(CS229 Lecture notes

Andrew Ng

The k-means clustering algorithm

In the clustering problem, we are given a training set {x(1)7 e ,x(m)}, and
want to group the data into a few cohesive “clusters.” Here, 2z € R"
as usual; but no labels y are given. So, this is an unsupervised learning
problem.

The k-means clustering algorithm is as follows:

1. Initialize cluster centroids 4, pa, . . ., ux € R™ randomly.
2. Repeat until convergence: {

For every 17, set
e = argmin [|2¢) — 2.
J

For each 7, set ' '
e S D = j}a®
X) =}

}

In the algorithm above, k (a parameter of the algorithm) is the number
of clusters we want to find; and the cluster centroids j1; represent our current
guesses for the positions of the centers of the clusters. To initialize the cluster
centroids (in step 1 of the algorithm above), we could choose k training
examples randomly, and set the cluster centroids to be equal to the values of
these k examples. (Other initialization methods are also possible.)

The inner-loop of the algorithm repeatedly carries out two steps: (i)
“Assigning” each training example () to the closest cluster centroid fj, and
(i) Moving each cluster centroid p; to the mean of the points assigned to it.
Figure 1 shows an illustration of running k-means.

[
&
o X X -+ '-:0 .
L]
.
ok
?(, .. X ." L X
] ® -
(]
8 . .‘Q
(a) (b) (c)
o :.. . :.. . .'.,
L g L g
e .*:' . o .*:' . e -)i:o .
] . L]
L] [.
&9 . P . P B
® g . ® g L] ¢ g .
c.: ..: -..;<
° °]
. Y . g @ 3

Figure 1: K-means algorithm. Training examples are shown as dots, and
cluster centroids are shown as crosses. (a) Original dataset. (b) Random ini-
tial cluster centroids (in this instance, not chosen to be equal to two training
examples). (c-f) Illustration of running two iterations of k-means. In each
iteration, we assign each training example to the closest cluster centroid
(shown by “painting” the training examples the same color as the cluster
centroid to which is assigned); then we move each cluster centroid to the
mean of the points assigned to it. (Best viewed in color.) Images courtesy
Michael Jordan.

Is the k-means algorithm guaranteed to converge? Yes it is, in a certain
sense. In particular, let us define the distortion function to be:

J(c,) = Z ||9U(i) — oo |[°
i=1

Thus, J measures the sum of squared distances between each training exam-
ple 2 and the cluster centroid s to which it has been assigned. It can
be shown that k-means is exactly coordinate descent on J. Specifically, the
inner-loop of k-means repeatedly minimizes J with respect to ¢ while holding
w fixed, and then minimizes J with respect to p while holding ¢ fixed. Thus,
J must monotonically decrease, and the value of J must converge. (Usu-
ally, this implies that ¢ and p will converge too. In theory, it is possible for

k-means to oscillate between a few different clusterings—i.e., a few different
values for ¢ and/or p—that have exactly the same value of .J, but this almost
never happens in practice.)

The distortion function J is a non-convex function, and so coordinate
descent on J is not guaranteed to converge to the global minimum. In other
words, k-means can be susceptible to local optima. Very often k-means will
work fine and come up with very good clusterings despite this. But if you
are worried about getting stuck in bad local minima, one common thing to
do is run k-means many times (using different random initial values for the
cluster centroids y;). Then, out of all the different clusterings found, pick
the one that gives the lowest distortion J(c, p).

