Background material crib-sheet

[ain Murray <i.murray+ta@gatsby.ucl.ac.uk>, October 2003

Here are a summary of results with which you should be familiar. If anything here

is unclear you should to do some further reading and exercises.

1 Probability Theory

Chapter 2, sections 2.1-2.3 of David MacKay’s book covers this material:
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

The probability a discrete variable A takes value a is: 0 < P(A=a) <1
Probabilities of alternatives add: P(A=a or a’) = P(A=a)+ P (A=d’)

The probabilities of all outcomes must sum to one: Z P(A=a)=1

all possible a
P (A=a,B=)) is the joint probability that both A=a and B=b occur.
Variables can be “summed out” of joint distributions:

P(A=a)= Y = P(A=a,B=D)

all possible b

P (A=a|B=b) is the probability A=a occurs given the knowledge B=b.
P(A=a,B=b) = P(A=a) P(B=bA=a) = P(B=b) P(A=a|B=b)

The following hold, for all a and b, if and only if A and B are independent:

P(A=a|B=b) = P(A=a)
P(B=blA=a) = P(B=b)
P(A=a,B=b) = P(A=a)P(B=b).

Otherwise the product rule above must be used.

Bayes rule can be derived from the above:

P(B=blA=a,H) P(A=a|H)
P (B=blH)

P(A=a|B=bH) = x P(A=a,B=b|H)
Note that here, as with any expression, we are free to condition the whole
thing on any set of assumptions, H, we like. Note " P(A=q,B=bH) =
P (B=b|H) gives the normalising constant of proportionality.
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All the above theory basically still applies to continuous variables if sums are Continuous variables
converted into integrals'. The probability that X lies between z and z+dx is
p (x) dx, where p (x) is a probability density function with range [0, co].

o0

4p) o0 . .
P ($) CLCI,'7 / P (:r) dr=1 and p(fE) _ / P (x,y) dy Continuous versions of
1

some results

P(x1 <X <xs) :/

The expectation or mean under a probability distribution is: Expectations
(f@) =) P(A=a)f(a) or (f(x))= / p(x) f(z)dx

2 Linear Algebra

This is designed as a prequel to Sam Roweis’s “matriz identities” sheet:
http://www.cs.toronto.edu/ roweis/notes/matrixid.pdf

Scalars are individual numbers, vectors are columns of numbers, matrices are
rectangular grids of numbers, eg:

Z1 App A o A
Z2 A1 Azp oo Agy
T = 3.4, X = . , A= . . .
Tn Aml Am2 o Amn
In the above example z is 1 x 1, x isn x 1 and A is m X n. Dimensions
The transpose operator, ' (/in Matlab), swaps the rows and columns: Transpose
xT:x, XT:(.'El Tog - xn), (AT).,:AJ-Z-

]

Quantities whose inner dimensions match may be “multiplied” by summing over Multiplication
this index. The outer dimensions give the dimensions of the answer.

n n n
Ax has elements (Ax), = ZAinj and (AAT)ij = ZAik (AT)kj = ZAikAjk
j=1 k=1 k=1
All the following are allowed (the dimensions of the answer are also shown): Check Dimensions
x'x xx | Ax AAT AT A x| Ax
1x1 nxXn mx 1 mXxXm nxXn 1x1 ,
scalar matrix vector matrix matrix scalar

while xx, AA and xA do not make sense for m # n # 1. Can you see why?

An exception to the above rule is that we may write: xA. Every element of the Multiplication by scalar
matrix A is multiplied by the scalar x.

Simple and valid manipulations: Easily proved results
(AB)C = A(BC)  A(B+C)= AB+AC (A+B)' =A"+B" (AB)' =BTA"
Note that AB # BA in general.

! ntegrals are the equivalent of sums for continuous variables. Eg: Y1 ; f(z;)Axz becomes

the integral f; f(z)dz in the limit Az — 0, n — oo, where Az = b_T“ and x; = a + iAz.

Find an A-level text book with some diagrams if you have not seen this before.




2.1 Square Matrices

Now consider the square n X n matrix B.

All off-diagonal elements of diagonal matrices are zero. The “Identity matrix”,
which leaves vectors and matrices unchanged on multiplication, is diagonal with
each non-zero element equal to one.

Bij=0ifi#j < “Bis diagonal”
L;=0ifi#jand I;; =1 Vi < “Iis the identity matrix”
Ix=x IB=B=BI x'I=x'
Some square matrices have inverses:
B'B=BB'=1 (BY)'=8B,
which have these properties:
(Bo)=c'B* (BY) =(B")""
Linear simultaneous equations could be solved (inefficiently) this way:
if Bx =y then x = B~ 'y
Some other commonly used matrix definitions include:

B;; = Bj; & “B is symmetric”
Trace(B) = TI‘(B) = Z Bii = “gum of diagonal elements”
i=1

Cyclic permutations are allowed inside trace. Trace of a scalar is a scalar:

Tr(BCD) = Tr(DBC) = Tr(CDB)  x' Bx = Tr(x' Bx) = Tr(xx' B)

The determinant? is written Det(B) or |B|. It is a scalar regardless of n.

BCI=IBIICI.  lel=v. |eBl=a"|Bl. |B7= 5.
It determines if B can be inverted: |B|=0 = B~! undefined. If the vector to
every point of a shape is pre-multiplied by B then the shape’s area or volume
increases by a factor of |B|. It also appears in the normalising constant of
a Gaussian. For a diagonal matrix the volume scaling factor is simply the
product of the diagonal elements. In general the determinant is the product of
the eigenvalues.

Be® = X\Wel) o X\ jg an eigenvalue of B with eigenvector e(?)”
|B| = Heigenvalues Trace(B) = Z eigenvalues

If B is real and symmetric (eg a covariance matrix) the eigenvectors are orthog-
onal (perpendicular) and so form a basis (can be used as axes).

2This section is only intended to give you a flavour so you understand other
references and Sam’s crib sheet. More detailed history and overview is here:
http://www.wikipedia.org/wiki/Determinant
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3 Differentiation

Any good A-level maths text book should cover this material and have plenty of exer-
cises. Undergraduate text books might cover it quickly in less than a chapter.

y(atda)—y(z) _
A

The gradient of a straight line y=ma+c is a constant y' = -

m.
Many functions look like straight lines over a small enough range. The gradient
of this line, the derivative, is not constant, but a new function:

o) = dy lim y(x+Ax) — y(x) which could be w @ _dy'
T dz Ar—0 Az » differentiated again: T dx? T dz

The following results are well known (c is a constant):
flx): c cx cx™ log, () exp(z)
(=) : 0 c cnzn ! 1/z exp(x)

At a maximum or minimum the function is rising on one side and falling on the
other. In between the gradient must be zero. Therefore

df(z) _ df(x) _ df(x)
dx =0 o dx =0 e dx;

If we can’t solve this we can evolve our variable x, or variables x, on a computer
using gradient information until we find a place where the gradient is zero.

=0 Vi

maxima and minima satisfy:

A function may be approximated by a straight line® about any point a.

fla+ )~ f(a)+xf'(a), eg: log(1+ x) ~log(1+0) + 2T =%
The derivative operator is linear:
@) +o) _df@) | do) o dE o) L
dz dx dx dx

Dealing with products is slightly more involved:
d@@p(@) _ du do o d(exp(e)

iz i + udx , o i = exp(x) + zexp(x).
d dud
The “chain rule” 1) - f(u)7 allows results to be combined.
dx dz du
d m d(ay™) d m
For example: exp (ay™) = (ay™) e (ay™) “with v = ay™”
dy dy d (ay™)

= amy™ ! - exp (ay™)

If you can’t show the following you could do with some practice:

d 1

= mexp(az) + e} = exp(az) (b_:lcz G +Ccz)2>

Note that a, b, c and e are constants, that % =y~ ! and this is hard if you haven’t
done differentiation (for a long time). Again, get a text book.

3More accurate approximations can be made. Look up Taylor series.
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