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Max Margin Classifiers

Idea: Maximize the margin between two separable classes  



Max Margin Classifiers
182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.
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an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

Distance from plane:
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SVMs as Convex Optimization

Dual problem

Sum over support vectors during prediction



Soft-margin SVMs
Non-separable Data

Yijun Zhao DATA MINING TECHNIQUES Linear Classification Model: Support Vector Machines
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Loss Functions



Nonlinear SVMs



Inseparable  Problems
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

Kernels and feature space (1): XOR example
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Idea: Map features onto higher dimensional space



Feature Map
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

Kernels and feature space (1): XOR example
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Feature space
Basics of reproducing kernel Hilbert spaces
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SVMs with Feature Maps
Dual problem

Dual problem with feature map



Computational Cost
Example: Mapping with linear and quadratic terms
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1+d+d2/2 
terms



Computational Cost
Example: Mapping with linear and quadratic termsComputational Cost

Polynomial ϕ (x) Cost 100 features

Quadratic > d2/2 terms up 
to degree 2 d2 N2 /4 2,500 N2

Cubic > d3/6 terms up 
to degree 3 d3 N2 /12 83,000 N2

Quartic > d4/24 terms 
up to degree 4 d4 N2 /48 1,960,000 N2

Yijun Zhao DATA MINING TECHNIQUES Linear Classification Model: Support Vector Machines
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Computational Cost
Kernel for polynomials up to degree q

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

The kernel trick

Lecture 1: Introduction to RKHS



Kernels

Borrowing from: 
Arthur Gretton  
(Gatsby, UCL)



Hilbert Spaces
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Hilbert space

Definition (Inner product)

Let H be a vector space over R. A function h·, ·iH : H⇥H ! R
is an inner product on H if

1 Linear: h↵1f1 + ↵2f2, giH = ↵1 hf1, giH + ↵2 hf2, giH
2 Symmetric: hf , giH = hg , f iH
3 hf , f iH � 0 and hf , f iH = 0 if and only if f = 0.

Norm induced by the inner product: kf kH :=
phf , f iH

Definition (Hilbert space)
Inner product space containing Cauchy sequence limits.

Lecture 1: Introduction to RKHS
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Example: Fourier Bases

Fourier modes define a vector space



Kernels
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Kernel

Definition

Let X be a non-empty set. A function k : X ⇥ X ! R is a kernel

if there exists an R-Hilbert space and a map � : X ! H such that
8x , x 0 2 X ,

k(x , x 0) :=
⌦
�(x),�(x 0)

↵
H .

Almost no conditions on X (eg, X itself doesn’t need an inner
product, eg. documents).
A single kernel can correspond to several possible features. A
trivial example for X := R:

�1(x) = x and �2(x) =


x/
p

2
x/

p
2

�

Lecture 1: Introduction to RKHS



Sums, Transformations, Products

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)
Given ↵ > 0 and k, k1 and k2 all kernels on X , then ↵k and
k1 + k2 are kernels on X .

(Proof via positive definiteness: later!) A difference of kernels may
not be a kernel (why?)

Theorem (Mappings between spaces)

Let X and eX be sets, and define a map A : X ! eX . Define the
kernel k on eX . Then the kernel k(A(x),A(x 0)) is a kernel on X .

Example: k(x , x 0) = x2 (x 0)2 .

Lecture 1: Introduction to RKHS

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

New kernels from old: products

Theorem (Products of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 ⇥ k2 is a kernel on X1 ⇥ X2.
If X1 = X2 = X , then k := k1 ⇥ k2 is a kernel on X .

Proof: Main idea only!
H1 space of kernels between shapes,

�1(x) =


I⇤
I4

�
�1(⇤) =


1
0

�
, k1(⇤,4) = 0.

H2 space of kernels between colors,

�2(x) =

I•
I•

�
�2(•) =


0
1

�
k2(•, •) = 1.

Lecture 1: Introduction to RKHS



Polynomial Kernels
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Sums and products =) polynomials

Theorem (Polynomial kernels)

Let x , x 0 2 Rd for d � 1, and let m � 1 be an integer and c � 0 be
a positive real. Then

k(x , x 0) :=
�⌦

x , x 0↵+ c
�m

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels
hx , x 0i raised to integer powers. These individual terms are valid
kernels by the product rule.

Lecture 1: Introduction to RKHS



Infinite Sequences
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Infinite sequences

Definition
The space `2 (square summable sequences) comprises all
sequences a := (ai )i�1 for which

kak2
`2

=
1X

i=1

a2
i < 1.

Definition
Given sequence of functions (�i (x))i�1 in `2 where �i : X ! R is
the ith coordinate of �(x). Then

k(x , x 0) :=
1X

i=1

�i (x)�i (x 0) (1)

Lecture 1: Introduction to RKHS



Infinite Sequences
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,
�����

1X

i=1

�i (x)�i (x 0)

�����  k�(x)k`2
��
�(x 0)

��
`2
,

so the sequence defining the inner product converges for all
x , x 0 2 X

Lecture 1: Introduction to RKHS



Taylor Series Kernels
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Taylor series kernels

Definition (Taylor series kernel)
For r 2 (0,1], with an � 0 for all n � 0

f (z) =
1X

n=0

anzn |z | < r , z 2 R,

Define X to be the
p

r -ball in Rd , sokxk <

p
r ,

k(x , x 0) = f
�⌦

x , x 0↵� =
1X

n=0

an
⌦
x , x 0↵n

.

Example (Exponential kernel)

k(x , x 0) := exp
�⌦

x , x 0↵�
.

Lecture 1: Introduction to RKHS



Gaussian Kernel

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Gaussian kernel

Example (Gaussian kernel)

The Gaussian kernel on Rd is defined as

k(x , x 0) := exp
⇣
��

�2 ��x � x 0��2
⌘
.

Proof: an exercise! Use product rule, mapping rule, exponential
kernel.

Lecture 1: Introduction to RKHS

(also known as Radial Basis Function (RBF) kernel)



Gaussian Kernel

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Gaussian kernel

Example (Gaussian kernel)

The Gaussian kernel on Rd is defined as

k(x , x 0) := exp
⇣
��

�2 ��x � x 0��2
⌘
.

Proof: an exercise! Use product rule, mapping rule, exponential
kernel.
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(also known as Radial Basis Function (RBF) kernel)

Squared Exponential (SE)

Automatic Relevance  
Determination (ARD)



Products of Kernels

4 Expressing Structure with Kernels

Lin ◊ Lin SE ◊ Per Lin ◊ SE Lin ◊ Per

0 0

0
0

x (with x

Õ = 1) x ≠ x

Õ
x (with x

Õ = 1) x (with x

Õ = 1)
¿ ¿ ¿ ¿

quadratic functions locally periodic increasing variation growing amplitude

Figure 1.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 1.1.

1.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 1.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple
parametric form. Here, we discuss a few examples:

• Polynomial Regression. By multiplying together T linear kernels, we obtain a
prior on polynomials of degree T . The first column of figure 1.2 shows a quadratic
kernel.

• Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per◊SE corresponds to locally
periodic structure, as shown in the second column of figure 1.2.

• Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter c. The third and fourth columns
of figure 1.2 show two examples.

2 Expressing Structure with Kernels

functions are likely under the GP prior, which in turn determines the generalization
properties of the model.

1.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 1.1.

Kernel name: Squared-exp (SE) Periodic (Per) Linear (Lin)

k(x, x

Õ) = ‡

2

f

exp
1
≠ (x≠x

Õ
)

2

2¸

2

2
‡

2

f

exp
1
≠ 2

¸

2 sin2

1
fi

x≠x

Õ

p

22
‡

2

f

(x ≠ c)(xÕ ≠ c)

Plot of k(x, x

Õ):

0 0

0

x ≠ x

Õ
x ≠ x

Õ
x (with x

Õ = 1)
¿ ¿ ¿

Functions f(x)
sampled from

GP prior:

x x x

Type of structure: local variation repeating structure linear functions

Figure 1.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a di�erent set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly di�erent assumptions
about the smoothness of the function being modeled.

Kernel parameters Each kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of
being parameters which specify a function directly. An example would be the lengthscale

source: David Duvenaud (PhD Thesis)



Positive Definiteness
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Positive definite functions

Definition (Positive definite functions)

A symmetric function k : X ⇥ X ! R is positive definite if
8n � 1, 8(a1, . . . an) 2 Rn

, 8(x1, . . . , xn) 2 X n,

nX

i=1

nX

j=1

aiajk(xi , xj) � 0.

The function k(·, ·) is strictly positive definite if for mutually
distinct xi , the equality holds only when all the ai are zero.

Lecture 1: Introduction to RKHS



Mercer’s Theorem
Feature space

Basics of reproducing kernel Hilbert spaces
Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Kernels are positive definite

Theorem

Let H be a Hilbert space, X a non-empty set and � : X ! H.
Then h�(x),�(y)iH =: k(x , y) is positive definite.

Proof.

nX

i=1

nX

j=1

aiajk(xi , xj) =
nX

i=1

nX

j=1

hai�(xi ), aj�(xj)iH

=

�����

nX

i=1

ai�(xi )

�����

2

H
� 0.

Reverse also holds: positive definite k(x , x 0) is inner product in a
unique H (Moore-Aronsajn: coming later!).

Lecture 1: Introduction to RKHS
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Dual problem

Dual problem with feature map



Kernelized SVMs  
Dual problem

Dual problem with kernel



Kernelized SVMs  

Generalization to multiple classes: 
Train multiple one-vs-all or one-vs-one classifiers
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Kernel Ridge Regression

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Main message #2

Small RKHS norm results in smooth functions.
E.g. kernel ridge regression with Gaussian kernel:

f ⇤ = arg min
f 2H

 
nX

i=1

(yi � hf ,�(xi )iH)2 + �kf k2
H

!
.
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CS281B/Stat241B (Spring 2008) Statistical Learning Theory Lecture: 10

Kernel ridge regression, Gaussian processes, and ensemble methods

Lecturer: Peter Bartlett Scribe: Kevin Canini

1 Loss & maximum likelihood

A classification or regression problem is typically formulated with a cost term of the form:

1
n

X
�(yi, f(xi)) + penalty(f)

where �(·, ·) is the estimation error and penalty(f) is the regularization term.

For certain loss functions, we can interpret minimizing this expression as maximizing the probability of the
data. This viewpoint is not useful, although, for the hinge loss function. In that case, because � is not
di↵erentiable, the minimizer of E [�(Y, f(X)) X] is not an invertible function of the conditional probability
P (Y = 1|X).

2 Kernel ridge regression

Ridge regression adds a regularization penalty (scaled by �) to the cost term, as follows:

1
n

nX

i=1

(yi � f(xi))2 + �kfk2
H

As alluded to earlier, minimizing the empirical risk of a data set, using the above cost term, is equivalent to
maximizing the log-likelihood of the data for a certain probability model and loss function.

If we model Y = f(X) + Z, where Z is additive noise, the kernel regression formulation is

min�kwk2 +
X

⇠

2
i

s.t. ⇠i = yi � hw, xii

Computing the Lagrangian and using calculus to minimize over w and ⇠, gives

w =
1
2�

X
↵ixi

⇠ =
↵i

2

and hence the solution to the dual is
↵ = 2�(K + �I)�1

y

1
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Optimization Problem Solve for Dual Problem



Kernel Ridge Regression

Feature space
Basics of reproducing kernel Hilbert spaces

Kernel Ridge Regression

What is a kernel?
Constructing new kernels
Positive definite functions
Reproducing kernel Hilbert space

Main message #2

Small RKHS norm results in smooth functions.
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Closed form Solution


