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1 Hidden Markov Models

A hidden Markov model (HMM) defines a joint probability distribution of a series of obser-
vations xt and hidden states zt for t = 1, . . . , T . We use x1:T and z1:T to refer to the full
sequence of observations and states respectively. In a HMM the prior on the state sequence
is assumed to satisfy the Markov property, which is to say that the probability of each state
zt depends only on the previous state zt−1. In the broadest definition of a HMM, the states
zt can be either discrete or continuous valued. Here we will discuss the more commonly
considered case where zt takes on a discrete values zt ∈ [K] where [K] := {1, . . . , K}. We
will use a matrix A ∈ RK×K and a vector π ∈ RK to define the transition probabilities and
the probability for the first state z1 respectively

p(zt = l | zt−1 = k,A) := Akl, (1)

p(z1 = k |π) := πk. (2)

The rows Ak of the transition matrix and entries of π sum to one∑
l

Akl = 1 ∀k ∈ [K],
∑
k

πk = 1. (3)

The prior probability for the state sequence z1:T can be expressed as a product over conditional
probabilities

p(z1:T |π,A) = p(z1|π)
T∏
t=2

p(zt|zt−1, A). (4)

The observations in an HMM are assumed to be independent conditioned on the sequence of
states, which is to say

p(x1:T |z1:T , η) =
T∏
t=1

p(xt|zt, η). (5)

Here η = η1:K is a set of for the density f(xt; ηk) associated with each state k ∈ [K],

p(xt | zt = k, η) := f(xt; ηk). (6)

The observations xt can be either discrete or continuous valued. We will here assume that
f(xt; ηk) is an exponential family distribution, which we will describe in more detail below.
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1.1 Expectation Maximization

We will use θ = {η, A, π} to refer to the parameters of the HMM. We would like to find the
set of parameters that maximizes the complete data likelihood,

θ∗ = argmax
θ

p(x1:T | θ) = argmax
θ

∑
z1:T∈[K]T

p(x1:T , z1:T | θ) (7)

Expectation maximization (EM) methods define a lower bound on the log likelihood a
variational distribution q(z1:T )

L(q(z1:T ), θ) := Eq(z1:T )

[
log

p(x1:T , z1:T | θ)
q(z1:T )

]
, (8)

=
∑

z1:T∈[K]T

q(z1:T ) log
p(x1:T , z1:T | θ)

q(z1:T )
≤ log p(x1:T | θ). (9)

When the variational distribution on the state sequence is equal to the posterior, that is

q∗(z1:T ) := p(z1:T |x1:T , θ), (10)

the the lower bound is tight (i.e. the lower bound is equal to the log likelihood)

L(q∗(z1:T ), θ) =
∑

z1:T∈[K]T

p(z1:T |x1:T , θ) log
p(x1:T , z1:T | θ)
p(z1:T |x1:T , θ)

, (11)

=
∑

z1:T∈[K]T

p(z1:T |x1:T , θ) log
p(z1:T |x1:T , θ)p(x1:T | θ)

p(z1:T |x1:T , θ)
, (12)

= log p(x1:T | θ)
∑

z1:T∈[K]T

p(z1:T |x1:T , θ) = log p(x1:T | θ). (13)

The EM algorithm iterates between two steps:

1. The expectation step: Optimize the lower bound with respect to q(z1:T )

qi(z1:T ) = argmax
q
L(q(z1:T ), θi−1) = p(z1:T |x1:T , θi−1). (14)

2. The maximization step: Optimize the lower bound with respect to θ

θi = argmax
θ
L(qi(z1:T ), θ). (15)

At a first glance it is not obvious whether EM for hidden Markov models is computationally
tractable. Calculation of the lower bound via direct summation over z1:T requires O(KT )
computation. Fortunately it turns out that we can exploit the Markov property of the state
sequence to perform this summation in O(K2T ) time.

To see how we can reduce the complexity of the estimation problem we will introduce
some new notation. We will define to zt,k := I[zt = k] to be the one-hot vector representation
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of the state at time t, which is sometimes also know as an indicator vector. Given this
representation we can re-express the probabilities for states and observations as

p(xt | zt, η) =
∏
k

f(xt; ηk)
zt,k , (16)

p(zt|zt−1, A) =
∏
k,l

A
zt−1,kzt,l
kl , (17)

p(z1|π) =
∏
k

π
z1,k
k . (18)

Using this representation, we can now express the lower bound as

L(q(z1:T ), θ) = Eq(z1:T ) [log p(x1:T |z1:T , θ) + log p(z1:T |θ)]− Eq(z1:T ) [log q(z1:T )] (19)

= Eq(z1:T )

[ T∑
t=1

K∑
k=1

zt,k log f(xt; ηk) +
∑
k

z1,k log πk (20)

+
T∑
t=2

K∑
k=1,l=1

zt−1,kzt,l logAkl

]
(21)

− Eq(z1:T )

[
log q(z1:T )

]
(22)

In this expression we see a number of terms that are a product of a term that depends
on z and a term that does not. If we pull all terms that are independent of z out of the
expectation, then we obtain

L(q(z1:T ), θ) =
T∑
t=1

K∑
k=1

Eq(z1:T )[zt,k] log f(xt; ηk) +
∑
k

Eq(z1:T )[z1,k] log πk (23)

+
T∑
t=2

K∑
k=1,l=1

Eq(z1:T )[zt−1,kzt,l] logAkl − Eq(z1:T )

[
log q(z1:T )

]
(24)

We can now derive the maximization step of the EM algorithm by differentiating the lower
bound and solving for zero. For example, for the parameters ηk we need to solve the identity

∇ηkL(q(z1:T ), θ) =
T∑
t=1

Eq(z1:T )[zt,k]
∇ηkf(xt; ηk)

f(xt; ηk)
= 0 (25)

The first thing to observe here is that the only dependence on z in this identity is through
the terms Eq(z1:T )[zt,k]. Similarly, the gradients of L with respect to π and A will depend on
Eq(z1:T )[z1,k] and Eq(z1:T )[zt−1,kzt,l] respectively. These terms do not depend directly on the
parameters θ, so we can treat them as constants during the maximization step. We will from
now on use the following substitutions

γtk := Eq(z1:T )[zt,k], (26)

ξtkl := Eq(z1:T )[zt,kzt+1,l]. (27)
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If we can come up with a way of calculating γtk and ξtkl in a manner that avoids direct
summation over all sequences z1:T , then we can perform EM on hidden Markov models. It
turns out that such a procedure does in fact exists and we will describe it in the section on
the forward-backward algorithm below.

2 Maximization of Exponential Family distributions

Before we turn to the computation of γ and ξ, let us look at how to perform the maximization
step once γ and ξ are known. We will start with maximization with respect to the parameters
ηk. In general, the objective in equation 25 could be minimized using any number of gradient-
based minimization methods (e.g. LBFGS). However, we can do better. We can obtain a
closed-form solution when the observation density f(xt; ηk) belongs to a so called exponential
family. Exponential family distributions can be either discrete or continuous valued. In both
cases, the mass or density function must be expressible in the following form

f(x; η) = h(x) exp[η>T (x)− A(η)]. (28)

In this expression, h(x) is referred to as the base measure, η is a vector of parameters, which
are often referred to as the natural parameters, T (x) is a vector of sufficient statistics and
A(η) is known as a log normalizer. It turns out that many distributions that we use most
commonly can be cast into this form, including the univariate and multivariate normal, the
discrete and multinomial, the Poisson, the gamma, and the Dirichlet.

As an example, the univariate normal distribution Normal(x;µ, σ) can be cast in expo-
nential family form by defining

h(x) =
1√
2π
, (29)

η =

(
µ

σ2
,− 1

2σ2

)
, (30)

T (x) = (x, x2), (31)

A(η) = − η21
4η2

+
1

2
log(−2η2) = µ2/2σ2 + log σ. (32)

Similarly, for a discrete distribution Discrete(x;µ) with support d ∈ {1, . . . , D} we can define

h(x) = 1, (33)

ηd = log µd, (34)

Td(x) = I[x = d], (35)

A(η) = log
D∑
d=1

exp ηd = log
D∑
d=1

µd. (36)

Exponential family distributions have a number of properties that turn out to be very
beneficial when performing expectation maximization. Because of its exponential form, the
gradient gradient of an exponential family density takes on a convenient form

∇ηf(x; η) = [T (x)−∇ηA(η)]f(x; η). (37)

4



If we subsitute this form back into equation 25 then we obtain

∇ηkA(ηk) =

∑T
t=1 γtkT (xt)∑T

t=1 γtk
. (38)

The term on the right has a clear interpretation: it is the empirical expectation of the
sufficient statistics T (x) over the data points associated with state k. The term on the left
has a clear interpretation as well. To see this, we need to derive an identity that holds for all
exponential family distributions. We start by observing that, since f(x; η) is normalized, the
following must hold for all η

1 =

∫
dxf(x; η). (39)

If we now take the gradient with respect to η on both sides of the equation we obtain

0 =

∫
dx ∇ηf(x; η), (40)

=

∫
dx f(x; η)[T (x)−∇ηA(η)], (41)

= Ef(x;η)[T (x)]−∇ηA(η). (42)

In other words the gradient ∇ηA(η) is equal to the expected value of the sufficient statistics
Ef(x;η)[T (x)]. If we substitute this relationship back into equation 38 then we obtain the
condition

Ef(x;ηk)[T (x)] =

∑T
t=1 γtkT (xt)∑T

t=1 γtk
. (43)

The interpretation of this condition is that we can perform the maximization step in the EM
algorithm by finding the value ηk for which the expected value of the sufficient statistics T (x)
is equal to the empirical expectation for the observations associated with state k. This type
of relationship is an example of a so called moment-matching condition.

As an example, if the observation distribution f(x; ηk) is a univariate normal, then the
sufficient statistics are T (x) = (x, x2). The maximization step updates then become

Ef(x;ηk)[x] = µk =
∑
t

γtk xt/
∑
t

γtk, (44)

Ef(x;ηk)[x
2] = σ2

k + µ2
k =

∑
t

γtk x
2
t/
∑
t

γtk. (45)

Suppose the observation distribution is discrete, with D possible values. If we use xd = I[x =
d] to refer to the entries of the one-hot representation, then Td(x) = I[x = d] = xd and the
maximization-step updates become

Ef(x;ηk)[xd] = πk,d =
∑
t

γtkxt,d/
∑
t

γtk. (46)
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Of course, now that we know know how to do the maximization step for any exponential
family, we can also make use of these relationships when in deriving the updates for π and
Ak. For these variables we now obtain the particularly simple relations

πk = γ1k, (47)

Akl =
T−1∑
t=1

ξtkl/
T−1∑
t=1

K∑
l=1

ξtkl. (48)

3 The Forward-backward Algorithm

During the expectation step, we update q(z1:T ) to the posterior

q(z1:T ) = p(z1:T |x1:T , θ). (49)

For small values of T we could in principle calculate this posterior via direct summation

q(z1:T ) =
p(x1:T , z1:T |θ)∑

z1:T∈[K]T p(x1:T , z1:T |θ)
. (50)

However, this quickly becomes infeasible since there are KT distinct sequences for an HMM
with K states. Luckily it turns out that the maximization step can be performed by calculating
two sets of expected values

γtk := Ep(z1:T |x1:T ,θ)[zt,k], (51)

ξtkl := Ep(z1:T |x1:T ,θ)[zt,kzt+1,l]. (52)

As we will see below these two quantities can be calculated in O(K2T ) time using a dynamic
programming method known as the forward-backward algorithm.

3.1 Forward and Backward Recursion

We will begin by expressing γtk as a product of two terms. The first is the joint probability
at,k := p(x1:t, zt = k | θ) of all observations up to time t and the current state zt. The second
is the probability of all future observations βt,k := p(xt+1:T | zt = k, θ) conditioned on zt = k.
We can express γ in terms of α and β as

γt,k =
p(x1:T , zt = k | θ)

p(x1:T | θ)
=
p(xt+1:T |zt, θ)p(x1:t, zt = k | θ)

p(x1:T | θ)
=
αt,kβt,k
p(x1:T )

. (53)

We can similarly express ξt,kl in terms of α and β as

ξt,kl = p(zt = k, zt+1 = l|x1:T , θ) =
p(x1:T , zt+1 = l, zt = k|θ)

p(x1:T |θ)
(54)

=
p(xt+2:T |zt + 1= l, θ)p(xt+1|zt+1 = l, η)p(zt+1 = l|zt+1 =k,A)p(x1:t, zt=k|θ)

p(x1:T |θ)
(55)

=
βt+1,lf(xt; ηl)Aklαtk

p(x1:T | θ)
(56)
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We will now derive a recursion relation for both α and β. For the first time point, we can
calculate α1,k directly

α1,k = p(x1, z1 = k) = f(x1; ηk)πk (57)

For all t > 1 we can define a recursion relation that expresses αt,l in terms of αt−1,k

αt,l := p(x1:t, zt = l|θ), (58)

=
K∑
k=1

p(xt|zt = l, η)p(zt = l | zt−1 = k,A)p(x1:t−1, zt−1 = k|θ). (59)

=
K∑
k=1

f(xt; ηl)Aklαk,t−1. (60)

For βt,k we begin by defining the value at the final time point t = T . At this point there are
no future observations, so we can set the probability of future observations to 1,

βT,k = p(∅|zT = k, θ) = 1. (61)

For all preceding t < T we can express βt,k in terms of βt+1,l

βt,k := p(xt+1:T |zt = k, θ), (62)

=
K∑
l=1

p(xt+2:T |zt+1 = l, θ)p(xt+1|zt+1 = l, η)p(zt+1 = l | zt=k,A), (63)

=
K∑
l=1

βt+1,l f(xt+1; ηl) Akl. (64)

In short, we can calculate γ by combining a forward recursion for α with a backward recursion
for β. Note that each step in both recursion requires O(K2), since we the calculation of each
of the K entries requires a sum over K terms. This means the total computation required by
the forward-backward algorithm is O(K2T ).

3.2 Normalized computation

In practice we use a slightly different recursion relation when implementing the forward-
backward algorithm. If we were to calculate α and β through the naive recursion relations
defined above, then we could calculate γ by simple normalization

γt,k =
αt,kβt,k
p(x1:T | θ)

=
αt,kβt,k∑
k′ αt,kβt,k

. (65)

At each step, the normalization term should then in principle be equal to the marginal
likelihood of the data

p(x1:T | θ) =
∑
k′

αt,kβt,k. (66)
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In practice p(x1:T | θ) will be either a small (or sometimes a very large) number for large
values of T , which means naive computation of α and β can lead to numerical underflow (or
overflow). A simple solution to this problem is to normalize αtk during each step, by defining

αt,l =
K∑
k=1

f(xt; ηl)Aklα
′
k,t−1. (67)

ct =
∑
k

αtk, (68)

α′tl = αtl/ct. (69)

The normalized values of α′t,k now represent the partial posterior p(zt = k|x1:t, θ) instead of
the partial joint p(x1:t, zt = k|θ), which means that the normalized values αt,k differ from the
original values by a factor

αtk
α′tk

=
t∏
i=1

ci =
p(x1:t, zt|θ)
p(zt|x1:t, θ)

= p(x1:t|θ). (70)

Since this relationship must hold for any t, this in particular implies that we can recover the
marginal likelihood from the normalizing constants

p(x1:T |θ) =
T∏
t=1

ct. (71)

We can also normalize the values βt,k on the backward pass. A particularly good choice is

β′tk =
1

ct+1

K∑
l=1

β′t+1,lf(xt+1; ηl)Akl. (72)

This choice of normalization implies that

βtk
β′tk

=
p(x1:T |θ)
p(x1:t|θ)

=
T∏

i=t+1

ci,
αtkβtk
α′tkβ

′
tk

=
T∏
i=1

ci = p(x1:T |θ), (73)

which in turn ensures that we will no longer have to perform any normalization upon
completion of the forward and backward recursion

γt,k =
αtkβtk
p(x1:T |θ)

= α′tkβ
′
tk. (74)

Similarly, the expression for ξt,kl in terms of α′ and β′ becomes

ξt,kl =
1

ct+1

β′t+1,lf(xt+1; ηl)Aklα
′
tk. (75)
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