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Introduction

What is this? These pages are a collection of facts (identities, approxima-
tions, inequalities, relations, ...) about matrices and matters relating to them.
It is collected in this form for the convenience of anyone who wants a quick
desktop reference .

Disclaimer: The identities, approximations and relations presented here were
obviously not invented but collected, borrowed and copied from a large amount
of sources. These sources include similar but shorter notes found on the internet
and appendices in books - see the references for a full list.

Errors: Very likely there are errors, typos, and mistakes for which we apolo-
gize and would be grateful to receive corrections at cookbook@2302.dk.

Its ongoing: The project of keeping a large repository of relations involving
matrices is naturally ongoing and the version will be apparent from the date in
the header.

Suggestions: Your suggestion for additional content or elaboration of some
topics is most welcome acookbook@2302.dk.

Keywords: Matrix algebra, matrix relations, matrix identities, derivative of
determinant, derivative of inverse matrix, differentiate a matrix.
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<z Real part of a scalar
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det(A) Determinant of A
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AT Transposed matrix
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1 BASICS

1 Basics

(AB)−1 = B−1A−1 (1)

(ABC...)−1 = ...C−1B−1A−1 (2)

(AT )−1 = (A−1)T (3)

(A + B)T = AT + BT (4)

(AB)T = BTAT (5)

(ABC...)T = ...CTBTAT (6)

(AH)−1 = (A−1)H (7)

(A + B)H = AH + BH (8)

(AB)H = BHAH (9)

(ABC...)H = ...CHBHAH (10)

1.1 Trace

Tr(A) =
∑
iAii (11)

Tr(A) =
∑
iλi, λi = eig(A) (12)

Tr(A) = Tr(AT ) (13)

Tr(AB) = Tr(BA) (14)

Tr(A + B) = Tr(A) + Tr(B) (15)

Tr(ABC) = Tr(BCA) = Tr(CAB) (16)

aTa = Tr(aaT ) (17)

1.2 Determinant

Let A be an n× n matrix.

det(A) =
∏
iλi λi = eig(A) (18)

det(cA) = cn det(A), if A ∈ Rn×n (19)

det(AT ) = det(A) (20)

det(AB) = det(A) det(B) (21)

det(A−1) = 1/ det(A) (22)

det(An) = det(A)n (23)

det(I + uvT ) = 1 + uTv (24)

For n = 2:
det(I + A) = 1 + det(A) + Tr(A) (25)

For n = 3:

det(I + A) = 1 + det(A) + Tr(A) +
1

2
Tr(A)2 − 1

2
Tr(A2) (26)
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1.3 The Special Case 2x2 1 BASICS

For n = 4:

det(I + A) = 1 + det(A) + Tr(A) +
1

2

+Tr(A)2 − 1

2
Tr(A2)

+
1

6
Tr(A)3 − 1

2
Tr(A)Tr(A2) +

1

3
Tr(A3) (27)

For small ε, the following approximation holds

det(I + εA) ∼= 1 + det(A) + εTr(A) +
1

2
ε2Tr(A)2 − 1

2
ε2Tr(A2) (28)

1.3 The Special Case 2x2

Consider the matrix A

A =

[
A11 A12

A21 A22

]
Determinant and trace

det(A) = A11A22 −A12A21 (29)

Tr(A) = A11 +A22 (30)

Eigenvalues
λ2 − λ · Tr(A) + det(A) = 0

λ1 =
Tr(A) +

√
Tr(A)2 − 4 det(A)

2
λ2 =

Tr(A)−
√

Tr(A)2 − 4 det(A)

2

λ1 + λ2 = Tr(A) λ1λ2 = det(A)

Eigenvectors

v1 ∝
[

A12

λ1 −A11

]
v2 ∝

[
A12

λ2 −A11

]
Inverse

A−1 =
1

det(A)

[
A22 −A12

−A21 A11

]
(31)
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2 DERIVATIVES

2 Derivatives

This section is covering differentiation of a number of expressions with respect to
a matrix X. Note that it is always assumed that X has no special structure, i.e.
that the elements of X are independent (e.g. not symmetric, Toeplitz, positive
definite). See section 2.8 for differentiation of structured matrices. The basic
assumptions can be written in a formula as

∂Xkl

∂Xij
= δikδlj (32)

that is for e.g. vector forms,[
∂x

∂y

]
i

=
∂xi
∂y

[
∂x

∂y

]
i

=
∂x

∂yi

[
∂x

∂y

]
ij

=
∂xi
∂yj

The following rules are general and very useful when deriving the differential of
an expression ([19]):

∂A = 0 (A is a constant) (33)
∂(αX) = α∂X (34)

∂(X + Y) = ∂X + ∂Y (35)
∂(Tr(X)) = Tr(∂X) (36)
∂(XY) = (∂X)Y + X(∂Y) (37)

∂(X ◦Y) = (∂X) ◦Y + X ◦ (∂Y) (38)
∂(X⊗Y) = (∂X)⊗Y + X⊗ (∂Y) (39)

∂(X−1) = −X−1(∂X)X−1 (40)
∂(det(X)) = Tr(adj(X)∂X) (41)

∂(det(X)) = det(X)Tr(X−1∂X) (42)

∂(ln(det(X))) = Tr(X−1∂X) (43)

∂XT = (∂X)T (44)

∂XH = (∂X)H (45)

2.1 Derivatives of a Determinant

2.1.1 General form

∂ det(Y)

∂x
= det(Y)Tr

[
Y−1

∂Y

∂x

]
(46)∑

k

∂ det(X)

∂Xik
Xjk = δij det(X) (47)

∂2 det(Y)

∂x2
= det(Y)

[
Tr

[
Y−1

∂ ∂Y∂x
∂x

]

+Tr

[
Y−1

∂Y

∂x

]
Tr

[
Y−1

∂Y

∂x

]
−Tr

[(
Y−1

∂Y

∂x

)(
Y−1

∂Y

∂x

)]]
(48)
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2.2 Derivatives of an Inverse 2 DERIVATIVES

2.1.2 Linear forms

∂ det(X)

∂X
= det(X)(X−1)T (49)∑

k

∂ det(X)

∂Xik
Xjk = δij det(X) (50)

∂ det(AXB)

∂X
= det(AXB)(X−1)T = det(AXB)(XT )−1 (51)

2.1.3 Square forms

If X is square and invertible, then

∂ det(XTAX)

∂X
= 2 det(XTAX)X−T (52)

If X is not square but A is symmetric, then

∂ det(XTAX)

∂X
= 2 det(XTAX)AX(XTAX)−1 (53)

If X is not square and A is not symmetric, then

∂ det(XTAX)

∂X
= det(XTAX)(AX(XTAX)−1 + ATX(XTATX)−1) (54)

2.1.4 Other nonlinear forms

Some special cases are (See [9, 7])

∂ ln det(XTX)|
∂X

= 2(X+)T (55)

∂ ln det(XTX)

∂X+
= −2XT (56)

∂ ln |det(X)|
∂X

= (X−1)T = (XT )−1 (57)

∂ det(Xk)

∂X
= k det(Xk)X−T (58)

2.2 Derivatives of an Inverse

From [27] we have the basic identity

∂Y−1

∂x
= −Y−1

∂Y

∂x
Y−1 (59)
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2.3 Derivatives of Eigenvalues 2 DERIVATIVES

from which it follows

∂(X−1)kl
∂Xij

= −(X−1)ki(X
−1)jl (60)

∂aTX−1b

∂X
= −X−TabTX−T (61)

∂ det(X−1)

∂X
= −det(X−1)(X−1)T (62)

∂Tr(AX−1B)

∂X
= −(X−1BAX−1)T (63)

∂Tr((X + A)−1)

∂X
= −((X + A)−1(X + A)−1)T (64)

From [32] we have the following result: Let A be an n× n invertible square
matrix, W be the inverse of A, and J(A) is an n×n -variate and differentiable
function with respect to A, then the partial differentials of J with respect to A
and W satisfy

∂J

∂A
= −A−T

∂J

∂W
A−T

2.3 Derivatives of Eigenvalues

∂

∂X

∑
eig(X) =

∂

∂X
Tr(X) = I (65)

∂

∂X

∏
eig(X) =

∂

∂X
det(X) = det(X)X−T (66)

If A is real and symmetric, λi and vi are distinct eigenvalues and eigenvectors
of A (see (276)) with vTi vi = 1, then [33]

∂λi = vTi ∂(A)vi (67)

∂vi = (λiI−A)+∂(A)vi (68)

2.4 Derivatives of Matrices, Vectors and Scalar Forms

2.4.1 First Order

∂xTa

∂x
=

∂aTx

∂x
= a (69)

∂aTXb

∂X
= abT (70)

∂aTXTb

∂X
= baT (71)

∂aTXa

∂X
=

∂aTXTa

∂X
= aaT (72)

∂X

∂Xij
= Jij (73)

∂(XA)ij
∂Xmn

= δim(A)nj = (JmnA)ij (74)

∂(XTA)ij
∂Xmn

= δin(A)mj = (JnmA)ij (75)
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2.4 Derivatives of Matrices, Vectors and Scalar Forms 2 DERIVATIVES

2.4.2 Second Order

∂

∂Xij

∑
klmn

XklXmn = 2
∑
kl

Xkl (76)

∂bTXTXc

∂X
= X(bcT + cbT ) (77)

∂(Bx + b)TC(Dx + d)

∂x
= BTC(Dx + d) + DTCT (Bx + b) (78)

∂(XTBX)kl
∂Xij

= δlj(X
TB)ki + δkj(BX)il (79)

∂(XTBX)

∂Xij
= XTBJij + JjiBX (Jij)kl = δikδjl (80)

See Sec 9.7 for useful properties of the Single-entry matrix Jij

∂xTBx

∂x
= (B + BT )x (81)

∂bTXTDXc

∂X
= DTXbcT + DXcbT (82)

∂

∂X
(Xb + c)TD(Xb + c) = (D + DT )(Xb + c)bT (83)

Assume W is symmetric, then

∂

∂s
(x−As)TW(x−As) = −2ATW(x−As) (84)

∂

∂x
(x− s)TW(x− s) = 2W(x− s) (85)

∂

∂s
(x− s)TW(x− s) = −2W(x− s) (86)

∂

∂x
(x−As)TW(x−As) = 2W(x−As) (87)

∂

∂A
(x−As)TW(x−As) = −2W(x−As)sT (88)

As a case with complex values the following holds

∂(a− xHb)2

∂x
= −2b(a− xHb)∗ (89)

This formula is also known from the LMS algorithm [14]

2.4.3 Higher-order and non-linear

∂(Xn)kl
∂Xij

=

n−1∑
r=0

(XrJijXn−1−r)kl (90)

For proof of the above, see B.1.3.

∂

∂X
aTXnb =

n−1∑
r=0

(Xr)TabT (Xn−1−r)T (91)
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2.5 Derivatives of Traces 2 DERIVATIVES

∂

∂X
aT (Xn)TXnb =

n−1∑
r=0

[
Xn−1−rabT (Xn)TXr

+(Xr)TXnabT (Xn−1−r)T
]

(92)

See B.1.3 for a proof.
Assume s and r are functions of x, i.e. s = s(x), r = r(x), and that A is a
constant, then

∂

∂x
sTAr =

[
∂s

∂x

]T
Ar +

[
∂r

∂x

]T
AT s (93)

∂

∂x

(Ax)T (Ax)

(Bx)T (Bx)
=

∂

∂x

xTATAx

xTBTBx
(94)

= 2
ATAx

xTBBx
− 2

xTATAxBTBx

(xTBTBx)2
(95)

2.4.4 Gradient and Hessian

Using the above we have for the gradient and the Hessian

f = xTAx + bTx (96)

∇xf =
∂f

∂x
= (A + AT )x + b (97)

∂2f

∂x∂xT
= A + AT (98)

2.5 Derivatives of Traces

Assume F (X) to be a differentiable function of each of the elements of X. It
then holds that

∂Tr(F (X))

∂X
= f(X)T

where f(·) is the scalar derivative of F (·).

2.5.1 First Order

∂

∂X
Tr(X) = I (99)

∂

∂X
Tr(XA) = AT (100)

∂

∂X
Tr(AXB) = ATBT (101)

∂

∂X
Tr(AXTB) = BA (102)

∂

∂X
Tr(XTA) = A (103)

∂

∂X
Tr(AXT ) = A (104)

∂

∂X
Tr(A⊗X) = Tr(A)I (105)
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2.5 Derivatives of Traces 2 DERIVATIVES

2.5.2 Second Order

∂

∂X
Tr(X2) = 2XT (106)

∂

∂X
Tr(X2B) = (XB + BX)T (107)

∂

∂X
Tr(XTBX) = BX + BTX (108)

∂

∂X
Tr(BXXT ) = BX + BTX (109)

∂

∂X
Tr(XXTB) = BX + BTX (110)

∂

∂X
Tr(XBXT ) = XBT + XB (111)

∂

∂X
Tr(BXTX) = XBT + XB (112)

∂

∂X
Tr(XTXB) = XBT + XB (113)

∂

∂X
Tr(AXBX) = ATXTBT + BTXTAT (114)

∂

∂X
Tr(XTX) =

∂

∂X
Tr(XXT ) = 2X (115)

∂

∂X
Tr(BTXTCXB) = CTXBBT + CXBBT (116)

∂

∂X
Tr
[
XTBXC

]
= BXC + BTXCT (117)

∂

∂X
Tr(AXBXTC) = ATCTXBT + CAXB (118)

∂

∂X
Tr
[
(AXB + C)(AXB + C)T

]
= 2AT (AXB + C)BT (119)

∂

∂X
Tr(X⊗X) =

∂

∂X
Tr(X)Tr(X) = 2Tr(X)I(120)

See [7].

2.5.3 Higher Order

∂

∂X
Tr(Xk) = k(Xk−1)T (121)

∂

∂X
Tr(AXk) =

k−1∑
r=0

(XrAXk−r−1)T (122)

∂
∂XTr

[
BTXTCXXTCXB

]
= CXXTCXBBT

+CTXBBTXTCTX

+CXBBTXTCX

+CTXXTCTXBBT (123)
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2.5.4 Other

∂

∂X
Tr(AX−1B) = −(X−1BAX−1)T = −X−TATBTX−T (124)

Assume B and C to be symmetric, then

∂

∂X
Tr
[
(XTCX)−1A

]
= −(CX(XTCX)−1)(A + AT )(XTCX)−1 (125)

∂

∂X
Tr
[
(XTCX)−1(XTBX)

]
= −2CX(XTCX)−1XTBX(XTCX)−1

+2BX(XTCX)−1 (126)

∂

∂X
Tr
[
(A + XTCX)−1(XTBX)

]
= −2CX(A + XTCX)−1XTBX(A + XTCX)−1

+2BX(A + XTCX)−1 (127)

See [7].

∂Tr(sin(X))

∂X
= cos(X)T (128)

2.6 Derivatives of vector norms

2.6.1 Two-norm

∂

∂x
||x− a||2 =

x− a

||x− a||2
(129)

∂

∂x

x− a

‖x− a‖2
=

I

‖x− a‖2
− (x− a)(x− a)T

‖x− a‖32
(130)

∂||x||22
∂x

=
∂||xTx||2

∂x
= 2x (131)

2.7 Derivatives of matrix norms

For more on matrix norms, see Sec. 10.4.

2.7.1 Frobenius norm

∂

∂X
||X||2F =

∂

∂X
Tr(XXH) = 2X (132)

See (248). Note that this is also a special case of the result in equation 119.

2.8 Derivatives of Structured Matrices

Assume that the matrix A has some structure, i.e. symmetric, toeplitz, etc.
In that case the derivatives of the previous section does not apply in general.
Instead, consider the following general rule for differentiating a scalar function
f(A)

df

dAij
=
∑
kl

∂f

∂Akl

∂Akl
∂Aij

= Tr

[[
∂f

∂A

]T
∂A

∂Aij

]
(133)
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The matrix differentiated with respect to itself is in this document referred to
as the structure matrix of A and is defined simply by

∂A

∂Aij
= Sij (134)

If A has no special structure we have simply Sij = Jij , that is, the structure
matrix is simply the single-entry matrix. Many structures have a representation
in singleentry matrices, see Sec. 9.7.6 for more examples of structure matrices.

2.8.1 The Chain Rule

Sometimes the objective is to find the derivative of a matrix which is a function
of another matrix. Let U = f(X), the goal is to find the derivative of the
function g(U) with respect to X:

∂g(U)

∂X
=
∂g(f(X))

∂X
(135)

Then the Chain Rule can then be written the following way:

∂g(U)

∂X
=
∂g(U)

∂xij
=

M∑
k=1

N∑
l=1

∂g(U)

∂ukl

∂ukl
∂xij

(136)

Using matrix notation, this can be written as:

∂g(U)

∂Xij
= Tr

[
(
∂g(U)

∂U
)T

∂U

∂Xij

]
. (137)

2.8.2 Symmetric

If A is symmetric, then Sij = Jij + Jji − JijJij and therefore

df

dA
=

[
∂f

∂A

]
+

[
∂f

∂A

]T
− diag

[
∂f

∂A

]
(138)

That is, e.g., ([5]):

∂Tr(AX)

∂X
= A + AT − (A ◦ I), see (142) (139)

∂ det(X)

∂X
= det(X)(2X−1 − (X−1 ◦ I)) (140)

∂ ln det(X)

∂X
= 2X−1 − (X−1 ◦ I) (141)

2.8.3 Diagonal

If X is diagonal, then ([19]):

∂Tr(AX)

∂X
= A ◦ I (142)

Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 15



2.8 Derivatives of Structured Matrices 2 DERIVATIVES

2.8.4 Toeplitz

Like symmetric matrices and diagonal matrices also Toeplitz matrices has a
special structure which should be taken into account when the derivative with
respect to a matrix with Toeplitz structure.

∂Tr(AT)

∂T
(143)

=
∂Tr(TA)

∂T

=


Tr(A) Tr([AT ]n1) Tr([[AT ]1n]n−1,2) · · · An1

Tr([AT ]1n)) Tr(A)

.
.
.

.
.
.

.

.

.

Tr([[AT ]1n]2,n−1)

.
.
.

.
.
.

.
.
. Tr([[AT ]1n]n−1,2)

.

.

.

.
.
.

.
.
.

.
.
. Tr([AT ]n1)

A1n · · · Tr([[AT ]1n]2,n−1) Tr([AT ]1n)) Tr(A)


≡ α(A)

As it can be seen, the derivative α(A) also has a Toeplitz structure. Each value
in the diagonal is the sum of all the diagonal valued in A, the values in the
diagonals next to the main diagonal equal the sum of the diagonal next to the
main diagonal in AT . This result is only valid for the unconstrained Toeplitz
matrix. If the Toeplitz matrix also is symmetric, the same derivative yields

∂Tr(AT)

∂T
=
∂Tr(TA)

∂T
= α(A) + α(A)T −α(A) ◦ I (144)
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3 Inverses

3.1 Basic

3.1.1 Definition

The inverse A−1 of a matrix A ∈ Cn×n is defined such that

AA−1 = A−1A = I, (145)

where I is the n×n identity matrix. If A−1 exists, A is said to be nonsingular.
Otherwise, A is said to be singular (see e.g. [12]).

3.1.2 Cofactors and Adjoint

The submatrix of a matrix A, denoted by [A]ij is a (n − 1) × (n − 1) matrix
obtained by deleting the ith row and the jth column of A. The (i, j) cofactor
of a matrix is defined as

cof(A, i, j) = (−1)i+j det([A]ij), (146)

The matrix of cofactors can be created from the cofactors

cof(A) =


cof(A, 1, 1) · · · cof(A, 1, n)

... cof(A, i, j)
...

cof(A, n, 1) · · · cof(A, n, n)

 (147)

The adjoint matrix is the transpose of the cofactor matrix

adj(A) = (cof(A))T , (148)

3.1.3 Determinant

The determinant of a matrix A ∈ Cn×n is defined as (see [12])

det(A) =

n∑
j=1

(−1)j+1A1j det ([A]1j) (149)

=

n∑
j=1

A1jcof(A, 1, j). (150)

3.1.4 Construction

The inverse matrix can be constructed, using the adjoint matrix, by

A−1 =
1

det(A)
· adj(A) (151)

For the case of 2× 2 matrices, see section 1.3.
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3.1.5 Condition number

The condition number of a matrix c(A) is the ratio between the largest and the
smallest singular value of a matrix (see Section 5.3 on singular values),

c(A) =
d+
d−

(152)

The condition number can be used to measure how singular a matrix is. If the
condition number is large, it indicates that the matrix is nearly singular. The
condition number can also be estimated from the matrix norms. Here

c(A) = ‖A‖ · ‖A−1‖, (153)

where ‖ · ‖ is a norm such as e.g the 1-norm, the 2-norm, the ∞-norm or the
Frobenius norm (see Sec 10.4 for more on matrix norms).

The 2-norm of A equals
√

(max(eig(AHA))) [12, p.57]. For a symmetric
matrix, this reduces to ||A||2 = max(|eig(A)|) [12, p.394]. If the matrix is
symmetric and positive definite, ||A||2 = max(eig(A)). The condition number
based on the 2-norm thus reduces to

‖A‖2‖A−1‖2 = max(eig(A)) max(eig(A−1)) =
max(eig(A))

min(eig(A))
. (154)

3.2 Exact Relations

3.2.1 Basic

(AB)−1 = B−1A−1 (155)

3.2.2 The Woodbury identity

The Woodbury identity comes in many variants. The latter of the two can be
found in [12]

(A + CBCT )−1 = A−1 −A−1C(B−1 + CTA−1C)−1CTA−1 (156)

(A + UBV)−1 = A−1 −A−1U(B−1 + VA−1U)−1VA−1 (157)

If P,R are positive definite, then (see [30])

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1 (158)

3.2.3 The Kailath Variant

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1 (159)

See [4, page 153].

3.2.4 Sherman-Morrison

(A + bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
(160)
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3.2.5 The Searle Set of Identities

The following set of identities, can be found in [25, page 151],

(I + A−1)−1 = A(A + I)−1 (161)

(A + BBT )−1B = A−1B(I + BTA−1B)−1 (162)

(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A (163)

A−A(A + B)−1A = B−B(A + B)−1B (164)

A−1 + B−1 = A−1(A + B)B−1 (165)

(I + AB)−1 = I−A(I + BA)−1B (166)

(I + AB)−1A = A(I + BA)−1 (167)

3.2.6 Rank-1 update of inverse of inner product

Denote A = (XTX)−1 and that X is extended to include a new column vector
in the end X̃ = [X v]. Then [34]

(X̃T X̃)−1 =

[
A + AXTvvTXAT

vTv−vTXAXTv
−AXTv

vTv−vTXAXTv
−vTXAT

vTv−vTXAXTv
1

vTv−vTXAXTv

]

3.2.7 Rank-1 update of Moore-Penrose Inverse

The following is a rank-1 update for the Moore-Penrose pseudo-inverse of real
valued matrices and proof can be found in [18]. The matrix G is defined below:

(A + cdT )+ = A+ + G (168)

Using the the notation

β = 1 + dTA+c (169)

v = A+c (170)

n = (A+)Td (171)

w = (I−AA+)c (172)

m = (I−A+A)Td (173)

the solution is given as six different cases, depending on the entities ||w||,
||m||, and β. Please note, that for any (column) vector v it holds that v+ =

vT (vTv)−1 = vT

||v||2 . The solution is:

Case 1 of 6: If ||w|| 6= 0 and ||m|| 6= 0. Then

G = −vw+ − (m+)TnT + β(m+)Tw+ (174)

= − 1

||w||2
vwT − 1

||m||2
mnT +

β

||m||2||w||2
mwT (175)

Case 2 of 6: If ||w|| = 0 and ||m|| 6= 0 and β = 0. Then

G = −vv+A+ − (m+)TnT (176)

= − 1

||v||2
vvTA+ − 1

||m||2
mnT (177)
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Case 3 of 6: If ||w|| = 0 and β 6= 0. Then

G =
1

β
mvTA+ − β

||v||2||m||2 + |β|2

(
||v||2

β
m + v

)(
||m||2

β
(A+)Tv + n

)T
(178)

Case 4 of 6: If ||w|| 6= 0 and ||m|| = 0 and β = 0. Then

G = −A+nn+ − vw+ (179)

= − 1

||n||2
A+nnT − 1

||w||2
vwT (180)

Case 5 of 6: If ||m|| = 0 and β 6= 0. Then

G =
1

β
A+nwT − β

||n||2||w||2 + |β|2

(
||w||2

β
A+n + v

)(
||n||2

β
w + n

)T
(181)

Case 6 of 6: If ||w|| = 0 and ||m|| = 0 and β = 0. Then

G = −vv+A+ −A+nn+ + v+A+nvn+ (182)

= − 1

||v||2
vvTA+ − 1

||n||2
A+nnT +

vTA+n

||v||2||n||2
vnT (183)

3.3 Implication on Inverses

If (A + B)−1 = A−1 + B−1 then AB−1A = BA−1B (184)

See [25].

3.3.1 A PosDef identity

Assume P,R to be positive definite and invertible, then

(P−1 + BTR−1B)−1BTR−1 = PBT (BPBT + R)−1 (185)

See [30].

3.4 Approximations

The following identity is known as the Neuman series of a matrix, which holds
when |λi| < 1 for all eigenvalues λi

(I−A)−1 =

∞∑
n=0

An (186)

which is equivalent to

(I + A)−1 =

∞∑
n=0

(−1)nAn (187)

When |λi| < 1 for all eigenvalues λi, it holds that A → 0 for n → ∞, and the
following approximations holds

(I−A)−1 ∼= I + A + A2 (188)

(I + A)−1 ∼= I−A + A2 (189)
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The following approximation is from [22] and holds when A large and symmetric

A−A(I + A)−1A ∼= I−A−1 (190)

If σ2 is small compared to Q and M then

(Q + σ2M)−1 ∼= Q−1 − σ2Q−1MQ−1 (191)

Proof:

(Q + σ2M)−1 = (192)

(QQ−1Q + σ2MQ−1Q)−1 = (193)

((I + σ2MQ−1)Q)−1 = (194)

Q−1(I + σ2MQ−1)−1 (195)

This can be rewritten using the Taylor expansion:

Q−1(I + σ2MQ−1)−1 = (196)

Q−1(I− σ2MQ−1 + (σ2MQ−1)2 − ...) ∼= Q−1 − σ2Q−1MQ−1 (197)

3.5 Generalized Inverse

3.5.1 Definition

A generalized inverse matrix of the matrix A is any matrix A− such that (see
[26])

AA−A = A (198)

The matrix A− is not unique.

3.6 Pseudo Inverse

3.6.1 Definition

The pseudo inverse (or Moore-Penrose inverse) of a matrix A is the matrix A+

that fulfils

I AA+A = A

II A+AA+ = A+

III AA+ symmetric

IV A+A symmetric

The matrix A+ is unique and does always exist. Note that in case of com-
plex matrices, the symmetric condition is substituted by a condition of being
Hermitian.
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3.6.2 Properties

Assume A+ to be the pseudo-inverse of A, then (See [3] for some of them)

(A+)+ = A (199)

(AT )+ = (A+)T (200)

(AH)+ = (A+)H (201)

(A∗)+ = (A+)∗ (202)

(A+A)AH = AH (203)

(A+A)AT 6= AT (204)

(cA)+ = (1/c)A+ (205)

A+ = (ATA)+AT (206)

A+ = AT (AAT )+ (207)

(ATA)+ = A+(AT )+ (208)

(AAT )+ = (AT )+A+ (209)

A+ = (AHA)+AH (210)

A+ = AH(AAH)+ (211)

(AHA)+ = A+(AH)+ (212)

(AAH)+ = (AH)+A+ (213)

(AB)+ = (A+AB)+(ABB+)+ (214)

f(AHA)− f(0)I = A+[f(AAH)− f(0)I]A (215)

f(AAH)− f(0)I = A[f(AHA)− f(0)I]A+ (216)

where A ∈ Cn×m.
Assume A to have full rank, then

(AA+)(AA+) = AA+ (217)

(A+A)(A+A) = A+A (218)

Tr(AA+) = rank(AA+) (See [26]) (219)

Tr(A+A) = rank(A+A) (See [26]) (220)

For two matrices it hold that

(AB)+ = (A+AB)+(ABB+)+ (221)

(A⊗B)+ = A+ ⊗B+ (222)

3.6.3 Construction

Assume that A has full rank, then

A n× n Square rank(A) = n ⇒ A+ = A−1

A n×m Broad rank(A) = n ⇒ A+ = AT (AAT )−1

A n×m Tall rank(A) = m ⇒ A+ = (ATA)−1AT

The so-called ”broad version” is also known as right inverse and the ”tall ver-
sion” as the left inverse.
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Assume A does not have full rank, i.e. A is n × m and rank(A) = r <
min(n,m). The pseudo inverse A+ can be constructed from the singular value
decomposition A = UDVT , by

A+ = VrD
−1
r UT

r (223)

where Ur,Dr, and Vr are the matrices with the degenerated rows and columns
deleted. A different way is this: There do always exist two matrices C n × r
and D r ×m of rank r, such that A = CD. Using these matrices it holds that

A+ = DT (DDT )−1(CTC)−1CT (224)

See [3].
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4 Complex Matrices

The complex scalar product r = pq can be written as[
<r
=r

]
=

[
<p −=p
=p <p

] [
<q
=q

]
(225)

4.1 Complex Derivatives

In order to differentiate an expression f(z) with respect to a complex z, the
Cauchy-Riemann equations have to be satisfied ([7]):

df(z)

dz
=
∂<(f(z))

∂<z
+ i

∂=(f(z))

∂<z
(226)

and
df(z)

dz
= −i∂<(f(z))

∂=z
+
∂=(f(z))

∂=z
(227)

or in a more compact form:

∂f(z)

∂=z
= i

∂f(z)

∂<z
. (228)

A complex function that satisfies the Cauchy-Riemann equations for points in a
region R is said yo be analytic in this region R. In general, expressions involving
complex conjugate or conjugate transpose do not satisfy the Cauchy-Riemann
equations. In order to avoid this problem, a more generalized definition of
complex derivative is used ([24], [6]):

• Generalized Complex Derivative:

df(z)

dz
=

1

2

(∂f(z)

∂<z
− i∂f(z)

∂=z

)
. (229)

• Conjugate Complex Derivative

df(z)

dz∗
=

1

2

(∂f(z)

∂<z
+ i

∂f(z)

∂=z

)
. (230)

The Generalized Complex Derivative equals the normal derivative, when f is an
analytic function. For a non-analytic function such as f(z) = z∗, the derivative
equals zero. The Conjugate Complex Derivative equals zero, when f is an
analytic function. The Conjugate Complex Derivative has e.g been used by [21]
when deriving a complex gradient.
Notice:

df(z)

dz
6= ∂f(z)

∂<z
+ i

∂f(z)

∂=z
. (231)

• Complex Gradient Vector: If f is a real function of a complex vector z,
then the complex gradient vector is given by ([14, p. 798])

∇f(z) = 2
df(z)

dz∗
(232)

=
∂f(z)

∂<z
+ i

∂f(z)

∂=z
.
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• Complex Gradient Matrix: If f is a real function of a complex matrix Z,
then the complex gradient matrix is given by ([2])

∇f(Z) = 2
df(Z)

dZ∗
(233)

=
∂f(Z)

∂<Z
+ i

∂f(Z)

∂=Z
.

These expressions can be used for gradient descent algorithms.

4.1.1 The Chain Rule for complex numbers

The chain rule is a little more complicated when the function of a complex
u = f(x) is non-analytic. For a non-analytic function, the following chain rule
can be applied ([7])

∂g(u)

∂x
=

∂g

∂u

∂u

∂x
+

∂g

∂u∗
∂u∗

∂x
(234)

=
∂g

∂u

∂u

∂x
+
(∂g∗
∂u

)∗ ∂u∗
∂x

Notice, if the function is analytic, the second term reduces to zero, and the func-
tion is reduced to the normal well-known chain rule. For the matrix derivative
of a scalar function g(U), the chain rule can be written the following way:

∂g(U)

∂X
=

Tr((∂g(U)
∂U )T∂U)

∂X
+

Tr((∂g(U)
∂U∗ )T∂U∗)

∂X
. (235)

4.1.2 Complex Derivatives of Traces

If the derivatives involve complex numbers, the conjugate transpose is often in-
volved. The most useful way to show complex derivative is to show the derivative
with respect to the real and the imaginary part separately. An easy example is:

∂Tr(X∗)

∂<X
=
∂Tr(XH)

∂<X
= I (236)

i
∂Tr(X∗)

∂=X
= i

∂Tr(XH)

∂=X
= I (237)

Since the two results have the same sign, the conjugate complex derivative (230)
should be used.

∂Tr(X)

∂<X
=
∂Tr(XT )

∂<X
= I (238)

i
∂Tr(X)

∂=X
= i

∂Tr(XT )

∂=X
= −I (239)

Here, the two results have different signs, and the generalized complex derivative
(229) should be used. Hereby, it can be seen that (100) holds even if X is a
complex number.

∂Tr(AXH)

∂<X
= A (240)

i
∂Tr(AXH)

∂=X
= A (241)
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∂Tr(AX∗)

∂<X
= AT (242)

i
∂Tr(AX∗)

∂=X
= AT (243)

∂Tr(XXH)

∂<X
=
∂Tr(XHX)

∂<X
= 2<X (244)

i
∂Tr(XXH)

∂=X
= i

∂Tr(XHX)

∂=X
= i2=X (245)

By inserting (244) and (245) in (229) and (230), it can be seen that

∂Tr(XXH)

∂X
= X∗ (246)

∂Tr(XXH)

∂X∗
= X (247)

Since the function Tr(XXH) is a real function of the complex matrix X, the
complex gradient matrix (233) is given by

∇Tr(XXH) = 2
∂Tr(XXH)

∂X∗
= 2X (248)

4.1.3 Complex Derivative Involving Determinants

Here, a calculation example is provided. The objective is to find the derivative of
det(XHAX) with respect to X ∈ Cm×n. The derivative is found with respect to
the real part and the imaginary part of X, by use of (42) and (37), det(XHAX)
can be calculated as (see App. B.1.4 for details)

∂ det(XHAX)

∂X
=

1

2

(∂ det(XHAX)

∂<X
− i∂ det(XHAX)

∂=X

)
= det(XHAX)

(
(XHAX)−1XHA

)T
(249)

and the complex conjugate derivative yields

∂ det(XHAX)

∂X∗
=

1

2

(∂ det(XHAX)

∂<X
+ i

∂ det(XHAX)

∂=X

)
= det(XHAX)AX(XHAX)−1 (250)

4.2 Higher order and non-linear derivatives

∂

∂x

(Ax)H(Ax)

(Bx)H(Bx)
=

∂

∂x

xHAHAx

xHBHBx
(251)

= 2
AHAx

xHBBx
− 2

xHAHAxBHBx

(xHBHBx)2
(252)
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4.3 Inverse of complex sum 4 COMPLEX MATRICES

4.3 Inverse of complex sum

Given real matrices A,B find the inverse of the complex sum A + iB. Form
the auxiliary matrices

E = A + tB (253)

F = B− tA, (254)

and find a value of t such that E−1 exists. Then

(A + iB)−1 = (1− it)(E + iF)−1 (255)

= (1− it)((E + FE−1F)−1 − i(E + FE−1F)−1FE−1)(256)

= (1− it)(E + FE−1F)−1(I− iFE−1) (257)

= (E + FE−1F)−1((I− tFE−1)− i(tI + FE−1)) (258)

= (E + FE−1F)−1(I− tFE−1)

−i(E + FE−1F)−1(tI + FE−1) (259)
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5 Solutions and Decompositions

5.1 Solutions to linear equations

5.1.1 Simple Linear Regression

Assume we have data (xn, yn) for n = 1, ..., N and are seeking the parameters
a, b ∈ R such that yi ∼= axi+ b. With a least squares error function, the optimal
values for a, b can be expressed using the notation

x = (x1, ..., xN )T y = (y1, ..., yN )T 1 = (1, ..., 1)T ∈ RN×1

and

Rxx = xTx Rx1 = xT1 R11 = 1T1

Ryx = yTx Ry1 = yT1

as [
a
b

]
=

[
Rxx Rx1
Rx1 R11

]−1 [
Rx,y
Ry1

]
(260)

5.1.2 Existence in Linear Systems

Assume A is n×m and consider the linear system

Ax = b (261)

Construct the augmented matrix B = [A b] then

Condition Solution
rank(A) = rank(B) = m Unique solution x
rank(A) = rank(B) < m Many solutions x
rank(A) < rank(B) No solutions x

5.1.3 Standard Square

Assume A is square and invertible, then

Ax = b ⇒ x = A−1b (262)

5.1.4 Degenerated Square

Assume A is n×n but of rank r < n. In that case, the system Ax = b is solved
by

x = A+b

where A+ is the pseudo-inverse of the rank-deficient matrix, constructed as
described in section 3.6.3.
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5.1 Solutions to linear equations5 SOLUTIONS AND DECOMPOSITIONS

5.1.5 Cramer’s rule

The equation
Ax = b, (263)

where A is square has exactly one solution x if the ith element in x can be
found as

xi =
det B

det A
, (264)

where B equals A, but the ith column in A has been substituted by b.

5.1.6 Over-determined Rectangular

Assume A to be n×m, n > m (tall) and rank(A) = m, then

Ax = b ⇒ x = (ATA)−1ATb = A+b (265)

that is if there exists a solution x at all! If there is no solution the following
can be useful:

Ax = b ⇒ xmin = A+b (266)

Now xmin is the vector x which minimizes ||Ax− b||2, i.e. the vector which is
”least wrong”. The matrix A+ is the pseudo-inverse of A. See [3].

5.1.7 Under-determined Rectangular

Assume A is n×m and n < m (”broad”) and rank(A) = n.

Ax = b ⇒ xmin = AT (AAT )−1b (267)

The equation have many solutions x. But xmin is the solution which minimizes
||Ax−b||2 and also the solution with the smallest norm ||x||2. The same holds
for a matrix version: Assume A is n×m, X is m× n and B is n× n, then

AX = B ⇒ Xmin = A+B (268)

The equation have many solutions X. But Xmin is the solution which minimizes
||AX−B||2 and also the solution with the smallest norm ||X||2. See [3].

Similar but different: Assume A is square n × n and the matrices B0,B1

are n×N , where N > n, then if B0 has maximal rank

AB0 = B1 ⇒ Amin = B1B
T
0 (B0B

T
0 )−1 (269)

where Amin denotes the matrix which is optimal in a least square sense. An
interpretation is that A is the linear approximation which maps the columns
vectors of B0 into the columns vectors of B1.

5.1.8 Linear form and zeros

Ax = 0, ∀x ⇒ A = 0 (270)

5.1.9 Square form and zeros

If A is symmetric, then

xTAx = 0, ∀x ⇒ A = 0 (271)
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5.1.10 The Lyapunov Equation

AX + XB = C (272)

vec(X) = (I⊗A + BT ⊗ I)−1vec(C) (273)

Sec 10.2.1 and 10.2.2 for details on the Kronecker product and the vec op-
erator.

5.1.11 Encapsulating Sum

∑
nAnXBn = C (274)

vec(X) =
(∑

nBT
n ⊗An

)−1
vec(C) (275)

See Sec 10.2.1 and 10.2.2 for details on the Kronecker product and the vec
operator.

5.2 Eigenvalues and Eigenvectors

5.2.1 Definition

The eigenvectors vi and eigenvalues λi are the ones satisfying

Avi = λivi (276)

5.2.2 Decompositions

For matrices A with as many distinct eigenvalues as dimensions, the following
holds, where the columns of V are the eigenvectors and (D)ij = δijλi,

AV = VD (277)

For defective matrices A, which is matrices which has fewer distinct eigenvalues
than dimensions, the following decomposition called Jordan canonical form,
holds

AV = VJ (278)

where J is a block diagonal matrix with the blocks Ji = λiI + N. The matrices
Ji have dimensionality as the number of identical eigenvalues equal to λi, and N
is square matrix of same size with 1 on the super diagonal and zero elsewhere.

It also holds that for all matrices A there exists matrices V and R such that

AV = VR (279)

where R is upper triangular with the eigenvalues λi on its diagonal.

5.2.3 General Properties

Assume that A ∈ Rn×m and B ∈ Rm×n,

eig(AB) = eig(BA) (280)

rank(A) = r ⇒ At most r non-zero λi (281)
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5.2.4 Symmetric

Assume A is symmetric, then

VVT = I (i.e. V is orthogonal) (282)

λi ∈ R (i.e. λi is real) (283)

Tr(Ap) =
∑
iλ
p
i (284)

eig(I + cA) = 1 + cλi (285)

eig(A− cI) = λi − c (286)

eig(A−1) = λ−1i (287)

For a symmetric, positive matrix A,

eig(ATA) = eig(AAT ) = eig(A) ◦ eig(A) (288)

5.2.5 Characteristic polynomial

The characteristic polynomial for the matrix A is

0 = det(A− λI) (289)

= λn − g1λn−1 + g2λ
n−2 − ...+ (−1)ngn (290)

Note that the coefficients gj for j = 1, ..., n are the n invariants under rotation
of A. Thus, gj is the sum of the determinants of all the sub-matrices of A taken
j rows and columns at a time. That is, g1 is the trace of A, and g2 is the sum
of the determinants of the n(n− 1)/2 sub-matrices that can be formed from A
by deleting all but two rows and columns, and so on – see [17].

5.3 Singular Value Decomposition

Any n×m matrix A can be written as

A = UDVT , (291)

where
U = eigenvectors of AAT n× n
D =

√
diag(eig(AAT )) n×m

V = eigenvectors of ATA m×m
(292)

5.3.1 Symmetric Square decomposed into squares

Assume A to be n× n and symmetric. Then[
A
]

=
[

V
] [

D
] [

VT
]
, (293)

where D is diagonal with the eigenvalues of A, and V is orthogonal and the
eigenvectors of A.

5.3.2 Square decomposed into squares

Assume A ∈ Rn×n. Then[
A
]

=
[

V
] [

D
] [

UT
]
, (294)

where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of ATA.
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5.3.3 Square decomposed into rectangular

Assume V∗D∗U
T
∗ = 0 then we can expand the SVD of A into

[
A
]

=
[

V V∗
] [ D 0

0 D∗

] [
UT

UT
∗

]
, (295)

where the SVD of A is A = VDUT .

5.3.4 Rectangular decomposition I

Assume A is n×m, V is n× n, D is n× n, UT is n×m[
A

]
=
[

V
] [

D
] [

UT
]
, (296)

where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of ATA.

5.3.5 Rectangular decomposition II

Assume A is n×m, V is n×m, D is m×m, UT is m×m

[
A

]
=
[

V
]  D

 UT

 (297)

5.3.6 Rectangular decomposition III

Assume A is n×m, V is n× n, D is n×m, UT is m×m

[
A

]
=
[

V
] [

D
]  UT

 , (298)

where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of ATA.

5.4 Triangular Decomposition

5.5 LU decomposition

Assume A is a square matrix with non-zero leading principal minors, then

A = LU (299)

where L is a unique unit lower triangular matrix and U is a unique upper
triangular matrix.

5.5.1 Cholesky-decomposition

Assume A is a symmetric positive definite square matrix, then

A = UTU = LLT , (300)

where U is a unique upper triangular matrix and L is a lower triangular matrix.
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5.6 LDM decomposition

Assume A is a square matrix with non-zero leading principal minors1, then

A = LDMT (301)

where L,M are unique unit lower triangular matrices and D is a unique diagonal
matrix.

5.7 LDL decompositions

The LDL decomposition are special cases of the LDM decomposition. Assume
A is a non-singular symmetric definite square matrix, then

A = LDLT = LTDL (302)

where L is a unit lower triangular matrix and D is a diagonal matrix. If A is
also positive definite, then D has strictly positive diagonal entries.

1If the matrix that corresponds to a principal minor is a quadratic upper-left part of the
larger matrix (i.e., it consists of matrix elements in rows and columns from 1 to k), then the
principal minor is called a leading principal minor. For an n times n square matrix, there are
n leading principal minors. [31]
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6 Statistics and Probability

6.1 Definition of Moments

Assume x ∈ Rn×1 is a random variable

6.1.1 Mean

The vector of means, m, is defined by

(m)i = 〈xi〉 (303)

6.1.2 Covariance

The matrix of covariance M is defined by

(M)ij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (304)

or alternatively as
M = 〈(x−m)(x−m)T 〉 (305)

6.1.3 Third moments

The matrix of third centralized moments – in some contexts referred to as
coskewness – is defined using the notation

m
(3)
ijk = 〈(xi − 〈xi〉)(xj − 〈xj〉)(xk − 〈xk〉)〉 (306)

as
M3 =

[
m

(3)
::1m

(3)
::2 ...m

(3)
::n

]
(307)

where ’:’ denotes all elements within the given index. M3 can alternatively be
expressed as

M3 = 〈(x−m)(x−m)T ⊗ (x−m)T 〉 (308)

6.1.4 Fourth moments

The matrix of fourth centralized moments – in some contexts referred to as
cokurtosis – is defined using the notation

m
(4)
ijkl = 〈(xi − 〈xi〉)(xj − 〈xj〉)(xk − 〈xk〉)(xl − 〈xl〉)〉 (309)

as

M4 =
[
m

(4)
::11m

(4)
::21...m

(4)
::n1|m

(4)
::12m

(4)
::22...m

(4)
::n2|...|m

(4)
::1nm

(4)
::2n...m

(4)
::nn

]
(310)

or alternatively as

M4 = 〈(x−m)(x−m)T ⊗ (x−m)T ⊗ (x−m)T 〉 (311)
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6.2 Expectation of Linear Combinations

6.2.1 Linear Forms

Assume X and x to be a matrix and a vector of random variables. Then (see
See [26])

E[AXB + C] = AE[X]B + C (312)

Var[Ax] = AVar[x]AT (313)

Cov[Ax,By] = ACov[x,y]BT (314)

Assume x to be a stochastic vector with mean m, then (see [7])

E[Ax + b] = Am + b (315)

E[Ax] = Am (316)

E[x + b] = m + b (317)

6.2.2 Quadratic Forms

Assume A is symmetric, c = E[x] and Σ = Var[x]. Assume also that all
coordinates xi are independent, have the same central moments µ1, µ2, µ3, µ4

and denote a = diag(A). Then (See [26])

E[xTAx] = Tr(AΣ) + cTAc (318)

Var[xTAx] = 2µ2
2Tr(A2) + 4µ2c

TA2c + 4µ3c
TAa + (µ4 − 3µ2

2)aTa (319)

Also, assume x to be a stochastic vector with mean m, and covariance M. Then
(see [7])

E[(Ax + a)(Bx + b)T ] = AMBT + (Am + a)(Bm + b)T (320)

E[xxT ] = M + mmT (321)

E[xaTx] = (M + mmT )a (322)

E[xTaxT ] = aT (M + mmT ) (323)

E[(Ax)(Ax)T ] = A(M + mmT )AT (324)

E[(x + a)(x + a)T ] = M + (m + a)(m + a)T (325)

E[(Ax + a)T (Bx + b)] = Tr(AMBT ) + (Am + a)T (Bm + b) (326)

E[xTx] = Tr(M) + mTm (327)

E[xTAx] = Tr(AM) + mTAm (328)

E[(Ax)T (Ax)] = Tr(AMAT ) + (Am)T (Am) (329)

E[(x + a)T (x + a)] = Tr(M) + (m + a)T (m + a) (330)

See [7].
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6.2.3 Cubic Forms

Assume x to be a stochastic vector with independent coordinates, mean m,
covariance M and central moments v3 = E[(x−m)3]. Then (see [7])

E[(Ax + a)(Bx + b)T (Cx + c)] = Adiag(BTC)v3

+Tr(BMCT )(Am + a)

+AMCT (Bm + b)

+(AMBT + (Am + a)(Bm + b)T )(Cm + c)

E[xxTx] = v3 + 2Mm + (Tr(M) + mTm)m

E[(Ax + a)(Ax + a)T (Ax + a)] = Adiag(ATA)v3

+[2AMAT + (Ax + a)(Ax + a)T ](Am + a)

+Tr(AMAT )(Am + a)

E[(Ax + a)bT (Cx + c)(Dx + d)T ] = (Ax + a)bT (CMDT + (Cm + c)(Dm + d)T )

+(AMCT + (Am + a)(Cm + c)T )b(Dm + d)T

+bT (Cm + c)(AMDT − (Am + a)(Dm + d)T )

6.3 Weighted Scalar Variable

Assume x ∈ Rn×1 is a random variable, w ∈ Rn×1 is a vector of constants and
y is the linear combination y = wTx. Assume further that m,M2,M3,M4

denotes the mean, covariance, and central third and fourth moment matrix of
the variable x. Then it holds that

〈y〉 = wTm (331)

〈(y − 〈y〉)2〉 = wTM2w (332)

〈(y − 〈y〉)3〉 = wTM3w ⊗w (333)

〈(y − 〈y〉)4〉 = wTM4w ⊗w ⊗w (334)
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7 Multivariate Distributions

7.1 Cauchy

The density function for a Cauchy distributed vector t ∈ RP×1, is given by

p(t|µ,Σ) = π−P/2
Γ( 1+P

2 )

Γ(1/2)

det(Σ)−1/2[
1 + (t− µ)TΣ−1(t− µ)

](1+P )/2
(335)

where µ is the location, Σ is positive definite, and Γ denotes the gamma func-
tion. The Cauchy distribution is a special case of the Student-t distribution.

7.2 Dirichlet

The Dirichlet distribution is a kind of “inverse” distribution compared to the
multinomial distribution on the bounded continuous variate x = [x1, . . . , xP ]
[16, p. 44]

p(x|α) =
Γ
(∑P

p αp

)
∏P
p Γ(αp)

P∏
p

xαp−1p

7.3 Normal

The normal distribution is also known as a Gaussian distribution. See sec. 8.

7.4 Normal-Inverse Gamma

7.5 Gaussian

See sec. 8.

7.6 Multinomial

If the vector n contains counts, i.e. (n)i ∈ 0, 1, 2, ..., then the discrete multino-
mial disitrbution for n is given by

P (n|a, n) =
n!

n1! . . . nd!

d∏
i

anii ,

d∑
i

ni = n (336)

where ai are probabilities, i.e. 0 ≤ ai ≤ 1 and
∑
i ai = 1.

7.7 Student’s t

The density of a Student-t distributed vector t ∈ RP×1, is given by

p(t|µ,Σ, ν) = (πν)−P/2
Γ(ν+P2 )

Γ(ν/2)

det(Σ)−1/2[
1 + ν−1(t− µ)TΣ−1(t− µ)

](ν+P )/2
(337)

where µ is the location, the scale matrix Σ is symmetric, positive definite, ν
is the degrees of freedom, and Γ denotes the gamma function. For ν = 1, the
Student-t distribution becomes the Cauchy distribution (see sec 7.1).
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7.7.1 Mean

E(t) = µ, ν > 1 (338)

7.7.2 Variance

cov(t) =
ν

ν − 2
Σ, ν > 2 (339)

7.7.3 Mode

The notion mode meaning the position of the most probable value

mode(t) = µ (340)

7.7.4 Full Matrix Version

If instead of a vector t ∈ RP×1 one has a matrix T ∈ RP×N , then the Student-t
distribution for T is

p(T|M,Ω,Σ, ν) = π−NP/2
P∏
p=1

Γ [(ν + P − p+ 1)/2]

Γ [(ν − p+ 1)/2]
×

ν det(Ω)−ν/2 det(Σ)−N/2 ×

det
[
Ω−1 + (T−M)Σ−1(T−M)T

]−(ν+P )/2
(341)

where M is the location, Ω is the rescaling matrix, Σ is positive definite, ν is
the degrees of freedom, and Γ denotes the gamma function.

7.8 Wishart

The central Wishart distribution for M ∈ RP×P , M is positive definite, where
m can be regarded as a degree of freedom parameter [16, equation 3.8.1] [8,
section 2.5],[11]

p(M|Σ,m) =
1

2mP/2πP (P−1)/4∏P
p Γ[ 12 (m+ 1− p)]

×

det(Σ)−m/2 det(M)(m−P−1)/2 ×

exp

[
−1

2
Tr(Σ−1M)

]
(342)

7.8.1 Mean

E(M) = mΣ (343)
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7.9 Wishart, Inverse

The (normal) Inverse Wishart distribution for M ∈ RP×P , M is positive defi-
nite, where m can be regarded as a degree of freedom parameter [11]

p(M|Σ,m) =
1

2mP/2πP (P−1)/4∏P
p Γ[ 12 (m+ 1− p)]

×

det(Σ)m/2 det(M)−(m−P−1)/2 ×

exp

[
−1

2
Tr(ΣM−1)

]
(344)

7.9.1 Mean

E(M) = Σ
1

m− P − 1
(345)
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8 Gaussians

8.1 Basics

8.1.1 Density and normalization

The density of x ∼ N (m,Σ) is

p(x) =
1√

det(2πΣ)
exp

[
−1

2
(x−m)TΣ−1(x−m)

]
(346)

Note that if x is d-dimensional, then det(2πΣ) = (2π)d det(Σ).
Integration and normalization∫

exp

[
−1

2
(x−m)TΣ−1(x−m)

]
dx =

√
det(2πΣ)∫

exp

[
−1

2
xTΣ−1x + mTΣ−1x

]
dx =

√
det(2πΣ) exp

[
1

2
mTΣ−1m

]
∫

exp

[
−1

2
xTAx + cTx

]
dx =

√
det(2πA−1) exp

[
1

2
cTA−T c

]
If X = [x1x2...xn] and C = [c1c2...cn], then∫

exp

[
−1

2
Tr(XTAX) + Tr(CTX)

]
dX =

√
det(2πA−1)

n
exp

[
1

2
Tr(CTA−1C)

]
The derivatives of the density are

∂p(x)

∂x
= −p(x)Σ−1(x−m) (347)

∂2p

∂x∂xT
= p(x)

(
Σ−1(x−m)(x−m)TΣ−1 −Σ−1

)
(348)

8.1.2 Marginal Distribution

Assume x ∼ Nx(µ,Σ) where

x =

[
xa
xb

]
µ =

[
µa
µb

]
Σ =

[
Σa Σc

ΣT
c Σb

]
(349)

then

p(xa) = Nxa(µa,Σa) (350)

p(xb) = Nxb(µb,Σb) (351)

8.1.3 Conditional Distribution

Assume x ∼ Nx(µ,Σ) where

x =

[
xa
xb

]
µ =

[
µa
µb

]
Σ =

[
Σa Σc

ΣT
c Σb

]
(352)
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then

p(xa|xb) = Nxa(µ̂a, Σ̂a)
{ µ̂a = µa + ΣcΣ

−1
b (xb − µb)

Σ̂a = Σa −ΣcΣ
−1
b ΣT

c

(353)

p(xb|xa) = Nxb(µ̂b, Σ̂b)
{ µ̂b = µb + ΣT

c Σ−1a (xa − µa)

Σ̂b = Σb −ΣT
c Σ−1a Σc

(354)

Note, that the covariance matrices are the Schur complement of the block ma-
trix, see 9.1.5 for details.

8.1.4 Linear combination

Assume x ∼ N (mx,Σx) and y ∼ N (my,Σy) then

Ax + By + c ∼ N (Amx + Bmy + c,AΣxA
T + BΣyB

T ) (355)

8.1.5 Rearranging Means

NAx[m,Σ] =

√
det(2π(ATΣ−1A)−1)√

det(2πΣ)
Nx[A−1m, (ATΣ−1A)−1] (356)

If A is square and invertible, it simplifies to

NAx[m,Σ] =
1

|det(A)|
Nx[A−1m, (ATΣ−1A)−1] (357)

8.1.6 Rearranging into squared form

If A is symmetric, then

−1

2
xTAx + bTx = −1

2
(x−A−1b)TA(x−A−1b) +

1

2
bTA−1b

−1

2
Tr(XTAX) + Tr(BTX) = −1

2
Tr[(X−A−1B)TA(X−A−1B)] +

1

2
Tr(BTA−1B)

8.1.7 Sum of two squared forms

In vector formulation (assuming Σ1,Σ2 are symmetric)

−1

2
(x−m1)TΣ−11 (x−m1) (358)

−1

2
(x−m2)TΣ−12 (x−m2) (359)

= −1

2
(x−mc)

TΣ−1c (x−mc) + C (360)

Σ−1c = Σ−11 + Σ−12 (361)

mc = (Σ−11 + Σ−12 )−1(Σ−11 m1 + Σ−12 m2) (362)

C =
1

2
(mT

1 Σ−11 + mT
2 Σ−12 )(Σ−11 + Σ−12 )−1(Σ−11 m1 + Σ−12 m2)(363)

−1

2

(
mT

1 Σ−11 m1 + mT
2 Σ−12 m2

)
(364)
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In a trace formulation (assuming Σ1,Σ2 are symmetric)

−1

2
Tr((X−M1)TΣ−11 (X−M1)) (365)

−1

2
Tr((X−M2)TΣ−12 (X−M2)) (366)

= −1

2
Tr[(X−Mc)

TΣ−1c (X−Mc)] + C (367)

Σ−1c = Σ−11 + Σ−12 (368)

Mc = (Σ−11 + Σ−12 )−1(Σ−11 M1 + Σ−12 M2) (369)

C =
1

2
Tr
[
(Σ−11 M1 + Σ−12 M2)T (Σ−11 + Σ−12 )−1(Σ−11 M1 + Σ−12 M2)

]
−1

2
Tr(MT

1 Σ−11 M1 + MT
2 Σ−12 M2) (370)

8.1.8 Product of gaussian densities

Let Nx(m,Σ) denote a density of x, then

Nx(m1,Σ1) · Nx(m2,Σ2) = ccNx(mc,Σc) (371)

cc = Nm1
(m2, (Σ1 + Σ2))

=
1√

det(2π(Σ1 + Σ2))
exp

[
−1

2
(m1 −m2)T (Σ1 + Σ2)−1(m1 −m2)

]
mc = (Σ−11 + Σ−12 )−1(Σ−11 m1 + Σ−12 m2)

Σc = (Σ−11 + Σ−12 )−1

but note that the product is not normalized as a density of x.

8.2 Moments

8.2.1 Mean and covariance of linear forms

First and second moments. Assume x ∼ N (m,Σ)

E(x) = m (372)

Cov(x,x) = Var(x) = Σ = E(xxT )− E(x)E(xT ) = E(xxT )−mmT (373)

As for any other distribution is holds for gaussians that

E[Ax] = AE[x] (374)

Var[Ax] = AVar[x]AT (375)

Cov[Ax,By] = ACov[x,y]BT (376)
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8.2.2 Mean and variance of square forms

Mean and variance of square forms: Assume x ∼ N (m,Σ)

E(xxT ) = Σ + mmT (377)

E[xTAx] = Tr(AΣ) + mTAm (378)

Var(xTAx) = Tr[AΣ(A + AT )Σ] + ...

+mT (A + AT )Σ(A + AT )m (379)

E[(x−m′)TA(x−m′)] = (m−m′)TA(m−m′) + Tr(AΣ) (380)

If Σ = σ2I and A is symmetric, then

Var(xTAx) = 2σ4Tr(A2) + 4σ2mTA2m (381)

Assume x ∼ N (0, σ2I) and A and B to be symmetric, then

Cov(xTAx,xTBx) = 2σ4Tr(AB) (382)

8.2.3 Cubic forms

Assume x to be a stochastic vector with independent coordinates, mean m and
covariance M

E[xbTxxT ] = mbT (M + mmT ) + (M + mmT )bmT

+bTm(M−mmT ) (383)

8.2.4 Mean of Quartic Forms

E[xxTxxT ] = 2(Σ + mmT )2 + mTm(Σ−mmT )

+Tr(Σ)(Σ + mmT )

E[xxTAxxT ] = (Σ + mmT )(A + AT )(Σ + mmT )

+mTAm(Σ−mmT ) + Tr[AΣ](Σ + mmT )

E[xTxxTx] = 2Tr(Σ2) + 4mTΣm + (Tr(Σ) + mTm)2

E[xTAxxTBx] = Tr[AΣ(B + BT )Σ] + mT (A + AT )Σ(B + BT )m

+(Tr(AΣ) + mTAm)(Tr(BΣ) + mTBm)

E[aTxbTxcTxdTx]

= (aT (Σ + mmT )b)(cT (Σ + mmT )d)

+(aT (Σ + mmT )c)(bT (Σ + mmT )d)

+(aT (Σ + mmT )d)(bT (Σ + mmT )c)− 2aTmbTmcTmdTm

E[(Ax + a)(Bx + b)T (Cx + c)(Dx + d)T ]

= [AΣBT + (Am + a)(Bm + b)T ][CΣDT + (Cm + c)(Dm + d)T ]

+[AΣCT + (Am + a)(Cm + c)T ][BΣDT + (Bm + b)(Dm + d)T ]

+(Bm + b)T (Cm + c)[AΣDT − (Am + a)(Dm + d)T ]

+Tr(BΣCT )[AΣDT + (Am + a)(Dm + d)T ]
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E[(Ax + a)T (Bx + b)(Cx + c)T (Dx + d)]

= Tr[AΣ(CTD + DTC)ΣBT ]

+[(Am + a)TB + (Bm + b)TA]Σ[CT (Dm + d) + DT (Cm + c)]

+[Tr(AΣBT ) + (Am + a)T (Bm + b)][Tr(CΣDT ) + (Cm + c)T (Dm + d)]

See [7].

8.2.5 Moments

E[x] =
∑
k

ρkmk (384)

Cov(x) =
∑
k

∑
k′

ρkρk′(Σk + mkm
T
k −mkm

T
k′) (385)

8.3 Miscellaneous

8.3.1 Whitening

Assume x ∼ N (m,Σ) then

z = Σ−1/2(x−m) ∼ N (0, I) (386)

Conversely having z ∼ N (0, I) one can generate data x ∼ N (m,Σ) by setting

x = Σ1/2z + m ∼ N (m,Σ) (387)

Note that Σ1/2 means the matrix which fulfils Σ1/2Σ1/2 = Σ, and that it exists
and is unique since Σ is positive definite.

8.3.2 The Chi-Square connection

Assume x ∼ N (m,Σ) and x to be n dimensional, then

z = (x−m)TΣ−1(x−m) ∼ χ2
n (388)

where χ2
n denotes the Chi square distribution with n degrees of freedom.

8.3.3 Entropy

Entropy of a D-dimensional gaussian

H(x) = −
∫
N (m,Σ) lnN (m,Σ)dx = ln

√
det(2πΣ) +

D

2
(389)

8.4 Mixture of Gaussians

8.4.1 Density

The variable x is distributed as a mixture of gaussians if it has the density

p(x) =

K∑
k=1

ρk
1√

det(2πΣk)
exp

[
−1

2
(x−mk)TΣ−1k (x−mk)

]
(390)

where ρk sum to 1 and the Σk all are positive definite.
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8.4.2 Derivatives

Defining p(s) =
∑
k ρkNs(µk,Σk) one get

∂ ln p(s)

∂ρj
=

ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

∂

∂ρj
ln[ρjNs(µj ,Σj)] (391)

=
ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

1

ρj
(392)

∂ ln p(s)

∂µj
=

ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

∂

∂µj
ln[ρjNs(µj ,Σj)] (393)

=
ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

[
Σ−1j (s− µj)

]
(394)

∂ ln p(s)

∂Σj
=

ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

∂

∂Σj
ln[ρjNs(µj ,Σj)] (395)

=
ρjNs(µj ,Σj)∑
k ρkNs(µk,Σk)

1

2

[
−Σ−1j + Σ−1j (s− µj)(s− µj)

TΣ−1j
]

(396)

But ρk and Σk needs to be constrained.
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9 Special Matrices

9.1 Block matrices

Let Aij denote the ijth block of A.

9.1.1 Multiplication

Assuming the dimensions of the blocks matches we have[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
9.1.2 The Determinant

The determinant can be expressed as by the use of

C1 = A11 −A12A
−1
22 A21 (397)

C2 = A22 −A21A
−1
11 A12 (398)

as

det

([
A11 A12

A21 A22

])
= det(A22) · det(C1) = det(A11) · det(C2)

9.1.3 The Inverse

The inverse can be expressed as by the use of

C1 = A11 −A12A
−1
22 A21 (399)

C2 = A22 −A21A
−1
11 A12 (400)

as [
A11 A12

A21 A22

]−1
=

[
C−11 −A−111 A12C

−1
2

−C−12 A21A
−1
11 C−12

]
=

[
A−111 + A−111 A12C

−1
2 A21A

−1
11 −C−11 A12A

−1
22

−A−122 A21C
−1
1 A−122 + A−122 A21C

−1
1 A12A

−1
22

]
9.1.4 Block diagonal

For block diagonal matrices we have[
A11 0
0 A22

]−1
=

[
(A11)−1 0

0 (A22)−1

]
(401)

det

([
A11 0
0 A22

])
= det(A11) · det(A22) (402)
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9.1.5 Schur complement

Regard the matrix [
A11 A12

A21 A22

]
The Schur complement of block A11 of the matrix above is the matrix (denoted
C2 in the text above)

A22 −A21A
−1
11 A12

The Schur complement of block A22 of the matrix above is the matrix (denoted
C1 in the text above)

A11 −A12A
−1
22 A21

Using the Schur complement, one can rewrite the inverse of a block matrix[
A11 A12

A21 A22

]−1
=

[
I 0

−A−122 A21 I

] [
(A11 −A12A

−1
22 A21)−1 0

0 A−122

] [
I −A12A

−1
22

0 I

]
The Schur complement is useful when solving linear systems of the form[

A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
which has the following equation for x1

(A11 −A12A
−1
22 A21)x1 = b1 −A12A

−1
22 b2

When the appropriate inverses exists, this can be solved for x1 which can then
be inserted in the equation for x2 to solve for x2.

9.2 Discrete Fourier Transform Matrix, The

The DFT matrix is an N ×N symmetric matrix WN , where the k, nth element
is given by

W kn
N = e

−j2πkn
N (403)

Thus the discrete Fourier transform (DFT) can be expressed as

X(k) =

N−1∑
n=0

x(n)W kn
N . (404)

Likewise the inverse discrete Fourier transform (IDFT) can be expressed as

x(n) =
1

N

N−1∑
k=0

X(k)W−knN . (405)

The DFT of the vector x = [x(0), x(1), · · · , x(N −1)]T can be written in matrix
form as

X = WNx, (406)
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where X = [X(0), X(1), · · · , x(N − 1)]T . The IDFT is similarly given as

x = W−1
N X. (407)

Some properties of WN exist:

W−1
N =

1

N
W∗

N (408)

WNW∗
N = NI (409)

W∗
N = WH

N (410)

If WN = e
−j2π
N , then [23]

W
m+N/2
N = −Wm

N (411)

Notice, the DFT matrix is a Vandermonde Matrix.
The following important relation between the circulant matrix and the dis-

crete Fourier transform (DFT) exists

TC = W−1
N (I ◦ (WNt))WN , (412)

where t = [t0, t1, · · · , tn−1]T is the first row of TC .

9.3 Hermitian Matrices and skew-Hermitian

A matrix A ∈ Cm×n is called Hermitian if

AH = A

For real valued matrices, Hermitian and symmetric matrices are equivalent.

A is Hermitian ⇔ xHAx ∈ R, ∀x ∈ Cn×1 (413)

A is Hermitian ⇔ eig(A) ∈ R (414)

Note that
A = B + iC

where B,C are hermitian, then

B =
A + AH

2
, C =

A−AH

2i

9.3.1 Skew-Hermitian

A matrix A is called skew-hermitian if

A = −AH

For real valued matrices, skew-Hermitian and skew-symmetric matrices are
equivalent.

A Hermitian ⇔ iA is skew-hermitian (415)

A skew-Hermitian ⇔ xHAy = −xHAHy, ∀x,y (416)

A skew-Hermitian ⇒ eig(A) = iλ, λ ∈ R (417)
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9.4 Idempotent Matrices

A matrix A is idempotent if
AA = A

Idempotent matrices A and B, have the following properties

An = A, forn = 1, 2, 3, ... (418)

I−A is idempotent (419)

AH is idempotent (420)

I−AH is idempotent (421)

If AB = BA ⇒ AB is idempotent (422)

rank(A) = Tr(A) (423)

A(I−A) = 0 (424)

(I−A)A = 0 (425)

A+ = A (426)

f(sI + tA) = (I−A)f(s) + Af(s+ t) (427)

Note that A− I is not necessarily idempotent.

9.4.1 Nilpotent

A matrix A is nilpotent if
A2 = 0

A nilpotent matrix has the following property:

f(sI + tA) = If(s) + tAf ′(s) (428)

9.4.2 Unipotent

A matrix A is unipotent if
AA = I

A unipotent matrix has the following property:

f(sI + tA) = [(I + A)f(s+ t) + (I−A)f(s− t)]/2 (429)

9.5 Orthogonal matrices

If a square matrix Q is orthogonal, if and only if,

QTQ = QQT = I

and then Q has the following properties

• Its eigenvalues are placed on the unit circle.

• Its eigenvectors are unitary, i.e. have length one.

• The inverse of an orthogonal matrix is orthogonal too.
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Basic properties for the orthogonal matrix Q

Q−1 = QT

Q−T = Q

QQT = I

QTQ = I

det(Q) = ±1

9.5.1 Ortho-Sym

A matrix Q+ which simultaneously is orthogonal and symmetric is called an
ortho-sym matrix [20]. Hereby

QT
+Q+ = I (430)

Q+ = QT
+ (431)

The powers of an ortho-sym matrix are given by the following rule

Qk
+ =

1 + (−1)k

2
I +

1 + (−1)k+1

2
Q+ (432)

=
1 + cos(kπ)

2
I +

1− cos(kπ)

2
Q+ (433)

9.5.2 Ortho-Skew

A matrix which simultaneously is orthogonal and antisymmetric is called an
ortho-skew matrix [20]. Hereby

QH
−Q− = I (434)

Q− = −QH
− (435)

The powers of an ortho-skew matrix are given by the following rule

Qk
− =

ik + (−i)k

2
I− i i

k − (−i)k

2
Q− (436)

= cos(k
π

2
)I + sin(k

π

2
)Q− (437)

9.5.3 Decomposition

A square matrix A can always be written as a sum of a symmetric A+ and an
antisymmetric matrix A−

A = A+ + A− (438)

9.6 Positive Definite and Semi-definite Matrices

9.6.1 Definitions

A matrix A is positive definite if and only if

xTAx > 0, ∀x 6= 0 (439)

A matrix A is positive semi-definite if and only if

xTAx ≥ 0, ∀x (440)

Note that if A is positive definite, then A is also positive semi-definite.
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9.6.2 Eigenvalues

The following holds with respect to the eigenvalues:

A pos. def. ⇔ eig(A+AH

2 ) > 0

A pos. semi-def. ⇔ eig(A+AH

2 ) ≥ 0
(441)

9.6.3 Trace

The following holds with respect to the trace:

A pos. def. ⇒ Tr(A) > 0
A pos. semi-def. ⇒ Tr(A) ≥ 0

(442)

9.6.4 Inverse

If A is positive definite, then A is invertible and A−1 is also positive definite.

9.6.5 Diagonal

If A is positive definite, then Aii > 0,∀i

9.6.6 Decomposition I

The matrix A is positive semi-definite of rank r ⇔ there exists a matrix B of
rank r such that A = BBT

The matrix A is positive definite ⇔ there exists an invertible matrix B such
that A = BBT

9.6.7 Decomposition II

Assume A is an n× n positive semi-definite, then there exists an n× r matrix
B of rank r such that BTAB = I.

9.6.8 Equation with zeros

Assume A is positive semi-definite, then XTAX = 0 ⇒ AX = 0

9.6.9 Rank of product

Assume A is positive definite, then rank(BABT ) = rank(B)

9.6.10 Positive definite property

If A is n× n positive definite and B is r × n of rank r, then BABT is positive
definite.

9.6.11 Outer Product

If X is n× r, where n ≤ r and rank(X) = n, then XXT is positive definite.
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9.6.12 Small pertubations

If A is positive definite and B is symmetric, then A− tB is positive definite for
sufficiently small t.

9.6.13 Hadamard inequality

If A is a positive definite or semi-definite matrix, then

det(A) ≤
∏
i

Aii

See [15, pp.477]

9.6.14 Hadamard product relation

Assume that P = AAT and Q = BBT are semi positive definite matrices, it
then holds that

P ◦Q = RRT

where the columns of R are constructed as follows: ri+(j−1)NA = ai ◦ bj , for
i = 1, 2, ..., NA and j = 1, 2, ..., NB . The result is unpublished, but reported by
Pavel Sakov and Craig Bishop.

9.7 Singleentry Matrix, The

9.7.1 Definition

The single-entry matrix Jij ∈ Rn×n is defined as the matrix which is zero
everywhere except in the entry (i, j) in which it is 1. In a 4 × 4 example one
might have

J23 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 (443)

The single-entry matrix is very useful when working with derivatives of expres-
sions involving matrices.

9.7.2 Swap and Zeros

Assume A to be n×m and Jij to be m× p

AJij =
[

0 0 . . . Ai . . . 0
]

(444)

i.e. an n × p matrix of zeros with the i.th column of A in place of the j.th
column. Assume A to be n×m and Jij to be p× n

JijA =



0
...
0

Aj

0
...
0


(445)
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i.e. an p ×m matrix of zeros with the j.th row of A in the placed of the i.th
row.

9.7.3 Rewriting product of elements

AkiBjl = (Aeie
T
j B)kl = (AJijB)kl (446)

AikBlj = (ATeie
T
j BT )kl = (ATJijBT )kl (447)

AikBjl = (ATeie
T
j B)kl = (ATJijB)kl (448)

AkiBlj = (Aeie
T
j BT )kl = (AJijBT )kl (449)

9.7.4 Properties of the Singleentry Matrix

If i = j
JijJij = Jij (Jij)T (Jij)T = Jij

Jij(Jij)T = Jij (Jij)TJij = Jij

If i 6= j
JijJij = 0 (Jij)T (Jij)T = 0

Jij(Jij)T = Jii (Jij)TJij = Jjj

9.7.5 The Singleentry Matrix in Scalar Expressions

Assume A is n×m and J is m× n, then

Tr(AJij) = Tr(JijA) = (AT )ij (450)

Assume A is n× n, J is n×m and B is m× n, then

Tr(AJijB) = (ATBT )ij (451)

Tr(AJjiB) = (BA)ij (452)

Tr(AJijJijB) = diag(ATBT )ij (453)

Assume A is n× n, Jij is n×m B is m× n, then

xTAJijBx = (ATxxTBT )ij (454)

xTAJijJijBx = diag(ATxxTBT )ij (455)

9.7.6 Structure Matrices

The structure matrix is defined by

∂A

∂Aij
= Sij (456)

If A has no special structure then

Sij = Jij (457)

If A is symmetric then
Sij = Jij + Jji − JijJij (458)
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9.8 Symmetric, Skew-symmetric/Antisymmetric

9.8.1 Symmetric

The matrix A is said to be symmetric if

A = AT (459)

Symmetric matrices have many important properties, e.g. that their eigenvalues
are real and eigenvectors orthogonal.

9.8.2 Skew-symmetric/Antisymmetric

The antisymmetric matrix is also known as the skew symmetric matrix. It has
the following property from which it is defined

A = −AT (460)

Hereby, it can be seen that the antisymmetric matrices always have a zero
diagonal. The n× n antisymmetric matrices also have the following properties.

det(AT ) = det(−A) = (−1)n det(A) (461)

−det(A) = det(−A) = 0, if n is odd (462)

The eigenvalues of an antisymmetric matrix are placed on the imaginary axis
and the eigenvectors are unitary.

9.8.3 Decomposition

A square matrix A can always be written as a sum of a symmetric A+ and an
antisymmetric matrix A−

A = A+ + A− (463)

Such a decomposition could e.g. be

A =
A + AT

2
+

A−AT

2
= A+ + A− (464)

9.9 Toeplitz Matrices

A Toeplitz matrix T is a matrix where the elements of each diagonal is the
same. In the n× n square case, it has the following structure:

T =


t11 t12 · · · t1n

t21
. . .

. . .
...

...
. . .

. . . t12
tn1 · · · t21 t11

 =


t0 t1 · · · tn−1

t−1
. . .

. . .
...

...
. . .

. . . t1
t−(n−1) · · · t−1 t0

 (465)

A Toeplitz matrix is persymmetric. If a matrix is persymmetric (or orthosym-
metric), it means that the matrix is symmetric about its northeast-southwest
diagonal (anti-diagonal) [12]. Persymmetric matrices is a larger class of matri-
ces, since a persymmetric matrix not necessarily has a Toeplitz structure. There
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are some special cases of Toeplitz matrices. The symmetric Toeplitz matrix is
given by:

T =


t0 t1 · · · tn−1

t1
. . .

. . .
...

...
. . .

. . . t1
tn−1 · · · t1 t0

 (466)

The circular Toeplitz matrix:

TC =


t0 t1 · · · tn−1

tn−1
. . .

. . .
...

...
. . .

. . . t1
t1 · · · tn−1 t0

 (467)

The upper triangular Toeplitz matrix:

TU =


t0 t1 · · · tn−1

0
. . .

. . .
...

...
. . .

. . . t1
0 · · · 0 t0

 , (468)

and the lower triangular Toeplitz matrix:

TL =


t0 0 · · · 0

t−1
. . .

. . .
...

...
. . .

. . . 0
t−(n−1) · · · t−1 t0

 (469)

9.9.1 Properties of Toeplitz Matrices

The Toeplitz matrix has some computational advantages. The addition of two
Toeplitz matrices can be done with O(n) flops, multiplication of two Toeplitz
matrices can be done in O(n lnn) flops. Toeplitz equation systems can be solved
in O(n2) flops. The inverse of a positive definite Toeplitz matrix can be found
in O(n2) flops too. The inverse of a Toeplitz matrix is persymmetric. The
product of two lower triangular Toeplitz matrices is a Toeplitz matrix. More
information on Toeplitz matrices and circulant matrices can be found in [13, 7].

9.10 Transition matrices

A square matrix P is a transition matrix, also known as stochastic matrix or
probability matrix, if

0 ≤ (P)ij ≤ 1,
∑
j

(P)ij = 1

The transition matrix usually describes the probability of moving from state i
to j in one step and is closely related to markov processes. Transition matrices
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have the following properties

Prob[i→ j in 1 step] = (P)ij (470)

Prob[i→ j in 2 steps] = (P2)ij (471)

Prob[i→ j in k steps] = (Pk)ij (472)

If all rows are identical ⇒ Pn = P (473)

αP = α, α is called invariant (474)

where α is a so-called stationary probability vector, i.e., 0 ≤ αi ≤ 1 and
∑
i αi =

1.

9.11 Units, Permutation and Shift

9.11.1 Unit vector

Let ei ∈ Rn×1 be the ith unit vector, i.e. the vector which is zero in all entries
except the ith at which it is 1.

9.11.2 Rows and Columns

i.th row of A = eTi A (475)

j.th column of A = Aej (476)

9.11.3 Permutations

Let P be some permutation matrix, e.g.

P =

 0 1 0
1 0 0
0 0 1

 =
[

e2 e1 e3

]
=

 eT2
eT1
eT3

 (477)

For permutation matrices it holds that

PPT = I (478)

and that

AP =
[

Ae2 Ae1 Ae3

]
PA =

 eT2 A
eT1 A
eT3 A

 (479)

That is, the first is a matrix which has columns of A but in permuted sequence
and the second is a matrix which has the rows of A but in the permuted se-
quence.

9.11.4 Translation, Shift or Lag Operators

Let L denote the lag (or ’translation’ or ’shift’) operator defined on a 4 × 4
example by

L =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 (480)
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i.e. a matrix of zeros with one on the sub-diagonal, (L)ij = δi,j+1. With some
signal xt for t = 1, ..., N , the n.th power of the lag operator shifts the indices,
i.e.

(Lnx)t =
{ 0 for t = 1, .., n
xt−n for t = n+ 1, ..., N

(481)

A related but slightly different matrix is the ’recurrent shifted’ operator defined
on a 4x4 example by

L̂ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 (482)

i.e. a matrix defined by (L̂)ij = δi,j+1 + δi,1δj,dim(L). On a signal x it has the
effect

(L̂nx)t = xt′ , t′ = [(t− n) mod N ] + 1 (483)

That is, L̂ is like the shift operator L except that it ’wraps’ the signal as if it
was periodic and shifted (substituting the zeros with the rear end of the signal).

Note that L̂ is invertible and orthogonal, i.e.

L̂−1 = L̂T (484)

9.12 Vandermonde Matrices

A Vandermonde matrix has the form [15]

V =


1 v1 v21 · · · vn−11

1 v2 v22 · · · vn−12
...

...
...

...
1 vn v2n · · · vn−1n

 . (485)

The transpose of V is also said to a Vandermonde matrix. The determinant is
given by [29]

det V =
∏
i>j

(vi − vj) (486)
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10 Functions and Operators

10.1 Functions and Series

10.1.1 Finite Series

(Xn − I)(X− I)−1 = I + X + X2 + ...+ Xn−1 (487)

10.1.2 Taylor Expansion of Scalar Function

Consider some scalar function f(x) which takes the vector x as an argument.
This we can Taylor expand around x0

f(x) ∼= f(x0) + g(x0)T (x− x0) +
1

2
(x− x0)TH(x0)(x− x0) (488)

where

g(x0) =
∂f(x)

∂x

∣∣∣
x0

H(x0) =
∂2f(x)

∂x∂xT

∣∣∣
x0

10.1.3 Matrix Functions by Infinite Series

As for analytical functions in one dimension, one can define a matrix function
for square matrices X by an infinite series

f(X) =

∞∑
n=0

cnXn (489)

assuming the limit exists and is finite. If the coefficients cn fulfils
∑
n cnx

n <∞,
then one can prove that the above series exists and is finite, see [1]. Thus for
any analytical function f(x) there exists a corresponding matrix function f(x)
constructed by the Taylor expansion. Using this one can prove the following
results:
1) A matrix A is a zero of its own characteristic polynomium [1]:

p(λ) = det(Iλ−A) =
∑
n

cnλ
n ⇒ p(A) = 0 (490)

2) If A is square it holds that [1]

A = UBU−1 ⇒ f(A) = Uf(B)U−1 (491)

3) A useful fact when using power series is that

An → 0forn→∞ if |A| < 1 (492)

10.1.4 Identity and commutations

It holds for an analytical matrix function f(X) that

f(AB)A = Af(BA) (493)

see B.1.2 for a proof.
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10.1.5 Exponential Matrix Function

In analogy to the ordinary scalar exponential function, one can define exponen-
tial and logarithmic matrix functions:

eA ≡
∞∑
n=0

1

n!
An = I + A +

1

2
A2 + ... (494)

e−A ≡
∞∑
n=0

1

n!
(−1)nAn = I−A +

1

2
A2 − ... (495)

etA ≡
∞∑
n=0

1

n!
(tA)n = I + tA +

1

2
t2A2 + ... (496)

ln(I + A) ≡
∞∑
n=1

(−1)n−1

n
An = A− 1

2
A2 +

1

3
A3 − ... (497)

Some of the properties of the exponential function are [1]

eAeB = eA+B if AB = BA (498)

(eA)−1 = e−A (499)

d

dt
etA = AetA = etAA, t ∈ R (500)

d

dt
Tr(etA) = Tr(AetA) (501)

det(eA) = eTr(A) (502)

10.1.6 Trigonometric Functions

sin(A) ≡
∞∑
n=0

(−1)nA2n+1

(2n+ 1)!
= A− 1

3!
A3 +

1

5!
A5 − ... (503)

cos(A) ≡
∞∑
n=0

(−1)nA2n

(2n)!
= I− 1

2!
A2 +

1

4!
A4 − ... (504)

10.2 Kronecker and Vec Operator

10.2.1 The Kronecker Product

The Kronecker product of an m × n matrix A and an r × q matrix B, is an
mr × nq matrix, A⊗B defined as

A⊗B =


A11B A12B ... A1nB
A21B A22B ... A2nB

...
...

Am1B Am2B ... AmnB

 (505)
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The Kronecker product has the following properties (see [19])

A⊗ (B + C) = A⊗B + A⊗C (506)

A⊗B 6= B⊗A in general (507)

A⊗ (B⊗C) = (A⊗B)⊗C (508)

(αAA⊗ αBB) = αAαB(A⊗B) (509)

(A⊗B)T = AT ⊗BT (510)

(A⊗B)(C⊗D) = AC⊗BD (511)

(A⊗B)−1 = A−1 ⊗B−1 (512)

(A⊗B)+ = A+ ⊗B+ (513)

rank(A⊗B) = rank(A)rank(B) (514)

Tr(A⊗B) = Tr(A)Tr(B) = Tr(ΛA ⊗ΛB) (515)

det(A⊗B) = det(A)rank(B) det(B)rank(A) (516)

{eig(A⊗B)} = {eig(B⊗A)} if A,B are square (517)

{eig(A⊗B)} = {eig(A)eig(B)T } (518)

if A,B are symmetric and square

eig(A⊗B) = eig(A)⊗ eig(B) (519)

Where {λi} denotes the set of values λi, that is, the values in no particular
order or structure, and ΛA denotes the diagonal matrix with the eigenvalues of
A.

10.2.2 The Vec Operator

The vec-operator applied on a matrix A stacks the columns into a vector, i.e.
for a 2× 2 matrix

A =

[
A11 A12

A21 A22

]
vec(A) =


A11

A21

A12

A22


Properties of the vec-operator include (see [19])

vec(AXB) = (BT ⊗A)vec(X) (520)

Tr(ATB) = vec(A)Tvec(B) (521)

vec(A + B) = vec(A) + vec(B) (522)

vec(αA) = α · vec(A) (523)

aTXBXT c = vec(X)T (B⊗ caT )vec(X) (524)

See B.1.1 for a proof for Eq. 524.
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10.3 Vector Norms

10.3.1 Examples

||x||1 =
∑
i

|xi| (525)

||x||22 = xHx (526)

||x||p =

[∑
i

|xi|p
]1/p

(527)

||x||∞ = max
i
|xi| (528)

Further reading in e.g. [12, p. 52]

10.4 Matrix Norms

10.4.1 Definitions

A matrix norm is a mapping which fulfils

||A|| ≥ 0 (529)

||A|| = 0⇔ A = 0 (530)

||cA|| = |c|||A||, c ∈ R (531)

||A + B|| ≤ ||A||+ ||B|| (532)

10.4.2 Induced Norm or Operator Norm

An induced norm is a matrix norm induced by a vector norm by the following

||A|| = sup{||Ax|| | ||x|| = 1} (533)

where || · || on the left side is the induced matrix norm, while || · || on the right
side denotes the vector norm. For induced norms it holds that

||I|| = 1 (534)
||Ax|| ≤ ||A|| · ||x||, for all A,x (535)
||AB|| ≤ ||A|| · ||B||, for all A,B (536)

10.4.3 Examples

||A||1 = max
j

∑
i

|Aij | (537)

||A||2 =
√

max eig(AHA) (538)

||A||p = ( max
||x||p=1

||Ax||p)1/p (539)

||A||∞ = max
i

∑
j

|Aij | (540)

||A||F =

√∑
ij

|Aij |2 =
√

Tr(AAH) (Frobenius) (541)
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||A||max = max
ij
|Aij | (542)

||A||KF = ||sing(A)||1 (Ky Fan) (543)

where sing(A) is the vector of singular values of the matrix A.

10.4.4 Inequalities

E. H. Rasmussen has in yet unpublished material derived and collected the
following inequalities. They are collected in a table as below, assuming A is an
m× n, and d = rank(A)

||A||max ||A||1 ||A||∞ ||A||2 ||A||F ||A||KF

||A||max 1 1 1 1 1
||A||1 m m

√
m

√
m

√
m

||A||∞ n n
√
n

√
n

√
n

||A||2
√
mn

√
n

√
m 1 1

||A||F
√
mn

√
n

√
m

√
d 1

||A||KF

√
mnd

√
nd

√
md d

√
d

which are to be read as, e.g.

||A||2 ≤
√
m · ||A||∞ (544)

10.4.5 Condition Number

The 2-norm of A equals
√

(max(eig(ATA))) [12, p.57]. For a symmetric, pos-
itive definite matrix, this reduces to max(eig(A)) The condition number based
on the 2-norm thus reduces to

‖A‖2‖A−1‖2 = max(eig(A)) max(eig(A−1)) =
max(eig(A))

min(eig(A))
. (545)

10.5 Rank

10.5.1 Sylvester’s Inequality

If A is m× n and B is n× r, then

rank(A) + rank(B)− n ≤ rank(AB) ≤ min{rank(A), rank(B)} (546)

10.6 Integral Involving Dirac Delta Functions

Assuming A to be square, then∫
p(s)δ(x−As)ds =

1

det(A)
p(A−1x) (547)

Assuming A to be ”underdetermined”, i.e. ”tall”, then∫
p(s)δ(x−As)ds =

{
1√

det(ATA)
p(A+x) if x = AA+x

0 elsewhere

}
(548)

See [9].
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10.7 Miscellaneous

For any A it holds that

rank(A) = rank(AT ) = rank(AAT ) = rank(ATA) (549)

It holds that

A is positive definite ⇔ ∃B invertible, such that A = BBT (550)
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A One-dimensional Results

A.1 Gaussian

A.1.1 Density

p(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
(551)

A.1.2 Normalization∫
e−

(s−µ)2

2σ2 ds =
√

2πσ2 (552)∫
e−(ax

2+bx+c)dx =

√
π

a
exp

[
b2 − 4ac

4a

]
(553)∫

ec2x
2+c1x+c0dx =

√
π

−c2
exp

[
c21 − 4c2c0
−4c2

]
(554)

A.1.3 Derivatives
∂p(x)

∂µ
= p(x)

(x− µ)

σ2
(555)

∂ ln p(x)

∂µ
=

(x− µ)

σ2
(556)

∂p(x)

∂σ
= p(x)

1

σ

[
(x− µ)2

σ2
− 1

]
(557)

∂ ln p(x)

∂σ
=

1

σ

[
(x− µ)2

σ2
− 1

]
(558)

A.1.4 Completing the Squares

c2x
2 + c1x+ c0 = −a(x− b)2 + w

−a = c2 b =
1

2

c1
c2

w =
1

4

c21
c2

+ c0

or

c2x
2 + c1x+ c0 = − 1

2σ2
(x− µ)2 + d

µ =
−c1
2c2

σ2 =
−1

2c2
d = c0 −

c21
4c2

A.1.5 Moments

If the density is expressed by

p(x) =
1√

2πσ2
exp

[
− (s− µ)2

2σ2

]
or p(x) = C exp(c2x

2 + c1x) (559)

then the first few basic moments are
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〈x〉 = µ = −c1
2c2

〈x2〉 = σ2 + µ2 = −1
2c2

+
(
−c1
2c2

)2
〈x3〉 = 3σ2µ+ µ3 = c1

(2c2)2

[
3− c21

2c2

]
〈x4〉 = µ4 + 6µ2σ2 + 3σ4 =

(
c1
2c2

)4
+ 6

(
c1
2c2

)2 (
−1
2c2

)
+ 3

(
1

2c2

)2
and the central moments are

〈(x− µ)〉 = 0 = 0

〈(x− µ)2〉 = σ2 =
[
−1
2c2

]
〈(x− µ)3〉 = 0 = 0

〈(x− µ)4〉 = 3σ4 = 3
[

1
2c2

]2
A kind of pseudo-moments (un-normalized integrals) can easily be derived as∫

exp(c2x
2 + c1x)xndx = Z〈xn〉 =

√
π

−c2
exp

[
c21
−4c2

]
〈xn〉 (560)

¿From the un-centralized moments one can derive other entities like

〈x2〉 − 〈x〉2 = σ2 = −1
2c2

〈x3〉 − 〈x2〉〈x〉 = 2σ2µ = 2c1
(2c2)2

〈x4〉 − 〈x2〉2 = 2σ4 + 4µ2σ2 = 2
(2c2)2

[
1− 4

c21
2c2

]
A.2 One Dimensional Mixture of Gaussians

A.2.1 Density and Normalization

p(s) =

K∑
k

ρk√
2πσ2

k

exp

[
−1

2

(s− µk)2

σ2
k

]
(561)

A.2.2 Moments

A useful fact of MoG, is that

〈xn〉 =
∑
k

ρk〈xn〉k (562)

where 〈·〉k denotes average with respect to the k.th component. We can calculate
the first four moments from the densities

p(x) =
∑
k

ρk
1√

2πσ2
k

exp

[
−1

2

(x− µk)2

σ2
k

]
(563)

p(x) =
∑
k

ρkCk exp
[
ck2x

2 + ck1x
]

(564)

as

Petersen & Pedersen, The Matrix Cookbook, Version: November 15, 2012, Page 65
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〈x〉 =
∑
k ρkµk =

∑
k ρk

[
−ck1
2ck2

]
〈x2〉 =

∑
k ρk(σ2

k + µ2
k) =

∑
k ρk

[
−1
2ck2

+
(
−ck1
2ck2

)2]
〈x3〉 =

∑
k ρk(3σ2

kµk + µ3
k) =

∑
k ρk

[
ck1

(2ck2)2

[
3− c2k1

2ck2

]]
〈x4〉 =

∑
k ρk(µ4

k + 6µ2
kσ

2
k + 3σ4

k) =
∑
k ρk

[(
1

2ck2

)2 [(
ck1
2ck2

)2
− 6

c2k1
2ck2

+ 3

]]
If all the gaussians are centered, i.e. µk = 0 for all k, then

〈x〉 = 0 = 0

〈x2〉 =
∑
k ρkσ

2
k =

∑
k ρk

[
−1
2ck2

]
〈x3〉 = 0 = 0

〈x4〉 =
∑
k ρk3σ4

k =
∑
k ρk3

[
−1
2ck2

]2
¿From the un-centralized moments one can derive other entities like

〈x2〉 − 〈x〉2 =
∑
k,k′ ρkρk′

[
µ2
k + σ2

k − µkµk′
]

〈x3〉 − 〈x2〉〈x〉 =
∑
k,k′ ρkρk′

[
3σ2

kµk + µ3
k − (σ2

k + µ2
k)µk′

]
〈x4〉 − 〈x2〉2 =

∑
k,k′ ρkρk′

[
µ4
k + 6µ2

kσ
2
k + 3σ4

k − (σ2
k + µ2

k)(σ2
k′ + µ2

k′)
]

A.2.3 Derivatives

Defining p(s) =
∑
k ρkNs(µk, σ2

k) we get for a parameter θj of the j.th compo-
nent

∂ ln p(s)

∂θj
=

ρjNs(µj , σ2
j )∑

k ρkNs(µk, σ2
k)

∂ ln(ρjNs(µj , σ2
j ))

∂θj
(565)

that is,

∂ ln p(s)

∂ρj
=

ρjNs(µj , σ2
j )∑

k ρkNs(µk, σ2
k)

1

ρj
(566)

∂ ln p(s)

∂µj
=

ρjNs(µj , σ2
j )∑

k ρkNs(µk, σ2
k)

(s− µj)
σ2
j

(567)

∂ ln p(s)

∂σj
=

ρjNs(µj , σ2
j )∑

k ρkNs(µk, σ2
k)

1

σj

[
(s− µj)2

σ2
j

− 1

]
(568)

Note that ρk must be constrained to be proper ratios. Defining the ratios by
ρj = erj/

∑
k e

rk , we obtain

∂ ln p(s)

∂rj
=
∑
l

∂ ln p(s)

∂ρl

∂ρl
∂rj

where
∂ρl
∂rj

= ρl(δlj − ρj) (569)

B Proofs and Details

B.1 Misc Proofs

B.1.1 Proof of Equation 524

The following proof is work of Florian Roemer. Note the the vectors and ma-
trices below can be complex and the notation XH is used for transpose and
conjugated, while XT is only transpose of the complex matrix.
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Define the row vector y = aHXB and the column vector z = XHc. Then

aTXBXT c = yz = zTyT

Note that y can be rewritten as vec(y)T which is the same as

vec(conj(y))H = vec(aT conj(X)conj(B))H

where ”conj” means complex conjugated. Applying the vec rule for linear forms
Eq 520, we get

y = (BH ⊗ aTvec(conj(X))H = vec(X)T (B⊗ conj(a))

where we have also used the rule for transpose of Kronecker products. For yT

this yields (BT ⊗ aH)vec(X). Similarly we can rewrite z which is the same as
vec(zT ) = vec(cT conj(X)). Applying again Eq 520, we get

z = (I⊗ cT )vec(conj(X))

where I is the identity matrix. For zT we obtain vec(X)(I ⊗ c). Finally, the
original expression is zTyT which now takes the form

vec(X)H(I⊗ c)(BT ⊗ aH)vec(X)

the final step is to apply the rule for products of Kronecker products and by
that combine the Kronecker products. This gives

vec(X)H(BT ⊗ caH)vec(X)

which is the desired result.

B.1.2 Proof of Equation 493

For any analytical function f(X) of a matrix argument X, it holds that

f(AB)A =

( ∞∑
n=0

cn(AB)n

)
A

=

∞∑
n=0

cn(AB)nA

=

∞∑
n=0

cnA(BA)n

= A

∞∑
n=0

cn(BA)n

= Af(BA)

B.1.3 Proof of Equation 91

Essentially we need to calculate
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∂(Xn)kl
∂Xij

=
∂

∂Xij

∑
u1,...,un−1

Xk,u1Xu1,u2 ...Xun−1,l

= δk,iδu1,jXu1,u2
...Xun−1,l

+Xk,u1
δu1,iδu2,j ...Xun−1,l

...

+Xk,u1
Xu1,u2

...δun−1,iδl,j

=

n−1∑
r=0

(Xr)ki(X
n−1−r)jl

=

n−1∑
r=0

(XrJijXn−1−r)kl

Using the properties of the single entry matrix found in Sec. 9.7.4, the result
follows easily.

B.1.4 Details on Eq. 571

∂ det(XHAX) = det(XHAX)Tr[(XHAX)−1∂(XHAX)]

= det(XHAX)Tr[(XHAX)−1(∂(XH)AX + XH∂(AX))]

= det(XHAX)
(
Tr[(XHAX)−1∂(XH)AX]

+Tr[(XHAX)−1XH∂(AX)]
)

= det(XHAX)
(
Tr[AX(XHAX)−1∂(XH)]

+Tr[(XHAX)−1XHA∂(X)]
)

First, the derivative is found with respect to the real part of X

∂ det(XHAX)

∂<X
= det(XHAX)

(Tr[AX(XHAX)−1∂(XH)]

∂<X

+
Tr[(XHAX)−1XHA∂(X)]

∂<X

)
= det(XHAX)

(
AX(XHAX)−1 + ((XHAX)−1XHA)T

)
Through the calculations, (100) and (240) were used. In addition, by use of
(241), the derivative is found with respect to the imaginary part of X

i
∂ det(XHAX)

∂=X
= i det(XHAX)

(Tr[AX(XHAX)−1∂(XH)]

∂=X

+
Tr[(XHAX)−1XHA∂(X)]

∂=X

)
= det(XHAX)

(
AX(XHAX)−1 − ((XHAX)−1XHA)T

)
Hence, derivative yields

∂ det(XHAX)

∂X
=

1

2

(∂ det(XHAX)

∂<X
− i∂ det(XHAX)

∂=X

)
= det(XHAX)

(
(XHAX)−1XHA

)T
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and the complex conjugate derivative yields

∂ det(XHAX)

∂X∗
=

1

2

(∂ det(XHAX)

∂<X
+ i

∂ det(XHAX)

∂=X

)
= det(XHAX)AX(XHAX)−1

Notice, for real X, A, the sum of (249) and (250) is reduced to (54).
Similar calculations yield

∂ det(XAXH)

∂X
=

1

2

(∂ det(XAXH)

∂<X
− i∂ det(XAXH)

∂=X

)
= det(XAXH)

(
AXH(XAXH)−1

)T
(570)

and

∂ det(XAXH)

∂X∗
=

1

2

(∂ det(XAXH)

∂<X
+ i

∂ det(XAXH)

∂=X

)
= det(XAXH)(XAXH)−1XA (571)
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