Data Mining Techniques

CS 6220 - Section 3 - Fall 2016

Lecture 3: Probability

Jan-Willem van de Meent (*credit*: Zhao, CS 229, Bishop)

Project Vote

- 1. Freeform: Develop your own project proposals
 - 30% of grade (homework 30%)
 - Present proposals after midterm
 - Peer-review reports
- 2. Predefined: Same project for whole class
 - 20% of grade (homework 40%)
 - More like a "super-homework"
 - Teaching assistants and instructors

Homework Problems

Homework 1 will be out today (due 30 Sep)

- 4 or (more likely) 5 problem sets
- 30% 40% of grade (depends on type of project)
- Can use any language (within reason)
- Discussion is encouraged, but submissions must be completed individually (absolutely no sharing of code)
- Submission via <u>zip</u> file by **11.59pm** on day of deadline (no late submissions)
- Please follow <u>submission guidelines</u> on website (TA's have authority to deduct points)

Regression: Probabilistic Interpretation

Log joint probability of N independent data points

$$\log p(y_1, \dots, y_N) = \sum_{n=1}^N \log p(y_n)$$
$$= -\frac{1}{2} \left[N \log(2\pi\sigma^2) + \sum_{n=1}^N \frac{(y_n - w^\top x_n)^2}{\sigma^2} \right]$$
$$= -\frac{N}{2} \left[\text{const} + E(w) \right]$$

$$\underset{w}{\operatorname{argmax}} p(y_1, \dots, y_N; w) = \underset{w}{\operatorname{argmin}} E(w)$$

Maximum Likelihood Probability

Examples: Independent Events

- 1. What's the probability of getting a sequence of 1,2,3,4,5,6 if we roll a dice six times?
- 2. A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?

Dependent Events Apple Orange Blue bin Red bin

If I take a fruit from the **red** bin, what is the probability that I get an **apple**?

Dependent Events

Conditional Probability P(fruit = apple | bin = red) = 2 / 8

Joint Probability P(fruit = apple, bin = red) = 2 / 12

Joint Probability P(fruit = apple, bin = blue) = ?

Joint Probability P(fruit = apple, bin = blue) = 3 / 12

Joint Probability P(fruit = orange, bin = blue) = ?

Joint Probability P(fruit = orange, bin = blue) = 1 / 12

1. Sum Rule (Marginal Probabilities)
P(fruit = apple) = P(fruit = apple, bin = blue)
+ P(fruit = apple, bin = red)
- 2

1. Sum Rule (Marginal Probabilities) P(fruit = apple) = P(fruit = apple, bin = blue) + P(fruit = apple, bin = red) = 3/12 + 2/12 = 5/12

2. Product Rule
P(fruit = apple , bin = red) =
P(fruit = apple | bin = red) p(bin = red)
= ?

2. Product Rule
P(fruit = apple , bin = red) =
P(fruit = apple | bin = red) p(bin = red)
= 2 / 8 * 8 / 12 = 2 / 12

2. Product Rule (reversed)
P(fruit = apple , bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
= ?

2. Product Rule (reversed)
P(fruit = apple, bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
= 2 / 5 * 5 / 12 = 2 / 12

Bayes' Rule

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior$$
Likelihood Prior

Sum Rule:
$$p(\mathbf{y}) = \sum_{\mathbf{x}} p(\mathbf{y}, \mathbf{x}) \quad p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{y}, \mathbf{x})$$

Product Rule: $p(\mathbf{y}, \mathbf{x}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x}) = p(\mathbf{x} | \mathbf{y})p(\mathbf{y})$

Bayes' Rule

p(x)Probability of rare disease: 0.005p(y | x)Probability of detection: 0.98Probability of false positive: 0.05

 $p(\mathbf{x} | \mathbf{y})$ Probability of disease when test positive?

Bayes' Rule

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior$$

$$Likelihood$$

$$Prior$$

 $p(\mathbf{y}, \mathbf{x}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})$ 0.99 * 0.005 = 0.00495

 $p(\mathbf{y}) = \sum_{\mathbf{x}} p(\mathbf{y}, \mathbf{x}) \quad 0.99 * 0.005 + 0.05 * 0.995 = 0.0547$

 $p(\mathbf{x} \mid \mathbf{y})$ 0.00495 / 0.0547 = 0.09

Measures

Elements of Probability

- Sample space Ω The set of all outcomes $\omega \in \Omega$ of an experiment
- Event space F
 The set of all possible events A ∈ F, which are subsets A ⊆ Ω of possible outcomes
- Probability Measure P A function $P: F \rightarrow R$

Axioms of Probability

- A probability measure must satisfy
 - 1. $P(A) \ge 0 \forall A \in F$
 - 2. $P(\Omega) = 1$
 - 3. When A_1, A_2, \ldots disjoint

$$P(\cup_i A_i) = \sum_i P(A_i)$$

Corollaries of Axioms

- If $A \subseteq B \Longrightarrow P(A) \leq P(B)$
- $P(A \cap B) \leq \min(P(A), P(B))$
- $P(A \cup B) \leq P(A) + P(B)$ (Union Bound)
- $P(\Omega \setminus A) = 1 P(A)$
- If A_1, \ldots, A_k is a disjoint partition of Ω , then $\sum_{i=1}^k P(A_k) = 1$

Conditional Probability
 Probability of event A, conditioned on occurrence of event B

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- Conditional Independence Events A and B are independent iff
 - $P(A \mid B) = P(A)$

which implies

• $P(A \cap B) = P(A)P(B)$

What is the probability $P(B_3)$?

What is the probability $P(B_1 | B_3)$?

What is the probability $P(B_2 | A)$?

Examples: Conditional Probability

1. A math teacher gave her class two tests.

- 25% of the class passed both tests
- 42% of the class passed the first test.

What percent of those who passed the first test also passed the second test?

- 2. Suppose that for houses in New England
 - 84% of the houses have a garage
 - 65% of the houses have a garage and a back yard.

What is the probability that a house has a backyard given that it has a garage?

Random Variable

• A random variable X, is a function X: $\Omega \rightarrow R$

Rolling a die:

- X = number on the die
- p(X = i) = 1/6 i = 1, 2, ..., 6

Rolling two dice at the same time:

- X =sum of the two numbers
- p(X = 2) = 1 / 36

Probability Mass Function

• For a discrete random variable X, a PMF is a function $p: R \rightarrow R$ such that

p(x) = P(X = x)

Rolling a die:

- X = number on the die
- p(X = i) = 1/6 i = 1, 2, ..., 6

Rolling two dice at the same time:

- X =sum of the two numbers
- p(X = 2) = 1 / 36

Continuous Random Variables

Probability Density Functions

$$p(x) = \lim_{\delta x \to 0} \frac{P(X \le x + \delta x) - P(X \le x)}{\delta x}$$
Expected Values

Statistics Machine Learning

$$\mathbb{E}[X] = \sum_{x} p(x) x \qquad \mathbb{E}_{p(x|y)}[f(x)] = \sum_{x} p(x|y) f(x)$$
$$\mathbb{E}[X] = \int dx \, p(x) x \qquad \mathbb{E}_{p(x|y)}[f(x)] = \int dx \, p(x|y) f(x)$$

Expected Values

Statistics

Machine Learning

$$\mathbb{E}[X] = \sum_{x} p(x) x \qquad \mathbb{E}_{x}[f(x)|y] = \sum_{x} p(x|y)f(x)$$
$$\mathbb{E}[X] = \int dx \, p(x) x \qquad \mathbb{E}_{x}[f(x)|y] = \int dx \, p(x|y)f(x)$$

Expected Values

Mean

 $\bar{X} = \mathbb{E}[X]$

Variance

 $\operatorname{Var}[X] = \mathbb{E}[(X - \bar{X})^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Covariance

 $\boldsymbol{\Sigma}_{i,j} = \operatorname{Cov}[X_i, X_j] = \mathbb{E}[(X_i - \bar{X}_i)(X_j - \bar{X}_j)]$

Conjugate Distributions

Bernoulli

$$Bern(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$
$$\mathbb{E}[x] = \mu$$
$$var[x] = \mu(1-\mu)$$
$$mode[x] = \begin{cases} 1 & \text{if } \mu \ge 0.5, \\ 0 & \text{otherwise} \end{cases}$$

 $x \in \{0, 1\} \qquad \mu \in [0, 1]$

Binomial

$$Bin(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$
$$\mathbb{E}[m] = N\mu$$
$$var[m] = N\mu(1-\mu)$$
$$mode[m] = \lfloor (N+1)\mu \rfloor$$

Beta

$$Beta(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$$
$$\mathbb{E}[\mu] = \frac{a}{a+b}$$
$$var[\mu] = \frac{ab}{(a+b)^2(a+b+1)}$$
$$mode[\mu] = \frac{a-1}{a+b-2}.$$

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

Beta
$$(\mu|a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$$

$$p(\mu \mid m) = \frac{p(m, \mu)}{p(m)}$$

$$\propto \operatorname{Bin}(m \mid N, \mu)\operatorname{Beta}(\mu \mid a, b)$$

$$\propto \mu^{m+(a-1)}(1-\mu)^{(N-m)+(b-1)}$$

$$\operatorname{Bin}(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

Beta
$$(\mu|a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$$

$$p(\mu \mid m) = \frac{p(m,\mu)}{p(m)}$$

$$\propto \operatorname{Bin}(m \mid N,\mu)\operatorname{Beta}(\mu \mid a, b)$$

$$\propto \mu^{m+(a-1)}(1-\mu)^{(N-m)+(b-1)}$$

$$p(\mu \mid m) = \text{Beta}(a + m, b + (N - m))$$

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

Example: Biased Coin

- **y** Observed data (flip outcomes)
- **x** Unknown variable (coin bias)

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

Example: Biased Coin

- $p(\mathbf{y} | \mathbf{x})$ Likelihood of outcome given bias
- $p(\mathbf{x})$ Prior belief about bias
- $p(\mathbf{x} | \mathbf{y})$ Posterior belief after trials

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

$$p(\mathbf{x}) = \operatorname{Beta}(x; 0, 0)$$

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

 $p(\mathbf{x} | \mathbf{y}) = \text{Beta}(x; 7, 3)$

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

 $p(\mathbf{x} | \mathbf{y}) = \text{Beta}(x; 16, 4)$

$$p(\mathbf{x} | \mathbf{y}) = p(\mathbf{y} | \mathbf{x})p(\mathbf{x})/p(\mathbf{y})$$

$$Posterior \quad Likelihood \quad Prior$$

p(x | y) = Beta(x; 24, 26)

Discrete (Multinomial)

$$p(\mathbf{x}) = \prod_{k=1}^{K} \mu_k^{x_k}$$
$$\mathbb{E}[x_k] = \mu_k$$
$$\operatorname{var}[x_k] = \mu_k(1 - \mu_k)$$
$$\operatorname{var}[x_j x_k] = I_{jk} \mu_k$$

Discrete (Multinomial)

$$p(\mathbf{x}) = \prod_{k=1}^{K} \mu_k^{x_k}$$
$$\mathbb{E}[x_k] = \mu_k$$
$$\operatorname{var}[x_k] = \mu_k(1 - \mu_k)$$
$$\operatorname{var}[x_j x_k] = I_{jk} \mu_k$$

Dirichlet

$$\operatorname{Dir}(\boldsymbol{\mu}|\boldsymbol{\alpha}) = C(\boldsymbol{\alpha}) \prod_{k=1}^{K} \mu_{k}^{\alpha_{k}-1}$$
$$\mathbb{E}[\mu_{k}] = \frac{\alpha_{k}}{\widehat{\alpha}}$$
$$\operatorname{var}[\mu_{k}] = \frac{\alpha_{k}(\widehat{\alpha} - \alpha_{k})}{\widehat{\alpha}^{2}(\widehat{\alpha} + 1)}$$
$$\operatorname{cov}[\mu_{j}\mu_{k}] = -\frac{\alpha_{j}\alpha_{k}}{\widehat{\alpha}^{2}(\widehat{\alpha} + 1)}$$
$$\operatorname{mode}[\mu_{k}] = \frac{\alpha_{k} - 1}{\widehat{\alpha} - K}$$

Dirichlet

 $\alpha = (0.1, 0.1, 0.1)$ $\alpha = (1, 1, 1)$ $\alpha = (10, 10, 10)$

 $p(\boldsymbol{\mu}) = \operatorname{Dir}(\boldsymbol{\mu}; \boldsymbol{\alpha})$ $p(\boldsymbol{x} | \boldsymbol{\mu}) = \operatorname{Mult}(\boldsymbol{x}; \boldsymbol{\mu})$ $p(\boldsymbol{\mu} | \boldsymbol{x}) = \operatorname{Dir}(\boldsymbol{x}; \boldsymbol{\alpha} + \boldsymbol{x})$

Multivariate Normal

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$
$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$
$$\operatorname{cov}[\mathbf{x}] = \boldsymbol{\Sigma}$$
$$\operatorname{mode}[\mathbf{x}] = \boldsymbol{\mu}$$

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$
$$p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\mathbf{x} + \mathbf{b}, \mathbf{L}^{-1})$$

$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y}|\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{L}^{-1} + \mathbf{A}\boldsymbol{\Lambda}^{-1}\mathbf{A}^{\mathrm{T}})$$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\Sigma}\{\mathbf{A}^{\mathrm{T}}\mathbf{L}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}\boldsymbol{\mu}\}, \boldsymbol{\Sigma})$$

Bayesian Linear Regression

Prior and Likelihood

$$p(w \mid \alpha) = \mathcal{N}(w \mid \mathbf{0}, \alpha^{-1}I)$$

$$p(y \mid w, \alpha, \beta) = \mathcal{N}(y \mid w^{\top}x, \beta^{-1}I)$$

Posterior $p(w | y, \alpha, \beta) \propto p(y | w, \alpha, \beta)p(w | \alpha)$

Maximum A Posteriori (MAP) gives Ridge Regression

$$\underset{w}{\operatorname{argmax}} p(w \mid y, \alpha, \beta) = \frac{\beta}{2} \sum_{n=1}^{N} (w^{\top} x_n - y_n)^2 + \frac{\alpha}{2} w^{\top} w$$