relatively low dimensions)

e Space complexity: O(N)

DBSCAN strengths

Original Points Clusters

+ Resistant to noise
+ Can handle arbitrary shapes

DBSCAN Weaknesses

R
it
s B | . Lh
.I ..-: - Ll '.'.'L
"l.ll.-. Py %_'_ r_ :_' g [P
TR T = gl 2ol
._Irl: ;. rl.l ' -. -._ _ﬁ .I
'--..:—- i T ok = -
L] Sy Sasitl,
- el i -
1 i 1 Pz
. =1

Ground Truth MinPits= 4, Eps=9.92 MinPts= 4, Eps=9.75

- Varying densities
- High dimensional data
- Overlapping clusters

Determining EPS and MINPTS

k-dist 4

threshold
point

. |

L
Eps -

,.....+;;;

noise cluster 1 cluster 2

e Calculate distance of k-th nearest
neighbor for each point

* Plot in ascending / descending order

e Set EPS to max distance before “jump”

K-means vs DBSCAN

-"‘*rrqi R g T
‘l; n . e J
AN O o R
. ' {I -' -. . b
K-means 3 P | &
%

DBSCAN

Fvaluation of
Clustering

Clusters in Random Data

1‘ ° [) 17 v °
[]) [] v v
09 oo . oo . 0.9+ v Y
. . vy v v
e o i ¢ e PY v v Y M M
[] [) v v v
0.8+ e © . s & 0.8r v v Y v v
[]) [v v v
0.7r ® °® « ©® e 0.7r M vY v v
o © o vy v v v
o [] v v
Random o6 ° . et .t ° o6 T, T DBSCAN
= L4 L} ® [] ® v v Vv v
[] ® v o, v
Points >~0.5 < .. >0.5) o,
04r o ° 04 ., [
[] °
° ® %o ° i * T .
03re ® . . 0.3+ = . .
[] ® * *
0.2F ° ° ® ‘. . ® ° ° 0.2+ Y ¥ *ox . . u . n
o © e e ° ¥ * * * *
0.1r e ® o ° . ? 0.1r . ¥ N " ’
°
0 ® ‘ ‘ 0 * *
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Y v
1’ ° ° 17 * *
* * * % * * * M
09 oo . e X 0.9F «« * * *
P * * * * *
e o P
* * * * * *
K-means °% - ° N + ¥ I ‘ - ¥ Complete
° * * * % *
L ® * * L * * * H
0.7 e ©® o ’ w T 0.7 % k% " w 7 Llnk
06l © e °. N £, * 0.6l * * * ° o *
° # * @
° . [] ° * *** * . . o ° %** ¥
>0.57¢ o v v 057 " e o
041 o * 04r °
v []
] v vy 4 v Vyy
0.3fv v . 0.3 v . .
v v v L]
0.2r v v M 'v v v v 0.2r v ° o ’. o ® ° °
v v v v v v v e b e
01’ v 7 v v vv v' 01’ PY [] [° .. ’
0— M , ‘ ol °
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Clustering Criteria

* External Quality Criteria
e Precision-Recall Measure

e Mutual Information

* Internal Quality Criteria
Measure compactness of clusters

e Sum of Squared Error (SSE)

o Scatter Criteria

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Uncorrelated Variables

p(a, b) = p(a)p(b)

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Uncorrelated Variables

p(a, b) = p(a)p(b)

4B = S pla)p(b)log LRD)

oy p@p(d)

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

p(A=a,B=b)=0(a,b)p(B =b)

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

p(A=a,B=b)=0(a,b)p(B =b)

| - B B p(AZ a,B=D>b)
1(4;B) = Q;EBP(A =B =b)les e (B =1b)

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

p(A=a,B=b)=0(a,b)p(B =b)

:B) = =Db)l
I(A;B)=) p(B)log -

beB

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

P(A=k)=) &k Dp(B=1)=p(B=k)

l€B

:B) = =Db)l
I(A;B)=) p(B)log -

beB

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

P(A=k)=) &k Dp(B=1)=p(B=k)

l€B

:B) = =Db)l
I(A;B)=) p(B)log -

beB

Mutual Information (External)

p(a, b)
= E : b)1
I(A,B) aEA’bEBp(a,) ng(a)p(b)

Perfectly Correlated Variables

P(A=k)=) &k Dp(B=1)=p(B=k)

l€B

I(A;B) =— > p(b)logp(b) = H(B)

beB

Mutual Information (External)

p(y,2)
: — E :]

vn: True class label for example n
Zn. Clustering label for example n

Mutual Information (External)

p(y,2)
: — E :]

vn: True class label for example n
Zn. Clustering label for example n

Y=k =~ 1=k pZ=D==>1(,=0

1
p(Y =k,Z=1)= Nznll(yn:k/\zn:l)

Mutual Information (External)

p(y,2)
: — E :]

p(y,z) | 1 2 3 p(y)
cat 0.39 0.08 0.02 | 0.49

dog 0.06 0.31 0.01 | 0.38
parrot | 0.01 0.01 0.11 | O0.13

p(z) | 046 0.40 0.04

Mutual Information (External)

p(y,2)
p(y)p(=)

1(Y;2) =) p(y,2)log
Y,z

KN\

p(y,z) | 1 2 3 p(y)
cat 0.39 0.08 0.02 | 0.49

dog 0.06 0.31 0.01 | 0.38
parrot | 0.01 0.01 0.11 | O0.13

p(z) | 046 0.40 0.04
XN

What happens to [(Y;Z) it we swap cluster labels?

Mutual Information (External)

p(y,2)
: — E :]

p(y,z) | 1 2 3 p(y)
cat 0.08 0.39 0.02 | 0.49

dog 0.31 0.06 0.01 | 0.38
parrot | 0.01 0.01 0.11 | O0.13

p(z) | 040 0.46 0.04

What happens to [(Y;Z) it we swap cluster labels?

Mutual Information (External)

p(y,2)
: — E :]

p(y,z) | 1 2 3 p(y)
cat 0.08 0.39 0.02 | 0.49

dog 0.31 0.06 0.01 | 0.38
parrot | 0.01 0.01 0.11 | O0.13

p(z) | 040 0.46 0.04

Mutual Information is invariant under label permutations

Scatter Criteria (Internal)

Let X:(Xl,...,Xd)T
C1,..., Ck be a clustering of {x1,...,xn}
Define
@ Size of each cluster:
N, =|C 1=1,2,...,K

@ Mean for each cluster:
i =2 > X i=12....K

xe(C;

@ Jotal mean :
1 N 1 al
p=72.% OR uznZlN,-u,-
i=1 =

Scatter Criteria (Internal)

@ Scatter matrix for the /" cluster:

Si= > (x—puj)(x — p;j)" (outer product)

xe C;

@ Within cluster scatter matrix :

K
Sw=)_5
=1

@ Between ;c<|uster scatter matrix :
Sg = > Ni(pti—) (i — p) " (outer product)
i=1

Scatter Criteria (Internal)

@ [he trace criteria: sum of the diagonal
elements of a matrix

@ A good partition of the data should have:
o Low tr(Sy): similar to minimizing SSE
o High tr(SB)

tl’(SB)
tl’(Sw)

Q High

