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Linear Discriminant Analysis
Algorithm

• Mean for each class  

• Covariance for each class  

• Average covariance

4.2 Linear Regression of an Indicator Matrix 105

Linear Regression
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FIGURE 4.2. The data come from three classes in IR2 and are easily separated
by linear decision boundaries. The right plot shows the boundaries found by linear
discriminant analysis. The left plot shows the boundaries found by linear regres-
sion of the indicator response variables. The middle class is completely masked
(never dominates).

• The closest target classification rule (4.6) is easily seen to be exactly
the same as the maximum fitted component criterion (4.4).

There is a serious problem with the regression approach when the number
of classes K ≥ 3, especially prevalent when K is large. Because of the rigid
nature of the regression model, classes can be masked by others. Figure 4.2
illustrates an extreme situation when K = 3. The three classes are perfectly
separated by linear decision boundaries, yet linear regression misses the
middle class completely.

In Figure 4.3 we have projected the data onto the line joining the three
centroids (there is no information in the orthogonal direction in this case),
and we have included and coded the three response variables Y1, Y2 and
Y3. The three regression lines (left panel) are included, and we see that
the line corresponding to the middle class is horizontal and its fitted values
are never dominant! Thus, observations from class 2 are classified either
as class 1 or class 3. The right panel uses quadratic regression rather than
linear regression. For this simple example a quadratic rather than linear
fit (for the middle class at least) would solve the problem. However, it
can be seen that if there were four rather than three classes lined up like
this, a quadratic would not come down fast enough, and a cubic would
be needed as well. A loose but general rule is that if K ≥ 3 classes are
lined up, polynomial terms up to degree K − 1 might be needed to resolve
them. Note also that these are polynomials along the derived direction
passing through the centroids, which can have arbitrary orientation. So in
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Example: Spam Filtering

n

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
...
1
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Features: Words in E-mail Labels: Spam or not Spam



Naive Bayes

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
...
1
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Features: Words in E-mail Generative Model

Conditional Independence



Naive Bayes

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
...
1
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Features: Words in E-mail Generative Model

Maximum Likelihood



Online Estimation and Smoothing

8

almost always do better than GDA. For this reason, in practice logistic re-
gression is used more often than GDA. (Some related considerations about
discriminative vs. generative models also apply for the Naive Bayes algo-
rithm that we discuss next, but the Naive Bayes algorithm is still considered
a very good, and is certainly also a very popular, classification algorithm.)

2 Naive Bayes

In GDA, the feature vectors x were continuous, real-valued vectors. Let’s
now talk about a different learning algorithm in which the xi’s are discrete-
valued.

For our motivating example, consider building an email spam filter using
machine learning. Here, we wish to classify messages according to whether
they are unsolicited commercial (spam) email, or non-spam email. After
learning to do this, we can then have our mail reader automatically filter
out the spam messages and perhaps place them in a separate mail folder.
Classifying emails is one example of a broader set of problems called text
classification.

Let’s say we have a training set (a set of emails labeled as spam or non-
spam). We’ll begin our construction of our spam filter by specifying the
features xi used to represent an email.

We will represent an email via a feature vector whose length is equal to
the number of words in the dictionary. Specifically, if an email contains the
i-th word of the dictionary, then we will set xi = 1; otherwise, we let xi = 0.
For instance, the vector

x =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
0
0
...
1
...
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

a
aardvark
aardwolf
...
buy
...
zygmurgy

is used to represent an email that contains the words “a” and “buy,” but not
“aardvark,” “aardwolf” or “zygmurgy.”2 The set of words encoded into the

2Actually, rather than looking through an english dictionary for the list of all english
words, in practice it is more common to look through our training set and encode in our
feature vector only the words that occur at least once there. Apart from reducing the

Features: Words in E-mail Suppose word d not in training set

Bayes Rule



Online Estimation and Smoothing

Generative model with prior Posterior Mean



Conjugacy

686 B. PROBABILITY DISTRIBUTIONS

Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a ! 1 and b ! 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)
var[m] = Nµ(1 − µ) (B.12)

mode[m] = ⌊(N + 1)µ⌋ (B.13)

where ⌊(N + 1)µ⌋ denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.
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Idea: Maximize the margin between two separable classes  
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182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w
∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an
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Since multiplying w and b by some constant results in the functional margin
being multiplied by that same constant, this is indeed a scaling constraint,
and can be satisfied by rescaling w, b. Plugging this into our problem above,
and noting that maximizing γ̂/||w|| = 1/||w|| is the same thing as minimizing
||w||2, we now have the following optimization problem:

minγ,w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, . . . , m

We’ve now transformed the problem into a form that can be efficiently
solved. The above is an optimization problem with a convex quadratic ob-
jective and only linear constraints. Its solution gives us the optimal mar-
gin classifier. This optimization problem can be solved using commercial
quadratic programming (QP) code.1

While we could call the problem solved here, what we will instead do is
make a digression to talk about Lagrange duality. This will lead us to our
optimization problem’s dual form, which will play a key role in allowing us to
use kernels to get optimal margin classifiers to work efficiently in very high
dimensional spaces. The dual form will also allow us to derive an efficient
algorithm for solving the above optimization problem that will typically do
much better than generic QP software.

5 Lagrange duality

Let’s temporarily put aside SVMs and maximum margin classifiers, and talk
about solving constrained optimization problems.

Consider a problem of the following form:

minw f(w)

s.t. hi(w) = 0, i = 1, . . . , l.

Some of you may recall how the method of Lagrange multipliers can be used
to solve it. (Don’t worry if you haven’t seen it before.) In this method, we
define the Lagrangian to be

L(w, β) = f(w) +
l
∑

i=1

βihi(w)

1You may be familiar with linear programming, which solves optimization problems
that have linear objectives and linear constraints. QP software is also widely available,
which allows convex quadratic objectives and linear constraints.

Constrained Optimization Problem

Lagrangian

7
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l
∑

i=1

βihi(w)

1You may be familiar with linear programming, which solves optimization problems
that have linear objectives and linear constraints. QP software is also widely available,
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Here, the βi’s are called the Lagrange multipliers. We would then find
and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
∂L
∂βi

= 0,

and solve for w and β.
In this section, we will generalize this to constrained optimization prob-

lems in which we may have inequality as well as equality constraints. Due to
time constraints, we won’t really be able to do the theory of Lagrange duality
justice in this class,2 but we will give the main ideas and results, which we
will then apply to our optimal margin classifier’s optimization problem.

Consider the following, which we’ll call the primal optimization problem:

minw f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l.

To solve it, we start by defining the generalized Lagrangian

L(w,α, β) = f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w).

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β :αi≥0

L(w,α, β).

Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either gi(w) > 0 or hi(w) ̸= 0
for some i), then you should be able to verify that

θP(w) = max
α,β :αi≥0

f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w) (1)

= ∞. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then θP(w) = f(w). Hence,

θP(w) =

{

f(w) if w satisfies primal constraints
∞ otherwise.

2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.

Optimum
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Thus, θP takes the same value as the objective in our problem for all val-
ues of w that satisfies the primal constraints, and is positive infinity if the
constraints are violated. Hence, if we consider the minimization problem

min
w

θP(w) = min
w

max
α,β :αi≥0

L(w,α, β),

we see that it is the same problem (i.e., and has the same solutions as) our
original, primal problem. For later use, we also define the optimal value of
the objective to be p∗ = minw θP(w); we call this the value of the primal
problem.

Now, let’s look at a slightly different problem. We define

θD(α, β) = min
w

L(w,α, β).

Here, the “D” subscript stands for “dual.” Note also that whereas in the
definition of θP we were optimizing (maximizing) with respect to α, β, here
are are minimizing with respect to w.

We can now pose the dual optimization problem:

max
α,β :αi≥0

θD(α, β) = max
α,β :αi≥0

min
w

L(w,α, β).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d∗ = maxα,β :αi≥0 θD(w).

How are the primal and the dual problems related? It can easily be shown
that

d∗ = max
α,β :αi≥0

min
w

L(w,α, β) ≤ min
w

max
α,β :αi≥0

L(w,α, β) = p∗.

(You should convince yourself of this; this follows from the “maxmin” of a
function always being less than or equal to the “minmax.”) However, under
certain conditions, we will have

d∗ = p∗,

so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.

3When f has a Hessian, then it is convex if and only if the Hessian is positive semi-
definite. For instance, f(w) = wTw is convex; similarly, all linear (and affine) functions
are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

4I.e., there exists ai, bi, so that hi(w) = aTi w + bi. “Affine” means the same thing as
linear, except that we also allow the extra intercept term bi.
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are are minimizing with respect to w.

We can now pose the dual optimization problem:

max
α,β :αi≥0

θD(α, β) = max
α,β :αi≥0

min
w

L(w,α, β).

This is exactly the same as our primal problem shown above, except that the
order of the “max” and the “min” are now exchanged. We also define the
optimal value of the dual problem’s objective to be d∗ = maxα,β :αi≥0 θD(w).

How are the primal and the dual problems related? It can easily be shown
that

d∗ = max
α,β :αi≥0

min
w

L(w,α, β) ≤ min
w

max
α,β :αi≥0

L(w,α, β) = p∗.

(You should convince yourself of this; this follows from the “maxmin” of a
function always being less than or equal to the “minmax.”) However, under
certain conditions, we will have

d∗ = p∗,

so that we can solve the dual problem in lieu of the primal problem. Let’s
see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.

3When f has a Hessian, then it is convex if and only if the Hessian is positive semi-
definite. For instance, f(w) = wTw is convex; similarly, all linear (and affine) functions
are also convex. (A function f can also be convex without being differentiable, but we
won’t need those more general definitions of convexity here.)

4I.e., there exists ai, bi, so that hi(w) = aTi w + bi. “Affine” means the same thing as
linear, except that we also allow the extra intercept term bi.
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Here, the βi’s are called the Lagrange multipliers. We would then find
and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
∂L
∂βi

= 0,

and solve for w and β.
In this section, we will generalize this to constrained optimization prob-

lems in which we may have inequality as well as equality constraints. Due to
time constraints, we won’t really be able to do the theory of Lagrange duality
justice in this class,2 but we will give the main ideas and results, which we
will then apply to our optimal margin classifier’s optimization problem.

Consider the following, which we’ll call the primal optimization problem:

minw f(w)

s.t. gi(w) ≤ 0, i = 1, . . . , k

hi(w) = 0, i = 1, . . . , l.

To solve it, we start by defining the generalized Lagrangian

L(w,α, β) = f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w).

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β :αi≥0

L(w,α, β).

Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either gi(w) > 0 or hi(w) ̸= 0
for some i), then you should be able to verify that

θP(w) = max
α,β :αi≥0

f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w) (1)

= ∞. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then θP(w) = f(w). Hence,

θP(w) =

{

f(w) if w satisfies primal constraints
∞ otherwise.

2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.
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see what these conditions are.

Suppose f and the gi’s are convex,3 and the hi’s are affine.4 Suppose
further that the constraints gi are (strictly) feasible; this means that there
exists some w so that gi(w) < 0 for all i.
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2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.
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Under our above assumptions, there must exist w∗,α∗, β∗ so that w∗ is the
solution to the primal problem, α∗, β∗ are the solution to the dual problem,
and moreover p∗ = d∗ = L(w∗,α∗, β∗). Moreover, w∗,α∗ and β∗ satisfy the
Karush-Kuhn-Tucker (KKT) conditions, which are as follows:

∂

∂wi

L(w∗,α∗, β∗) = 0, i = 1, . . . , n (3)

∂

∂βi

L(w∗,α∗, β∗) = 0, i = 1, . . . , l (4)

α∗
i gi(w

∗) = 0, i = 1, . . . , k (5)

gi(w
∗) ≤ 0, i = 1, . . . , k (6)

α∗ ≥ 0, i = 1, . . . , k (7)

Moreover, if some w∗,α∗, β∗ satisfy the KKT conditions, then it is also a
solution to the primal and dual problems.

We draw attention to Equation (5), which is called the KKT dual com-
plementarity condition. Specifically, it implies that if α∗

i > 0, then gi(w∗) =
0. (I.e., the “gi(w) ≤ 0” constraint is active, meaning it holds with equality
rather than with inequality.) Later on, this will be key for showing that the
SVM has only a small number of “support vectors”; the KKT dual comple-
mentarity condition will also give us our convergence test when we talk about
the SMO algorithm.

6 Optimal margin classifiers

Previously, we posed the following (primal) optimization problem for finding
the optimal margin classifier:

minγ,w,b

1

2
||w||2

s.t. y(i)(wTx(i) + b) ≥ 1, i = 1, . . . , m

We can write the constraints as

gi(w) = −y(i)(wTx(i) + b) + 1 ≤ 0.

We have one such constraint for each training example. Note that from the
KKT dual complementarity condition, we will have αi > 0 only for the train-
ing examples that have functional margin exactly equal to one (i.e., the ones

Dual complementarity 
gi (w) = 0 when αi > 0 , αi  = 0 when gi (w) < 0
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Here, the βi’s are called the Lagrange multipliers. We would then find
and set L’s partial derivatives to zero:

∂L
∂wi

= 0;
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∂βi

= 0,

and solve for w and β.
In this section, we will generalize this to constrained optimization prob-

lems in which we may have inequality as well as equality constraints. Due to
time constraints, we won’t really be able to do the theory of Lagrange duality
justice in this class,2 but we will give the main ideas and results, which we
will then apply to our optimal margin classifier’s optimization problem.
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hi(w) = 0, i = 1, . . . , l.

To solve it, we start by defining the generalized Lagrangian

L(w,α, β) = f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w).

Here, the αi’s and βi’s are the Lagrange multipliers. Consider the quantity

θP(w) = max
α,β :αi≥0

L(w,α, β).

Here, the “P” subscript stands for “primal.” Let some w be given. If w
violates any of the primal constraints (i.e., if either gi(w) > 0 or hi(w) ̸= 0
for some i), then you should be able to verify that

θP(w) = max
α,β :αi≥0

f(w) +
k
∑

i=1

αigi(w) +
l
∑

i=1

βihi(w) (1)

= ∞. (2)

Conversely, if the constraints are indeed satisfied for a particular value of w,
then θP(w) = f(w). Hence,

θP(w) =

{

f(w) if w satisfies primal constraints
∞ otherwise.

2Readers interested in learning more about this topic are encouraged to read, e.g., R.
T. Rockarfeller (1970), Convex Analysis, Princeton University Press.
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.

When we construct the Lagrangian for our optimization problem we have:

L(w, b,α) =
1

2
||w||2 −

m
∑

i=1

αi

[

y(i)(wTx(i) + b)− 1
]

. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which

(note: no equality constraints)
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we’ll do by setting the derivatives of L with respect to w and b to zero. We
have:

∇wL(w, b,α) = w −
m
∑

i=1

αiy
(i)x(i) = 0

This implies that

w =
m
∑

i=1

αiy
(i)x(i). (9)

As for the derivative with respect to b, we obtain

∂

∂b
L(w, b,α) =

m
∑

i=1

αiy
(i) = 0. (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j) − b

m
∑

i=1

αiy
(i).

But from Equation (10), the last term must be zero, so we obtain

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j).

Recall that we got to the equation above by minimizing L with respect to w
and b. Putting this together with the constraints αi ≥ 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj⟨x(i), x(j)⟩.

s.t. αi ≥ 0, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
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problem. The fact that the number of support vectors can be much smaller
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lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
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L(w, b,α) =
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||w||2 −
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. (8)

Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which
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corresponding to constraints that hold with equality, gi(w) = 0). Consider
the figure below, in which a maximum margin separating hyperplane is shown
by the solid line.

The points with the smallest margins are exactly the ones closest to the
decision boundary; here, these are the three points (one negative and two pos-
itive examples) that lie on the dashed lines parallel to the decision boundary.
Thus, only three of the αi’s—namely, the ones corresponding to these three
training examples—will be non-zero at the optimal solution to our optimiza-
tion problem. These three points are called the support vectors in this
problem. The fact that the number of support vectors can be much smaller
than the size the training set will be useful later.

Let’s move on. Looking ahead, as we develop the dual form of the prob-
lem, one key idea to watch out for is that we’ll try to write our algorithm
in terms of only the inner product ⟨x(i), x(j)⟩ (think of this as (x(i))Tx(j))
between points in the input feature space. The fact that we can express our
algorithm in terms of these inner products will be key when we apply the
kernel trick.
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Note that there’re only “αi” but no “βi” Lagrange multipliers, since the
problem has only inequality constraints.

Let’s find the dual form of the problem. To do so, we need to first
minimize L(w, b,α) with respect to w and b (for fixed α), to get θD, which
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about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)⟨x(i), x⟩+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-
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You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later

Dual complementarity 
• αi  = 0 when gi (w) < 0 
• gi (w) = 0 when αi > 0 
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about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)⟨x(i), x⟩+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-
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we’ll do by setting the derivatives of L with respect to w and b to zero. We
have:

∇wL(w, b,α) = w −
m
∑

i=1

αiy
(i)x(i) = 0

This implies that

w =
m
∑

i=1

αiy
(i)x(i). (9)

As for the derivative with respect to b, we obtain

∂

∂b
L(w, b,α) =

m
∑

i=1

αiy
(i) = 0. (10)

If we take the definition of w in Equation (9) and plug that back into the
Lagrangian (Equation 8), and simplify, we get

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j) − b

m
∑

i=1

αiy
(i).

But from Equation (10), the last term must be zero, so we obtain

L(w, b,α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj(x
(i))Tx(j).

Recall that we got to the equation above by minimizing L with respect to w
and b. Putting this together with the constraints αi ≥ 0 (that we always had)
and the constraint (10), we obtain the following dual optimization problem:

maxα W (α) =
m
∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)αiαj⟨x(i), x(j)⟩.

s.t. αi ≥ 0, i = 1, . . . , m
m
∑

i=1

αiy
(i) = 0,

You should also be able to verify that the conditions required for p∗ =
d∗ and the KKT conditions (Equations 3–7) to hold are indeed satisfied in
our optimization problem. Hence, we can solve the dual in lieu of solving
the primal problem. Specifically, in the dual problem above, we have a
maximization problem in which the parameters are the αi’s. We’ll talk later

Dual Optimization Problem
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about the specific algorithm that we’re going to use to solve the dual problem,
but if we are indeed able to solve it (i.e., find the α’s that maximize W (α)
subject to the constraints), then we can use Equation (9) to go back and find
the optimal w’s as a function of the α’s. Having found w∗, by considering
the primal problem, it is also straightforward to find the optimal value for
the intercept term b as

b∗ = −
maxi:y(i)=−1w

∗Tx(i) +mini:y(i)=1w
∗Tx(i)

2
. (11)

(Check for yourself that this is correct.)
Before moving on, let’s also take a more careful look at Equation (9),

which gives the optimal value of w in terms of (the optimal value of) α.
Suppose we’ve fit our model’s parameters to a training set, and now wish to
make a prediction at a new point input x. We would then calculate wTx+ b,
and predict y = 1 if and only if this quantity is bigger than zero. But
using (9), this quantity can also be written:

wTx+ b =

(

m
∑

i=1

αiy
(i)x(i)

)T

x+ b (12)

=
m
∑

i=1

αiy
(i)⟨x(i), x⟩+ b. (13)

Hence, if we’ve found the αi’s, in order to make a prediction, we have to
calculate a quantity that depends only on the inner product between x and
the points in the training set. Moreover, we saw earlier that the αi’s will all
be zero except for the support vectors. Thus, many of the terms in the sum
above will be zero, and we really need to find only the inner products between
x and the support vectors (of which there is often only a small number) in
order calculate (13) and make our prediction.

By examining the dual form of the optimization problem, we gained sig-
nificant insight into the structure of the problem, and were also able to write
the entire algorithm in terms of only inner products between input feature
vectors. In the next section, we will exploit this property to apply the ker-
nels to our classification problem. The resulting algorithm, support vector
machines, will be able to efficiently learn in very high dimensional spaces.

7 Kernels

Back in our discussion of linear regression, we had a problem in which the
input x was the living area of a house, and we considered performing regres-
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Next Lecture: Nonlinear SVMs
Non-linear Transformation

Let z = �(x) for some function �:

 

Apply SVM in the z space by maximizing:

L(↵) =
NP
i=1

↵
i

� 1
2

NP
i=1

NP
j=1

y

i

y

j

↵
i

↵
j

z

T

i

z

j

Yijun Zhao DATA MINING TECHNIQUES Linear Classification Model: Support Vector Machines


