
CS229 Lecture notes

Andrew Ng

Part VI

Learning Theory

1 Bias/variance tradeoff

When talking about linear regression, we discussed the problem of whether
to fit a “simple” model such as the linear “y = θ0+θ1x,” or a more “complex”
model such as the polynomial “y = θ0+θ1x+ · · · θ5x5.” We saw the following
example:

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

Fitting a 5th order polynomial to the data (rightmost figure) did not
result in a good model. Specifically, even though the 5th order polynomial
did a very good job predicting y (say, prices of houses) from x (say, living
area) for the examples in the training set, we do not expect the model shown
to be a good one for predicting the prices of houses not in the training set. In
other words, what’s has been learned from the training set does not generalize
well to other houses. The generalization error (which will be made formal
shortly) of a hypothesis is its expected error on examples not necessarily in
the training set.

Both the models in the leftmost and the rightmost figures above have
large generalization error. However, the problems that the two models suffer
from are very different. If the relationship between y and x is not linear,

1



2

then even if we were fitting a linear model to a very large amount of training
data, the linear model would still fail to accurately capture the structure
in the data. Informally, we define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say, infinitely) large
training set. Thus, for the problem above, the linear model suffers from large
bias, and may underfit (i.e., fail to capture structure exhibited by) the data.

Apart from bias, there’s a second component to the generalization error,
consisting of the variance of a model fitting procedure. Specifically, when
fitting a 5th order polynomial as in the rightmost figure, there is a large risk
that we’re fitting patterns in the data that happened to be present in our
small, finite training set, but that do not reflect the wider pattern of the
relationship between x and y. This could be, say, because in the training set
we just happened by chance to get a slightly more-expensive-than-average
house here, and a slightly less-expensive-than-average house there, and so
on. By fitting these “spurious” patterns in the training set, we might again
obtain a model with large generalization error. In this case, we say the model
has large variance.1

Often, there is a tradeoff between bias and variance. If our model is too
“simple” and has very few parameters, then it may have large bias (but small
variance); if it is too “complex” and has very many parameters, then it may
suffer from large variance (but have smaller bias). In the example above,
fitting a quadratic function does better than either of the extremes of a first
or a fifth order polynomial.

2 Preliminaries

In this set of notes, we begin our foray into learning theory. Apart from
being interesting and enlightening in its own right, this discussion will also
help us hone our intuitions and derive rules of thumb about how to best
apply learning algorithms in different settings. We will also seek to answer
a few questions: First, can we make formal the bias/variance tradeoff that
was just discussed? The will also eventually lead us to talk about model
selection methods, which can, for instance, automatically decide what order
polynomial to fit to a training set. Second, in machine learning it’s really

1In these notes, we will not try to formalize the definitions of bias and variance beyond
this discussion. While bias and variance are straightforward to define formally for, e.g.,
linear regression, there have been several proposals for the definitions of bias and variance
for classification, and there is as yet no agreement on what is the “right” and/or the most
useful formalism.



3

generalization error that we care about, but most learning algorithms fit their
models to the training set. Why should doing well on the training set tell us
anything about generalization error? Specifically, can we relate error on the
training set to generalization error? Third and finally, are there conditions
under which we can actually prove that learning algorithms will work well?

We start with two simple but very useful lemmas.

Lemma. (The union bound). Let A1, A2, . . . , Ak be k different events (that
may not be independent). Then

P (A1 ∪ · · · ∪Ak) ≤ P (A1) + . . .+ P (Ak).

In probability theory, the union bound is usually stated as an axiom
(and thus we won’t try to prove it), but it also makes intuitive sense: The
probability of any one of k events happening is at most the sums of the
probabilities of the k different events.

Lemma. (Hoeffding inequality) Let Z1, . . . , Zm be m independent and iden-
tically distributed (iid) random variables drawn from a Bernoulli(φ) distri-
bution. I.e., P (Zi = 1) = φ, and P (Zi = 0) = 1− φ. Let φ̂ = (1/m)

∑m
i=1 Zi

be the mean of these random variables, and let any γ > 0 be fixed. Then

P (|φ− φ̂| > γ) ≤ 2 exp(−2γ2m)

This lemma (which in learning theory is also called theChernoff bound)
says that if we take φ̂—the average of m Bernoulli(φ) random variables—to
be our estimate of φ, then the probability of our being far from the true value
is small, so long as m is large. Another way of saying this is that if you have
a biased coin whose chance of landing on heads is φ, then if you toss it m
times and calculate the fraction of times that it came up heads, that will be
a good estimate of φ with high probability (if m is large).

Using just these two lemmas, we will be able to prove some of the deepest
and most important results in learning theory.

To simplify our exposition, let’s restrict our attention to binary classifica-
tion in which the labels are y ∈ {0, 1}. Everything we’ll say here generalizes
to other, including regression and multi-class classification, problems.

We assume we are given a training set S = {(x(i), y(i)); i = 1, . . . , m}
of size m, where the training examples (x(i), y(i)) are drawn iid from some
probability distribution D. For a hypothesis h, we define the training error
(also called the empirical risk or empirical error in learning theory) to
be

ε̂(h) =
1

m

m
∑

i=1

1{h(x(i)) 6= y(i)}.



4

This is just the fraction of training examples that h misclassifies. When we
want to make explicit the dependence of ε̂(h) on the training set S, we may
also write this a ε̂S(h). We also define the generalization error to be

ε(h) = P(x,y)∼D(h(x) 6= y).

I.e. this is the probability that, if we now draw a new example (x, y) from
the distribution D, h will misclassify it.

Note that we have assumed that the training data was drawn from the
same distribution D with which we’re going to evaluate our hypotheses (in
the definition of generalization error). This is sometimes also referred to as
one of the PAC assumptions.2

Consider the setting of linear classification, and let hθ(x) = 1{θTx ≥ 0}.
What’s a reasonable way of fitting the parameters θ? One approach is to try
to minimize the training error, and pick

θ̂ = argmin
θ

ε̂(hθ).

We call this process empirical risk minimization (ERM), and the resulting
hypothesis output by the learning algorithm is ĥ = hθ̂. We think of ERM
as the most “basic” learning algorithm, and it will be this algorithm that we
focus on in these notes. (Algorithms such as logistic regression can also be
viewed as approximations to empirical risk minimization.)

In our study of learning theory, it will be useful to abstract away from
the specific parameterization of hypotheses and from issues such as whether
we’re using a linear classifier. We define the hypothesis class H used by a
learning algorithm to be the set of all classifiers considered by it. For linear
classification, H = {hθ : hθ(x) = 1{θTx ≥ 0}, θ ∈ R

n+1} is thus the set of
all classifiers over X (the domain of the inputs) where the decision boundary
is linear. More broadly, if we were studying, say, neural networks, then we
could let H be the set of all classifiers representable by some neural network
architecture.

Empirical risk minimization can now be thought of as a minimization over
the class of functionsH, in which the learning algorithm picks the hypothesis:

ĥ = argmin
h∈H

ε̂(h)

2PAC stands for “probably approximately correct,” which is a framework and set of
assumptions under which numerous results on learning theory were proved. Of these, the
assumption of training and testing on the same distribution, and the assumption of the
independently drawn training examples, were the most important.



5

3 The case of finite H
Let’s start by considering a learning problem in which we have a finite hy-
pothesis class H = {h1, . . . , hk} consisting of k hypotheses. Thus, H is just a
set of k functions mapping from X to {0, 1}, and empirical risk minimization
selects ĥ to be whichever of these k functions has the smallest training error.

We would like to give guarantees on the generalization error of ĥ. Our
strategy for doing so will be in two parts: First, we will show that ε̂(h) is a
reliable estimate of ε(h) for all h. Second, we will show that this implies an
upper-bound on the generalization error of ĥ.

Take any one, fixed, hi ∈ H. Consider a Bernoulli random variable Z
whose distribution is defined as follows. We’re going to sample (x, y) ∼ D.
Then, we set Z = 1{hi(x) 6= y}. I.e., we’re going to draw one example,
and let Z indicate whether hi misclassifies it. Similarly, we also define Zj =
1{hi(x

(j)) 6= y(j)}. Since our training set was drawn iid from D, Z and the
Zj’s have the same distribution.

We see that the misclassification probability on a randomly drawn example—
that is, ε(h)—is exactly the expected value of Z (and Zj). Moreover, the
training error can be written

ε̂(hi) =
1

m

m
∑

j=1

Zj .

Thus, ε̂(hi) is exactly the mean of the m random variables Zj that are drawn
iid from a Bernoulli distribution with mean ε(hi). Hence, we can apply the
Hoeffding inequality, and obtain

P (|ε(hi)− ε̂(hi)| > γ) ≤ 2 exp(−2γ2m).

This shows that, for our particular hi, training error will be close to
generalization error with high probability, assuming m is large. But we
don’t just want to guarantee that ε(hi) will be close to ε̂(hi) (with high
probability) for just only one particular hi. We want to prove that this will
be true for simultaneously for all h ∈ H. To do so, let Ai denote the event
that |ε(hi) − ε̂(hi)| > γ. We’ve already show that, for any particular Ai, it
holds true that P (Ai) ≤ 2 exp(−2γ2m). Thus, using the union bound, we



6

have that

P (∃h ∈ H.|ε(hi)− ε̂(hi)| > γ) = P (A1 ∪ · · · ∪Ak)

≤
k
∑

i=1

P (Ai)

≤
k
∑

i=1

2 exp(−2γ2m)

= 2k exp(−2γ2m)

If we subtract both sides from 1, we find that

P (¬∃h ∈ H.|ε(hi)− ε̂(hi)| > γ) = P (∀h ∈ H.|ε(hi)− ε̂(hi)| ≤ γ)

≥ 1− 2k exp(−2γ2m)

(The “¬” symbol means “not.”) So, with probability at least 1−2k exp(−2γ2m),
we have that ε(h) will be within γ of ε̂(h) for all h ∈ H. This is called a uni-

form convergence result, because this is a bound that holds simultaneously
for all (as opposed to just one) h ∈ H.

In the discussion above, what we did was, for particular values of m and
γ, give a bound on the probability that for some h ∈ H, |ε(h)− ε̂(h)| > γ.
There are three quantities of interest here: m, γ, and the probability of error;
we can bound either one in terms of the other two.

For instance, we can ask the following question: Given γ and some δ > 0,
how large must m be before we can guarantee that with probability at least
1 − δ, training error will be within γ of generalization error? By setting
δ = 2k exp(−2γ2m) and solving for m, [you should convince yourself this is
the right thing to do!], we find that if

m ≥ 1

2γ2
log

2k

δ
,

then with probability at least 1 − δ, we have that |ε(h) − ε̂(h)| ≤ γ for all
h ∈ H. (Equivalently, this shows that the probability that |ε(h)− ε̂(h)| > γ
for some h ∈ H is at most δ.) This bound tells us how many training
examples we need in order make a guarantee. The training set size m that
a certain method or algorithm requires in order to achieve a certain level of
performance is also called the algorithm’s sample complexity.

The key property of the bound above is that the number of training
examples needed to make this guarantee is only logarithmic in k, the number
of hypotheses in H. This will be important later.



7

Similarly, we can also hold m and δ fixed and solve for γ in the previous
equation, and show [again, convince yourself that this is right!] that with
probability 1− δ, we have that for all h ∈ H,

|ε̂(h)− ε(h)| ≤
√

1

2m
log

2k

δ
.

Now, let’s assume that uniform convergence holds, i.e., that |ε(h)−ε̂(h)| ≤
γ for all h ∈ H. What can we prove about the generalization of our learning
algorithm that picked ĥ = argminh∈H ε̂(h)?

Define h∗ = argminh∈H ε(h) to be the best possible hypothesis inH. Note
that h∗ is the best that we could possibly do given that we are using H, so
it makes sense to compare our performance to that of h∗. We have:

ε(ĥ) ≤ ε̂(ĥ) + γ

≤ ε̂(h∗) + γ

≤ ε(h∗) + 2γ

The first line used the fact that |ε(ĥ)−ε̂(ĥ)| ≤ γ (by our uniform convergence
assumption). The second used the fact that ĥ was chosen to minimize ε̂(h),
and hence ε̂(ĥ) ≤ ε̂(h) for all h, and in particular ε̂(ĥ) ≤ ε̂(h∗). The third
line used the uniform convergence assumption again, to show that ε̂(h∗) ≤
ε(h∗) + γ. So, what we’ve shown is the following: If uniform convergence
occurs, then the generalization error of ĥ is at most 2γ worse than the best
possible hypothesis in H!

Let’s put all this together into a theorem.

Theorem. Let |H| = k, and let any m, δ be fixed. Then with probability at
least 1− δ, we have that

ε(ĥ) ≤
(

min
h∈H

ε(h)

)

+ 2

√

1

2m
log

2k

δ
.

This is proved by letting γ equal the
√· term, using our previous argu-

ment that uniform convergence occurs with probability at least 1 − δ, and
then noting that uniform convergence implies ε(h) is at most 2γ higher than
ε(h∗) = minh∈H ε(h) (as we showed previously).

This also quantifies what we were saying previously saying about the
bias/variance tradeoff in model selection. Specifically, suppose we have some
hypothesis class H, and are considering switching to some much larger hy-
pothesis class H′ ⊇ H. If we switch to H′, then the first term minh ε(h)



8

can only decrease (since we’d then be taking a min over a larger set of func-
tions). Hence, by learning using a larger hypothesis class, our “bias” can
only decrease. However, if k increases, then the second 2

√· term would also
increase. This increase corresponds to our “variance” increasing when we use
a larger hypothesis class.

By holding γ and δ fixed and solving for m like we did before, we can
also obtain the following sample complexity bound:

Corollary. Let |H| = k, and let any δ, γ be fixed. Then for ε(ĥ) ≤
minh∈H ε(h) + 2γ to hold with probability at least 1− δ, it suffices that

m ≥ 1

2γ2
log

2k

δ

= O

(

1

γ2
log

k

δ

)

,

4 The case of infinite H
We have proved some useful theorems for the case of finite hypothesis classes.
But many hypothesis classes, including any parameterized by real numbers
(as in linear classification) actually contain an infinite number of functions.
Can we prove similar results for this setting?

Let’s start by going through something that is not the “right” argument.
Better and more general arguments exist, but this will be useful for honing
our intuitions about the domain.

Suppose we have an H that is parameterized by d real numbers. Since we
are using a computer to represent real numbers, and IEEE double-precision
floating point (double’s in C) uses 64 bits to represent a floating point num-
ber, this means that our learning algorithm, assuming we’re using double-
precision floating point, is parameterized by 64d bits. Thus, our hypothesis
class really consists of at most k = 264d different hypotheses. From the Corol-
lary at the end of the previous section, we therefore find that, to guarantee
ε(ĥ) ≤ ε(h∗) + 2γ, with to hold with probability at least 1 − δ, it suffices

that m ≥ O
(

1
γ2 log

264d

δ

)

= O
(

d
γ2 log

1
δ

)

= Oγ,δ(d). (The γ, δ subscripts are

to indicate that the last big-O is hiding constants that may depend on γ and
δ.) Thus, the number of training examples needed is at most linear in the
parameters of the model.

The fact that we relied on 64-bit floating point makes this argument not
entirely satisfying, but the conclusion is nonetheless roughly correct: If what
we’re going to do is try to minimize training error, then in order to learn



9

“well” using a hypothesis class that has d parameters, generally we’re going
to need on the order of a linear number of training examples in d.

(At this point, it’s worth noting that these results were proved for an al-
gorithm that uses empirical risk minimization. Thus, while the linear depen-
dence of sample complexity on d does generally hold for most discriminative
learning algorithms that try to minimize training error or some approxima-
tion to training error, these conclusions do not always apply as readily to
discriminative learning algorithms. Giving good theoretical guarantees on
many non-ERM learning algorithms is still an area of active research.)

The other part of our previous argument that’s slightly unsatisfying is
that it relies on the parameterization of H. Intuitively, this doesn’t seem like
it should matter: We had written the class of linear classifiers as hθ(x) =
1{θ0 + θ1x1 + · · · θnxn ≥ 0}, with n + 1 parameters θ0, . . . , θn. But it could
also be written hu,v(x) = 1{(u2

0 − v20) + (u2
1 − v21)x1 + · · · (u2

n − v2n)xn ≥ 0}
with 2n + 2 parameters ui, vi. Yet, both of these are just defining the same
H: The set of linear classifiers in n dimensions.

To derive a more satisfying argument, let’s define a few more things.
Given a set S = {x(i), . . . , x(d)} (no relation to the training set) of points

x(i) ∈ X , we say that H shatters S if H can realize any labeling on S.
I.e., if for any set of labels {y(1), . . . , y(d)}, there exists some h ∈ H so that
h(x(i)) = y(i) for all i = 1, . . . d.

Given a hypothesis class H, we then define its Vapnik-Chervonenkis
dimension, written VC(H), to be the size of the largest set that is shattered
by H. (If H can shatter arbitrarily large sets, then VC(H) = ∞.)

For instance, consider the following set of three points:

��

��

��

x

x1

2

Can the set H of linear classifiers in two dimensions (h(x) = 1{θ0+θ1x1+
θ2x2 ≥ 0}) can shatter the set above? The answer is yes. Specifically, we



10

see that, for any of the eight possible labelings of these points, we can find a
linear classifier that obtains “zero training error” on them:

x

x1

2 x

x1

2 x

x1

2 x

x1

2

x

x1

2 x

x1

2 x

x1

2 x

x1

2

Moreover, it is possible to show that there is no set of 4 points that this
hypothesis class can shatter. Thus, the largest set that H can shatter is of
size 3, and hence VC(H) = 3.

Note that the VC dimension of H here is 3 even though there may be
sets of size 3 that it cannot shatter. For instance, if we had a set of three
points lying in a straight line (left figure), then there is no way to find a linear
separator for the labeling of the three points shown below (right figure):

x

x1

2

��

��

��

x

x1

2

In order words, under the definition of the VC dimension, in order to
prove that VC(H) is at least d, we need to show only that there’s at least
one set of size d that H can shatter.

The following theorem, due to Vapnik, can then be shown. (This is, many
would argue, the most important theorem in all of learning theory.)



11

Theorem. Let H be given, and let d = VC(H). Then with probability at
least 1− δ, we have that for all h ∈ H,

|ε(h)− ε̂(h)| ≤ O

(

√

d

m
log

m

d
+

1

m
log

1

δ

)

.

Thus, with probability at least 1− δ, we also have that:

ε(ĥ) ≤ ε(h∗) +O

(

√

d

m
log

m

d
+

1

m
log

1

δ

)

.

In other words, if a hypothesis class has finite VC dimension, then uniform
convergence occurs as m becomes large. As before, this allows us to give a
bound on ε(h) in terms of ε(h∗). We also have the following corollary:

Corollary. For |ε(h) − ε̂(h)| ≤ γ to hold for all h ∈ H (and hence ε(ĥ) ≤
ε(h∗) + 2γ) with probability at least 1− δ, it suffices that m = Oγ,δ(d).

In other words, the number of training examples needed to learn “well”
using H is linear in the VC dimension of H. It turns out that, for “most”
hypothesis classes, the VC dimension (assuming a “reasonable” parameter-
ization) is also roughly linear in the number of parameters. Putting these
together, we conclude that (for an algorithm that tries to minimize training
error) the number of training examples needed is usually roughly linear in
the number of parameters of H.


