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Project Vote

1. Freeform: Develop your own project proposals
* 30% of grade (homework 30%)
* Present proposals after midterm
* Peer-review reports
2. Predefined: Same project for whole class
e 20% of grade (homework 40%)
* More like a “super-hnomework”

* Teaching assistants and instructors



Homework Problems

Homework 1 will be out today (due 30 Sep)

e 4 or (more likely) 5 problem sets

* 30% - 40% of grade (depends on type of project)
* Can use any language (within reason)

* Discussion is encouraged, but submissions must
be completed individually
(absolutely no sharing of code)

e Submission via zip file by 11.59pm on day of deadline
(no late submissions)

* Please follow submission guidelines on website
(TA's have authority to deduct points)




Regression: Probabilistic Interpretation

Log joint probability of Nindependent data points
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Propabillity



Examples: Independent Events

1. What's the probability of getting a sequence of
1,2,3,4,5,6 It we roll a dice six times?

2. A school survey found that 9 out of 10 students
ike pizza. It three students are chosen at
random with replacement, what is the
orobability that all three students like pizza”



Dependent events

Red bin Blue bin

If | take a fruit from the red bin,
what is the probability that | get an apple?



Dependent Events

Red bin Blue bin

Conditional Probability
P(fruit = apple | bin=red) =2/ 8



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin =red) =2/ 12



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin = blue) = ?



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = apple , bin = blue) =3/ 12



Dependent Events

Red bin Blue bin

Joint Probability
P(truit = orange , bin = blue) = 7



Dependent Events

Red bin Blue bin

Joint Probability
P(fruit = orange , bin = blue) =1/12



Two rules of Probabillity
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1. Sum Rule (Marginal Probabilities)
P(truit = apple) = P(fruit = apple , bin = blue)
+ P(fruit = apple , bin = red)
= 7




Two rules of Probabillity

OO0
OO0 IO
OO0 ©OO

1. Sum Rule (Marginal Probabilities)
P(truit = apple) = P(fruit = apple , bin = blue)
+ P(fruit = apple , bin = red)
= 3/12+2/12=5/12




Two rules of Probabillity

OO0
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2. Product Rule
P(fruit = apple , bin = red) =

P(':rui’[ - apple bin = red) p(bm - red)
=7



Two rules of Probabillity

OO0
OO0 IO
OO0 ©OO

2. Product Rule
P(fruit = apple , bin = red) =

P(':rui’[ - apple bin = red) p(bm - red)



Two rules of Probabillity
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2. Product Rule (reversed)

P(fruit = apple , bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
=7



Two rules of Probabillity

OO0
OO0 IO
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2. Product Rule (reversed)

P(fruit = apple , bin = red) =
P(bin = red | fruit = apple) p(fruit = apple)
=2/5*5/12=2/12



Bayes Rule

p(x|y)=p(y \x)p(x)/p(y)\

Likelihood

Posterior Prior

Sum Rule: p(y)=) p(y,x) p(x)= p(y,x)
X Y

Product Rule: p(y,x)=p(y|x)p(x)=p(xc|y)p(y)



Bayes Rule

p(x|y)=p(y \x)p(x)/p(y)\

Likelihood

Posterior Prior

Probability of rare disease: 0.005

Probability of detection: 0.98
Probability of false positive: 0.05

Probability of disease when test positive?



Bayes Rule

p(x|y)=p(y \x)p(x)/p(y)\

Likelihood

Posterior Prior

p(y,x)=p(y|x)p(x) 0.99 * 0.005 = 0.00495
p(y) = p(y,x) 0.99 *0.005 + 0.05 * 0.995 = 0.0547

p(x|y) 0.00495 / 0.0547 = 0.09



Vieasures



Elements of Probabillity

e Sample space ()
The set of all outcomes w € ) of an experiment

e Fvent space F
The set of all possible events A € F, which are

subsets A € () of possible outcomes

e Probability Measure P
A function P: F = R



Axioms of Probability

* A probability measure must satisty
1. HA) 20V AeF

2. P(Q) =1
3. When A1, Ap, ... disjoint

P(UA) = 3 P(A)



Corollaries of Axioms

o f AC B— P(A) < P(B)
o P(ANB) < min (P(A), P(B))
o P(AUB) < P(A)+ P(B) (Union Bound)

o P(Q\A)=1— P(A)

o If A, ..., A i1s a disjoint partition of €2, then

_ﬁ P(A,) = 1



Conditional Probability

e Conditional Probability
Probability of event A, conditioned on
occurrence of event B

P(ANB
P(AIB) = “K5y

e Conditional Independence
Events A and B are independent iff

* A | B) = A(A)
which implies

e P(An B) = P(A)P(B)



Conditional Probability




Conditional Probability

What is the probability P(B3)?



Conditional Probability

What is the probability P(B1 | Bs)?



Conditional Probability

What is the probability P(Bs | A)?



Examples: Conditional Probability

1. A math teacher gave her class two tests.
e 25% of the class passed both tests
e 42% of the class passed the first test.

What percent of those who passed the first test also
passed the second test?

2. Suppose that for houses in New England
* 84% of the houses have a garage
* 65% of the houses have a garage and a back yard.

What is the probability that a house has a backyard
given that it has a garage?



Random Variable

e A random variable X, is a function X: O = R

Rolling a die:
e X = number on the die
e (X =1)=1/6 |=12..6

Rolling two dice at the same time:
e X = sum of the two numbers
e (X=2)=1/36




Propablility Mass Function

e For a discrete random variable X,
a PMF is a function p: R = R such that

p(x) = AX = X)

Rolling a die:
e X = number on the die
e (X =1i)=1/6 I=12..6

Rolling two dice at the same time:

e X = sum of the two numbers
e p(X=2)=1/36



Continuous Random Variables

p(X,Y)
o
o
X
p(X)

p(Y)

p(X[Y =1)




Propbability Density Functions

A

p(x) P(X <= x)
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EXpected Values

Statistics Machine Learning

i[X]=) p(x)x oL ()] =D pCx|y) £ (x)

J[X]=dep(X)x *”p(x|y)[f(X)]=dep(X\y)f(X)



EXpected Values

Statistics Machine Learning

i[X]=) p(x)x 2 LF ) lyl= D pCxly) f(x)

I[X]=dep(X)x ”x[f(X)\y]=dep(X\y)f(X)



EXpected Values

Mean

X =E[X]

Variance

Var[ X1 =E[(X —X)?] = E[X?]—E[X]*

Covariance
2 ;= COV[Xian] = E[(X; _Xi)(Xj _Xj)]




Conjugate
Distripbutions



Bernoull

Bern(z|p) = p*(1—p)' ™"
le] = p
varlz] = p(l—p)
1 if u > 0.5,
modelr| = { 0 otherwise

r € {0,1} € [0, 1]



Binomial

Bin(m|N,p) = (ii)um(l —p)
iim| = Np
varfm| = Nu(l — p)
mode[m| = [(N +1)u]




Beta

Beta(u|a,b) =

ab

(a+b)?(a+b+1)
a— 1

a+b—2



Conjugacy

Bin(m\N, ,u) — (‘;X) ,um(l L M)N—m
Beta(,u\a, b) — 5((3);:([;)) Ma—l(l B ,u)b_1
p(u\m)=p(m’“)
p(m)

o< Bin(m | N, u)Beta(u | a, b)
oC Mm+(a—1)(1 _ M)(N—m)+(b—1)



Conjugacy

Bin(m|N, ) = (Z) um(1— )N
Beta(,u\a, b) — 5((2);:([;)) ,ua_l(l B ,u)b_1
p(u\m)=p(m’“)
p(m)

o< Bin(m | N, u)Beta(u | a, b)
oC Mm+(a—1)(1 _ M)(N—m)+(b—1)

p(u|m)=Beta(a+m, b+ (N —m))



Conjugacy

p(x|y)=p(y|x)p(x)/p(y)

Likelihood

Posterior Prior

Example: Biased Coin

y Observed data (flip outcomes)

X Unknown variable (coin bias)




Conjugacy

p(x|y)=p(y|x)p(x)/p(y)

Posterior Likelihood Prior

Example: Biased Coin

p(y|x) Likelihood of outcome given bias

p(x) Prior belief about bias

p(x|y) Posterior belief after trials



Conjugacy

p(x|y)=p(y|x)p(x)/p(y)

Posterior Likelihood Prior
p(x) = Beta(x;0,0)
| | | |
0 heads, 0 tails
| | | |
0 0.2 0.4 0.6 0.8 1.0




Conjugacy

p(x|y)=p(y|x)p(x)/p(y)

Posterior Likelihood

Prior

p(x |y)=Beta(x;7,3)

| |

7 heads, 3 tails
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Conjugacy

p(x|y)=p(y|x)p(x)/p(y)

Likelihood

Posterior Prior

p(x|y)=Beta(x;16,4)

| | |
16 heads, 14 tails
/—‘\ )

// \\ 7 heads, 3 tails

/ """ s

0 heads, O tails  / AN

........................................... /‘,’,r\~

| 1‘/--4"1'" | Sl

X0 0.2 0.4 0.6 0.8 1.0



Conjugacy

Posterior

p(x|y)=p(y|x)p(x)/p(y)

Likelihood

Prior

p(x |y) = Beta(x; 24, 26)

| | |

24 heads, 26 tails

16 heads, 14 tails

‘‘‘‘‘‘
- -~
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Discrete (Multinomial)

K
p(x) = ][ u
k=1
lrg] =
var|lzg] = g1 — k)
COV[ZIZ‘jZCk: — Ijk,uk




Discrete (Multinomial)

K
p(x) = ][ u
k=1
lrg] =
var|lzg] = g1 — k)
COV[ZIZ‘jZCk: — Ijk,uk




Dirichlet

K
Dir(ula) = Cla) [T g™
k=1

ﬂ o
k] = =

L (a — Ckk)

varluk] = S E T

821875
covipiml = —mmE T
— 1

mode|ur| = K

a— K



Dirichlet

a=(0.1,0.1,0.1) a=(1,1,1) a = (10, 10, 10)

p(u) = Dir(w; @)
p(x|p) = Mult(x; u)
p(u|x) = Dir(x; @+ x)



Multivariate Normal
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Bayesian Linear Regression

Prior and Likelihood
pwla)=A(w|0,a 'I)

p(ylw,a,B)=AN(y|w' x,7'I)

Posterior

pwly,a,f)o<p(y|w,a,p)p(w|a)

Maximum A Posteriori (MAP) gives Ridge Regression

N
5, a
argmaXp(W‘y,a,ﬁ)zz E :(WTxn_yn)z_I_EWTW
w n=1



