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Question  
What would you like  

to get out of this course? 



Linear Regression



Regression ExamplesRegression Examples

Any Attributes Continuous Value

x =) y

{age,major , gender , race} )GPA

{income, credit score, profession} ) loan

{college,major ,GPA} ) future income

...
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Features Continuous
Value

• {age, major, gender, race} ⇒ GPA 

• {income, credit score, profession} ⇒ Loan Amount 

• {college,major,GPA} ⇒ Future Income



Example: Boston Housing Data

UC Irvine Machine Learning Repository  
(good source for project datasets)

https://archive.ics.uci.edu/ml/datasets/Housing

https://archive.ics.uci.edu/ml/datasets/Housing


Example: Boston Housing Data
1. CRIM: per capita crime rate by town  

2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.  

3. INDUS: proportion of non-retail business acres per town  

4. CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)  

5. NOX: nitric oxides concentration (parts per 10 million)  

6. RM: average number of rooms per dwelling  

7. AGE: proportion of owner-occupied units built prior to 1940  

8. DIS: weighted distances to five Boston employment centres  
9. RAD: index of accessibility to radial highways  

10. TAX: full-value property-tax rate per $10,000  

11. PTRATIO: pupil-teacher ratio by town  

12. B: 1000(Bk - 0.63)^2 where Bk is the proportion of african americans by town  

13. LSTAT: % lower status of the population  

14. MEDV: Median value of owner-occupied homes in $1000's



Example: Boston Housing Data

CRIM: per capita crime rate by town 



Example: Boston Housing Data

CHAS: Charles River dummy variable  
(= 1 if tract bounds river; 0 otherwise) 



MEDV: Median value of owner-occupied homes in $1000's

Example: Boston Housing Data



Example: Boston Housing Data

N data 
points

D features



Given N observations

Regression: Problem Setup

learn a function

and for a new input x* predict

{(x1, y1), (x2, y2), . . . , (xN , yN )}

yi = f (x i) �i = 1, 2, . . . , N

y� = f (x �)



Assume f is a linear combination of D features

Linear Regression

were x and w are defined as 

Learning task: Estimate w

for N points we write 



Linear RegressionVisual Illustration

 

Figure: 1D and 2D linear regression
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Error MeasureError Measure

Mean Squared Error (MSE):
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Minimizing the ErrorMinimizing Error Measure

E (w) = 1
N

k Xw � y k2
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T is the
’pseudo-inverse’ of X
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Ordinary Least Squares
LR Algorithm Summary

Ordinary Least Squares (OLS) Algorithm

Construct matrix X and the vector y from
the dataset {(x1, y1), x2, y2), . . . , (xN, yN)}
(each x includes x0 = 1) as follows:
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Gradient Descent
6
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The ellipses shown above are the contours of a quadratic function. Also
shown is the trajectory taken by gradient descent, which was initialized at
(48,30). The x’s in the figure (joined by straight lines) mark the successive
values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset,
to learn to predict housing price as a function of living area, we obtain
θ0 = 71.27, θ1 = 0.1345. If we plot hθ(x) as a function of x (area), along
with the training data, we obtain the following figure:
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If the number of bedrooms were included as one of the input features as well,
we get θ0 = 89.60, θ1 = 0.1392, θ2 = −8.738.

The above results were obtained with batch gradient descent. There is
an alternative to batch gradient descent that also works very well. Consider
the following algorithm:

w0

w1

countours : E(w )



Least Mean SquaresGradient Descent

Gradient Descent Algorithm

Initialize the w(0) for time t = 0

for t = 0, 1, 2, . . . do

Compute the gradient g
t

= 5E (w(t))

Set the direction to move, v
t

= �g

t

Update w(t + 1) = w(t) + ⌘v
t

Iterate until it is time to stop

Return the final weights w

Yijun Zhao Linear Regression

(a.k.a. gradient descent)



Question  
When would you want 

to use OLS, when LMS?



Ordinary least squares (OMS)

Computational Complexity
Least Mean Squares (LMS)



Ordinary least squares (OMS)

Computational Complexity
Least Mean Squares (LMS)

OMS is expensive when D is large



Effect of step sizeGradient Descent

How ⌘ a↵ects the algorithm?

 

Use 0.1 (practical observation)

Use variable size: ⌘
t

= ⌘ k 5E k
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Choosing Stepsize
Making steps proportional to rf(x)??

large gradient
     large step?

small gradient
     small step?

NO!

We need methods indep. of |rf(x)|, invariant of scaling of f and x!

6/22
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Set step size proportional to              ? Making steps proportional to rf(x)??

NO!

We need methods indep. of |rf(x)|, invariant of scaling of f and x!
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Two commonly used techniques 
1. Stepsize adaptation 
2. Line search



Stepsize Adaptation
Gradient descent with stepsize adaptation

Input: initial x 2 Rn, functions f(x) andrf(x), initial stepsize ↵, tolerance
✓

Output: x

1: repeat
2: y  x� ↵

rf(x)
|rf(x)|

3: if [ thenstep is accepted]f(y)  f(x)

4: x y

5: ↵ 1.2↵ // increase stepsize

6: else[step is rejected]
7: ↵ 0.5↵ // decrease stepsize

8: end if
9: until |y � x| < ✓ [perhaps for 10 iterations in sequence]

(“magic numbers”)

↵ determins the absolute stepsize
stepsize is automatically adapted

8/22



Second Order Methods
Compute Hessian matrix of second derivatives



Second Order MethodsBFGS

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method:

Input: initial x 2 Rn, functions f(x),rf(x), tolerance ✓

Output: x

1: initialize H-1 = In
2: repeat
3: compute � = �H-1rf(x)
4: perform a line search min↵ f(x+ ↵�)
5: � ↵�
6: y  rf(x+�)�rf(x)
7: x x+�

8: update H-1  
⇣
I� y�>

�>y

⌘>
H-1

⇣
I� y�>

�>y

⌘
+ ��>

�>y

9: until ||�||1 < ✓

• Notes:
– The blue term is the H-1-update as on the previous slide
– The red term “deletes” previous H-1-components

17/24

Memory-limited version: L-BFGS



Stochastic Gradient Descent
What if N is really large?

Batch gradient descent (evaluates all data)

Minibatch gradient descent (evaluates subset)

Converges under Robbins-Monro conditions 



Probabilistic 
Interpretation



Normal DistributionNormal Distribution

 

          Right Skewed                             Left Skewed                                    Random 
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Normal Distribution
Normal Distribution

mean = median = mode
symmetry about the center
x ⇠ N(µ, �2) =) f (x) = 1

�
p
2⇡
e

� 1

2�2
(x�µ)2
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Density:



Central Limit Theorem
2.3. The Gaussian Distribution 79
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Figure 2.6 Histogram plots of the mean of N uniformly distributed numbers for various values of N . We
observe that as N increases, the distribution tends towards a Gaussian.

illustrate this by considering N variables x1, . . . , xN each of which has a uniform
distribution over the interval [0, 1] and then considering the distribution of the mean
(x1 + · · ·+ xN )/N . For large N , this distribution tends to a Gaussian, as illustrated
in Figure 2.6. In practice, the convergence to a Gaussian as N increases can be
very rapid. One consequence of this result is that the binomial distribution (2.9),
which is a distribution over m defined by the sum of N observations of the random
binary variable x, will tend to a Gaussian as N → ∞ (see Figure 2.1 for the case of
N = 10).

The Gaussian distribution has many important analytical properties, and we shall
consider several of these in detail. As a result, this section will be rather more tech-
nically involved than some of the earlier sections, and will require familiarity with
various matrix identities. However, we strongly encourage the reader to become pro-Appendix C
ficient in manipulating Gaussian distributions using the techniques presented here as
this will prove invaluable in understanding the more complex models presented in
later chapters.

We begin by considering the geometrical form of the Gaussian distribution. The

Carl Friedrich Gauss
1777–1855

It is said that when Gauss went
to elementary school at age 7, his
teacher Büttner, trying to keep the
class occupied, asked the pupils to
sum the integers from 1 to 100. To
the teacher’s amazement, Gauss

arrived at the answer in a matter of moments by noting
that the sum can be represented as 50 pairs (1 + 100,
2+99, etc.) each of which added to 101, giving the an-
swer 5,050. It is now believed that the problem which
was actually set was of the same form but somewhat
harder in that the sequence had a larger starting value
and a larger increment. Gauss was a German math-

ematician and scientist with a reputation for being a
hard-working perfectionist. One of his many contribu-
tions was to show that least squares can be derived
under the assumption of normally distributed errors.
He also created an early formulation of non-Euclidean
geometry (a self-consistent geometrical theory that vi-
olates the axioms of Euclid) but was reluctant to dis-
cuss it openly for fear that his reputation might suffer
if it were seen that he believed in such a geometry.
At one point, Gauss was asked to conduct a geodetic
survey of the state of Hanover, which led to his for-
mulation of the normal distribution, now also known
as the Gaussian. After his death, a study of his di-
aries revealed that he had discovered several impor-
tant mathematical results years or even decades be-
fore they were published by others.

If y1, …, yn are  
1. Independent identically distributed (i.i.d.) 
2. Have finite variance  0 < σy2 < ∞



Multivariate Normal

Density:



Regression: Probabilistic InterpretationLR: Probabilistic Interpretation
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Regression: Probabilistic Interpretation

Joint probability of N independent data points



Regression: Probabilistic Interpretation

Log joint probability of N independent data points



Regression: Probabilistic Interpretation

Log joint probability of N independent data points



Regression: Probabilistic Interpretation

Log joint probability of N independent data points



Regression: Probabilistic Interpretation

Log joint probability of N independent data points

Maximum  
Likelihood



Basis function regression
Linear regression

y = w0 + w1x1 + . . .+ wDxD = w T x

Basis function regression

Polynomial regression



Polynomial Regression
1.1. Example: Polynomial Curve Fitting 7
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Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w⋆)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.
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Figure 1.4.

Underfit
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Overfit



Regularization

Regularization

Attempts to impose ”Occam’s razor” principle
Add a penalty term for model complexity
Most commonly used :

L2 regularization (ridge regression) minimizes:

E (w) =
1

N

k Xw � y k2 + � k w k2

where � � 0 and k w k2 = w

T

w

L1 regularization (LASSO) minimizes:

E (w) =
1

N

k Xw � y k2 + �|w|
1

where � � 0 and |w|
1

=
DP
i=1

|!i |
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RegularizationL2 Regularization Example
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Regularization
Regularization

L2: closed form solution

w = (XT

X+ �I)�1
X

T

y

L1: No closed form solution. Use quadratic
programming:

minimize k Xw � y k2 s.t. k w k1 s

Yijun Zhao Linear Regression
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Review: Bias-Variance Trade-off
Maximum likelihood estimator

Bias-variance decomposition  
(expected value over possible data points)



Bias-Variance Trade-offBias-Variance Trade-o↵

Often: low bias ) high variance
low variance ) high bias

Trade-o↵:

Yijun Zhao Linear Regression



K-fold Cross-Validation
Cross Validation (CV)

Divide data into K folds
Alternatively train on all except k th folds, and
test on k

th fold

Yijun Zhao Linear Regression1. Divide dataset into K “folds” 
2. Train on all except k-th fold 
3. Test on k-th fold 
4. Minimize test error w.r.t. λ



K-fold Cross-Validation
Cross Validation (CV)

Divide data into K folds
Alternatively train on all except k th folds, and
test on k

th fold

Yijun Zhao Linear Regression

• Choices for K: 5, 10, N (leave-one-out) 
• Cost of computation: K x number of λ



Learning Curve
Learning Curve

A learning curve plots the performance of the

algorithm as a function of the size of training data

Yijun Zhao Linear Regression



Learning CurveLearning Curve
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Loss Functions


