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Information overload

As more information becomes
available, it becomes more
difficult to find and discover
what we need.

We need new tools to help us
organize, search, and
understand these vast
amounts of information.



Topic modeling

Topic modeling provides methods for automatically organizing,
understanding, searching, and summarizing large electronic archives.

1 Discover the hidden themes that pervade the collection.
2 Annotate the documents according to those themes.
3 Use annotations to organize, summarize, and search the texts.



Discover topics from a corpus

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Model the evolution of topics over time
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LASER
FORCE

NERVE

OXYGEN

NEURON

"Theoretical Physics" "Neuroscience"



Model connections between topics
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research
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research
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molecule
molecules

transition state
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computer
problem
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Find hierarchies of topics
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regular
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search
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machine
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network
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protocol
network
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link

database
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quantum
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nc
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tasks

learning
knowledge
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circuit

An optimal algorithm for intersecting line segments in the plane
Recontamination does not help to search a graph
A new approach to the maximum-flow problem
The time complexity of maximum matching by simulated annealing

Quantum lower bounds by polynomials
On the power of bounded concurrency I: finite automata
Dense quantum coding and quantum finite automata
Classical physics and the Church--Turing Thesis

Nearly optimal algorithms and bounds for multilayer channel routing
How bad is selfish routing?
Authoritative sources in a hyperlinked environment
Balanced sequences and optimal routing

Single-class bounds of multi-class queuing networks
The maximum concurrent flow problem
Contention in shared memory algorithms
Linear probing with a nonuniform address distribution

Magic Functions: In Memoriam: Bernard M. Dwork 1923--1998
A mechanical proof of the Church-Rosser theorem
Timed regular expressions
On the power and limitations of strictness analysis

Module algebra
On XML integrity constraints in the presence of DTDs
Closure properties of constraints
Dynamic functional dependencies and database aging



Annotate images
Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SKY WATER TREE

MOUNTAIN PEOPLE

Automatic image annotation

birds nest leaves branch tree
predicted caption: predicted caption:

people market pattern textile displaysky water tree mountain people
predicted caption:

fish water ocean tree coral sky water buildings people mountain
predicted caption: predicted caption: predicted caption:

scotland water flowers hills tree

Probabilistic modelsof text and images – p.5/53

SCOTLAND WATER
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Automatic image annotation

birds nest leaves branch tree
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Probabilistic modelsof text and images – p.5/53
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Automatic image annotation
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Discover influential articles
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
[296 citations]

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of 
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
[3 citations]

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]



Predict links between articles

16 J. CHANG AND D. BLEI

Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo

R
T

M
(ψ

e
)

Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
D

A
+

R
e
g
r
e
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Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations

R
T

M
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A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly

L
D
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+
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Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-



Characterize political decisions

dod,defense,defense and appropriation,military,subtitle
veteran,veterans,bills,care,injury

people,woman,american,nation,school
producer,eligible,crop,farm,subparagraph

coin,inspector,designee,automobile,lebanon
bills,iran,official,company,sudan

human,vietnam,united nations,call,people
drug,pediatric,product,device,medical

child,fire,attorney,internet,bills
surveillance,director,court,electronic,flood

energy,bills,price,commodity,market
land,site,bills,interior,river

child,center,poison,victim,abuse
coast guard,vessel,space,administrator,requires
science,director,technology,mathematics,bills

computer,alien,bills,user,collection
head,start,child,technology,award

loss,crop,producer,agriculture,trade
bills,tax,subparagraph,loss,taxable

cover,bills,bridge,transaction,following
transportation,rail,railroad,passenger,homeland security

business,administrator,bills,business concern,loan
defense,iraq,transfer,expense,chapter
medicare,medicaid,child,chip,coverage
student,loan,institution,lender,school

energy,fuel,standard,administrator,lamp
housing,mortgage,loan,family,recipient

bank,transfer,requires,holding company,industrial
county,eligible,ballot,election,jurisdiction

tax credit,budget authority,energy,outlays,tax



Organize and browse large corpora



This tutorial

• What are topic models?
• What kinds of things can they do?
• How do I compute with a topic model?
• What are some unsanswered questions in this field?
• How can I learn more?



Related subjects

Topic modeling is a case study in modern machine learning with
probabilistic models. It touches on

• Directed graphical models
• Conjugate priors and nonconjugate priors
• Time series modeling
• Modeling with graphs
• Hierarchical Bayesian methods
• Approximate posterior inference (MCMC, variational methods)
• Exploratory and descriptive data analysis
• Model selection and Bayesian nonparametric methods
• Mixed membership models
• Prediction from sparse and noisy inputs



If you remember one picture...

Assumptions
Inference 
algorithm

Data

Discovered structure



Organization

• Introduction to topic modeling
• Latent Dirichlet allocation
• Open source implementations and tools

• Beyond latent Dirichlet allocation
• Modeling richer assumptions
• Supervised topic modeling
• Bayesian nonparametric topic modeling

• Algorithms
• Gibbs sampling
• Variational inference
• Online variational inference

• Discussion, open questions, and resources



Introduction to Topic Modeling



Probabilistic modeling

1 Data are assumed to be observed from a generative probabilistic
process that includes hidden variables.

• In text, the hidden variables are the thematic structure.

2 Infer the hidden structure using posterior inference
• What are the topics that describe this collection?

3 Situate new data into the estimated model.
• How does a new document fit into the topic structure?



Latent Dirichlet allocation (LDA)

Simple intuition: Documents exhibit multiple topics.



Generative model for LDA

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• Each topic is a distribution over words
• Each document is a mixture of corpus-wide topics
• Each word is drawn from one of those topics



The posterior distribution

Topics Documents Topic proportions and
assignments

• In reality, we only observe the documents
• The other structure are hidden variables



The posterior distribution

Topics Documents Topic proportions and
assignments

• Our goal is to infer the hidden variables
• I.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Encodes our assumptions about the data
• Connects to algorithms for computing with data
• See Pattern Recognition and Machine Learning (Bishop, 2006).



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Nodes are random variables; edges indicate dependence.
• Shaded nodes are observed.
• Plates indicate replicated variables.



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

K∏

i=1

p(βi | η)
D∏

d=1

p(θd |α)

(
N∏

n=1

p(zd ,n | θd )p(wd ,n |β1:K , zd ,n)

)



LDA

θd Zd,n Wd,n
N

D K
βk

α η

• This joint defines a posterior.

• From a collection of documents, infer
• Per-word topic assignment zd ,n
• Per-document topic proportions θd
• Per-corpus topic distributions βk

• Then use posterior expectations to perform the task at hand,
e.g., information retrieval, document similarity, exploration, ...



LDA

θd Zd,n Wd,n
N

D K
βk

α η

Approximate posterior inference algorithms
• Mean field variational methods (Blei et al., 2001, 2003)
• Expectation propagation (Minka and Lafferty, 2002)
• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
• Collapsed variational inference (Teh et al., 2006)
• Online variational inference (Hoffman et al., 2010)

Also see Mukherjee and Blei (2009) and Asuncion et al. (2009).



Example inference

θd Zd,n Wd,n
N

D K
βk

α η

• Data: The OCR’ed collection of Science from 1990–2000
• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.



Example inference
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Example inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Example inference (II)



Example inference (II)

problem model selection species
problems rate male forest

mathematical constant males ecology
number distribution females fish

new time sex ecological
mathematics number species conservation
university size female diversity

two values evolution population
first value populations natural

numbers average population ecosystems
work rates sexual populations
time data behavior endangered

mathematicians density evolutionary tropical
chaos measured genetic forests

chaotic models reproductive ecosystem



Held out perplexity

BLEI, NG, AND JORDAN
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Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram
model, mixture of unigrams, and pLSI.
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Nematode abstracts Associated Press
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Figure 9: Perplexity results on the nematode (Top) and AP (Bottom) corpora for LDA, the unigram
model, mixture of unigrams, and pLSI.

1010
perplexity = exp

{−∑d log p(wd )∑
d Nd

}



Used to explore and browse document collections



Aside: The Dirichlet distribution

• The Dirichlet distribution is an exponential family distribution over
the simplex, i.e., positive vectors that sum to one

p(θ | ~α) =
Γ (
∑

i αi)∏
i Γ(αi)

∏

i

θαi−1
i .

• It is conjugate to the multinomial. Given a multinomial
observation, the posterior distribution of θ is a Dirichlet.

• The parameter α controls the mean shape and sparsity of θ.

• The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.



α = 1
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α = 10
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α = 100
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α = 1
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Why does LDA “work”?

Why does the LDA posterior put “topical” words together?

• Word probabilities are maximized by dividing the words among
the topics. (More terms means more mass to be spread around.)

• In a mixture, this is enough to find clusters of co-occurring words.

• In LDA, the Dirichlet on the topic proportions can encourage
sparsity, i.e., a document is penalized for using many topics.

• Loosely, this can be thought of as softening the strict definition of
“co-occurrence” in a mixture model.

• This flexibility leads to sets of terms that more tightly co-occur.



Summary of LDA

θd Zd,n Wd,n
N

D K
βk

α η

• LDA can
• visualize the hidden thematic structure in large corpora
• generalize new data to fit into that structure

• Builds on Deerwester et al. (1990) and Hofmann (1999)
It is a mixed membership model (Erosheva, 2004).
Relates to multinomial PCA (Jakulin and Buntine, 2002)

• Was independently invented for genetics (Pritchard et al., 2000)



Implementations of LDA

There are many available implementations of topic modeling—

LDA-C∗ A C implementation of LDA
HDP∗ A C implementation of the HDP (“infinite LDA”)
Online LDA∗ A python package for LDA on massive data
LDA in R∗ Package in R for many topic models
LingPipe Java toolkit for NLP and computational linguistics
Mallet Java toolkit for statistical NLP
TMVE∗ A python package to build browsers from topic models

∗ available at www.cs.princeton.edu/∼blei/



Example: LDA in R (Jonathan Chang)

docs <- read.documents("mult.dat")
K <- 20
alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1 
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7
279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1 
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2
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letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...
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Open source document browser (with Allison Chaney)



Why develop these kinds of models?
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where

Chang, Blei
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a
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This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• Organizing and finding patterns in data has become important in
the sciences, humanties, industry, and culture.

• LDA can be embedded in more complicated models that capture
richer assumptions about the data.

• Algorithmic improvements let us fit models to massive data.
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• LDA is a simple topic model

• Can be used to find topics that describe a corpus

• Each document exhibits multiple topics

• How can we build on this simple model of text?



LDA is extendible
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• LDA can be embedded in more complicated models,
embodying further intuitions about the structure of the texts.

• LDA models can include syntax, authorship, word sense,
dynamics, correlation, hierarchies, ...



LDA is extendible
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The data generating distribution can be changed.

• LDA models can be built for images, social networks, music,
purchase histories, computer code, genetic data,
click-through-data, neural spike trains, ...



LDA is extendible
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The LDA posterior can be used in creative ways

• It can be used for information retrieval, collaborative filtering,
document similarity, visualization, ...



Beyond latent Dirichlet allocation

• Modeling richer assumptions
• Correlated topic models
• Dynamic topic models
• Measuring scholarly impact

• Supervised topic models
• Supervised LDA
• Relational topic models
• Ideal point topic models

• Bayesian nonparametric topic models



Modeling richer assumptions

• Correlated topic models
• Dynamic topic models
• Measuring scholarly impact



The hidden assumptions of the Dirichlet

• The Dirichlet is an exponential family distribution on the simplex,
positive vectors that sum to one.

• However, the near independence of components makes it a poor
choice for modeling topic proportions.

• An article about fossil fuels is more likely to also be about
geology than about genetics.



The logistic normal distribution

• The logistic normal is a distribution on the simplex that can
model dependence between components (Aitchison, 1980).

• The natural parameters of the multinomial are drawn from a
multivariate Gaussian distribution.

X ∼ NK−1(µ,Σ)

θi ∝ exp{xi}



The correlated topic model (CTM) (Blei and Lafferty, 2007)

Zd,n Wd,n

N
D K

Σ

µ

ηd

βk

Noconjugate prior
on topic proportions

• Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

• Use for:
• Providing a “map” of topics and how they are related
• Better prediction via correlated topics



Held out log probability in a CTM
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• Analyzed held-out log probability on Science, 1960.
• CTM supports more topics and provides a better fit than LDA.
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Dynamic topic models (Blei and Lafferty, 2006)

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.
• Not appropriate for corpora that span hundreds of years
• We may want to track how language changes over time.



Dynamic topic models
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Modeling evolving topics

βk,1 βk,2 βk,T

. . .

• Use a logistic normal distribution to model topics evolving over
time (Aitchison, 1980)

• A state-space model on the natural parameter of the topic
multinomial (West and Harrison, 1997)

βt ,k |βt−1,k ∼ N (βt−1,k , Iσ2)

p(w |βt ,k ) ∝ exp
{
βt ,k
}



Analyzing a document

Original article Topic proportions



Analyzing a document
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Analyzing a topic
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Visualizing trends within a topic

1880 1900 1920 1940 1960 1980 2000

o o o o o o o o
o
o
o
o
o
o
o
o o o o o o o o o o

o o o o o
o o o

o o
o o

o o
o
o
o

o

o
o
o
o

o
o o

o o o
o o

o
o
o
o o

o

o

o
o
o

o

o

o

o
o o o

o o o

1880 1900 1920 1940 1960 1980 2000

o o o
o
o o

o
o
o
o o o o

o
o o o o o o

o o o o o

o o o
o
o
o

o
o
o
o
o o

o

o

o
o
o
o
o
o o

o
o
o o

o o o o o o o o o o
o o

o o
o
o

o

o

o
o o o o o o

RELATIVITY

LASER
FORCE

NERVE

OXYGEN

NEURON

"Theoretical Physics" "Neuroscience"



Evaluating the DTM on all of Science
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Time-corrected document similarity

• Consider the expected Hellinger distance between the topic
proportions of two documents,

dij = E

[
K∑

k=1

(
√
θi,k −

√
θj,k )2 |wi ,wj

]

• Uses the latent structure to define similarity

• Time has been factored out because the topics associated to the
components are different from year to year.

• Similarity based only on topic proportions



Time-corrected document similarity

The Brain of the Orang (1880)



Time-corrected document similarity

Representation of the Visual Field on the Medial Wall of
Occipital-Parietal Cortex in the Owl Monkey (1976)



Measuring scholarly impact (Gerrish and Blei, 2009)
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• Influential articles reflect future changes in language use.
• The “influence” of an article is a latent variable.
• Influential articles affect the drift of the topics that they discuss.
• The posterior gives a retrospective estimate of influential articles.



Measuring scholarly impact
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Measuring scholarly impact
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• Each document has an influence
score Id .

• Each topic drifts in a way that is
biased towards the documents with
high influence.

• The posterior of I1:D can be
examined to retrospectively find
articles that best explain future
changes in language.



Measuring scholarly impact
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• This measure of impact only uses the words of the documents.
It correlates strongly with citation counts.

• High impact, high citation: “The Mathematics of Statistical
Machine Translation: Parameter Estimation” (Brown et al., 1993)

• “Low” impact, high citation: “Building a large annotated corpus of
English: the Penn Treebank” (Marcus et al., 1993)



Measuring scholarly impact at large scale
(with S. Gerrish, A. Chaney and D. Mimno)
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
[296 citations]

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of 
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
[3 citations]

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]

• PNAS, Science, and Nature from 1880–2005
• 350,000 Articles
• 163M observations
• Year-corrected correlation is 0.166
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Summary: Modeling richer assumptions

• The Dirichlet assumptions on topics and topic proportions makes
strong conditional independence assumptions about the data.

• The correlated topic model uses a logistic normal on the topic
proportions to find patterns in how topics tend to co-occur.

• See also Li and McCallum (2007) for another approach.
• See http://www.cs.princeton.edu/∼blei/ for code.

• The dynamic topic model uses a logistic normal in a linear
dynamic model to capture how topics change over time.

• Documents can exhibit sequential structure.
• Opens the door to a citation-free model of scholarly impact.
• See also Wang and Blei (2010) for a continuous time variant

• What’s the catch? The Dirichlet is easier to compute with than
the logistic normal. (Stay tuned.)



Supervised topic models

• Supervised LDA
• Relational topic models
• Ideal point topic models



Supervised LDA (Blei and McAuliffe, 2007)

• LDA is an unsupervised model. How can we build a topic model
that is good at the task we care about?

• Many data are paired with response variables.
• User reviews paired with a number of stars
• Web pages paired with a number of “likes”
• Documents paired with links to other documents
• Images paired with a category

• Supervised topic models are topic models of documents and
responses, fit to find topics predictive of the response.



Supervised LDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

1 Draw topic proportions θ |α ∼ Dir(α).
2 For each word

• Draw topic assignment zn | θ ∼ Mult(θ).
• Draw word wn | zn, β1:K ∼ Mult(βzn ).

3 Draw response variable y | z1:N , η, σ
2 ∼ N

(
η>z̄, σ2), where

z̄ = (1/N)
∑N

n=1 zn.



Supervised LDA

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• The response variable y is drawn after the document because it
depends on z1:N , an assumption of partial exchangeability.

• Consequently, y is necessarily conditioned on the words.

• In a sense, this blends generative and discriminative modeling.



Prediction

• Fit sLDA parameters to documents and responses. This gives:
• topics β1:K
• coefficients η1:K

• We have a new document w1:N with unknown response value.

• We predict y using the SLDA expected value:

E
[
Y |w1:N , α, β1:K , η, σ

2
]

= η>E
[
Z̄ |w1:N

]



Example: Movie reviews
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector η is associated with a topic.



Held out correlation
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Diverse response types with GLMs

• Want to work with response variables that don’t live in the reals.
• binary / multiclass classification
• count data
• waiting time

• Model the response response with a generalized linear model

p(y | ζ, δ) = h(y , δ) exp
{
ζy − A(ζ)

δ

}
,

where ζ = η>z̄.

• Complicates inference, but allows for flexible modeling.



Image classification and annotation (Wang et al., 2009)
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Figure 4. Example results from the LabelMe dataset. For each class, left side contains examples with correct classification and predicted
annotations, while right side contains wrong ones (the class label in the bracket is the right one) with the predicted annotations. The italic
words indicate the class label, while the normal words are associated predicted annotations.

[28] J. Vogel and B. Schiele. A semantic typicality measure for
natural scene categorization. In DAGM-Symposium, 2004. 5

[29] Y. Wang and S. Gong. Conditional random field for natural
scene categorization. In BMVC, 2007. 5

[30] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label
learning with application to scene classification. In NIPS,
2006. 5
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[28] J. Vogel and B. Schiele. A semantic typicality measure for
natural scene categorization. In DAGM-Symposium, 2004. 5

[29] Y. Wang and S. Gong. Conditional random field for natural
scene categorization. In BMVC, 2007. 5

[30] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label
learning with application to scene classification. In NIPS,
2006. 5
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[28] J. Vogel and B. Schiele. A semantic typicality measure for
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Figure 2. Comparisons of average accuracy over all classes based on 5 random train/test subsets. multi-class sLDA with annotations and
multi-class sLDA (red curves in color) are both our models. left. Accuracy as a function of the number of topics on the LabelMe dataset.
right. Accuracy as a function of the number of topics on the UIUC-Sport dataset.

3. multi-class sLDA: This is the multi-class sLDA model,
described in this paper.

4. multi-class sLDA with annotations: This is multi-class
sLDA with annotations, described in this paper.

Note all testing is performed on unlabeled and unannotated
images.

The results are illustrated in the graphs of Figure 2 and
in the confusion matrices of Figure 3.2 Our models—multi-
class sLDA and multi-class sLDA with annotations— per-
form better than the other approaches. They reduce the error
of Fei-Fei and Perona, 2005 by at least 10% on both data
sets, and even more for Bosch et al., 2006. This demon-
strates that multi-class sLDA is a better classifier, and that
joint modeling does not negatively affect classification ac-
curacy when annotation information is available. In fact, it
usually increases the accuracy.

Observe that the model of [5], unsupervised LDA com-
bined with KNN, gives the worst performance of these
methods. This highlights the difference between finding
topics that are predictive, as our models do, and finding
topics in an unsupervised way. The accuracy of unsuper-
vised LDA might be increased by using some of the other
visual features suggested by [5]. Here, we restrict ourselves
to SIFT features in order to compare models, rather than
feature sets.

As the number of topics increases, the multi-class sLDA
models (with and without annotation) do not overfit until
around 100 topics, while Fei-Fei and Perona, 2005 begins
to overfit at 40 topics. This suggests that multi-class sLDA,
which combines aspects of both generative and discrimina-
tive classification, can handle more latent features than a

2Other than the topic models listed, we also tested an SVM-based ap-
proach using SIFT image features. The SVM yielded much worse perfor-
mance than the topic models (47% for the LabelMe data, and 20% for the
UIUC-Sport data). These are not marked on the plots.

purely generative approach. On one hand, a large number
of topics increases the possibility of overfitting; on the other
hand, it provides more latent features for building the clas-
sifier.

Image Annotation. In the case of multi-class sLDA with
annotations, we can use the same trained model for image
annotation. We emphasize that our models are designed for
simultaneous classification and annotation. For image an-
notation, we compare following two methods,

1. Blei and Jordan, 2003: This is the corr-LDA model
from [2], trained on annotated images.

2. multi-class sLDA with annotations: This is exactly the
same model trained for image classification in the pre-
vious section. In testing annotation, we observe only
images.

To measure image annotation performance, we use an
evaluation measure from information retrieval. Specifi-
cally, we examine the top-N F-measure3, denoted as F-
measure@N , where we set N = 5. We find that multi-
class sLDA with annotations performs slightly better than
corr-LDA over all the numbers of topics tested (about 1%
relative improvement). For example, considering models
with 100 topics, the LabelMe F-measures are 38.2% (corr-
LDA) and 38.7% (multi-class sLDA with annotations); on
UIUC-Sport, they are 34.7% (corr-LDA) and 35.0% (multi-
class sLDA with annotations).

These results demonstrate that our models can perform
classification and annotation with the same latent space.
With a single trained model, we find the annotation per-
formance that is competitive with the state-of-the-art, and
classification performance that is superior.

3F-measure is defined as 2 ∗ precision ∗ recall/(precision + recall).
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Figure 4. Example results from the LabelMe dataset. For each class, left side contains examples with correct classification and predicted
annotations, while right side contains wrong ones (the class label in the bracket is the right one) with the predicted annotations. The italic
words indicate the class label, while the normal words are associated predicted annotations.

[28] J. Vogel and B. Schiele. A semantic typicality measure for
natural scene categorization. In DAGM-Symposium, 2004. 5

[29] Y. Wang and S. Gong. Conditional random field for natural
scene categorization. In BMVC, 2007. 5

[30] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label
learning with application to scene classification. In NIPS,
2006. 5
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Figure 2. Comparisons of average accuracy over all classes based on 5 random train/test subsets. multi-class sLDA with annotations and
multi-class sLDA (red curves in color) are both our models. left. Accuracy as a function of the number of topics on the LabelMe dataset.
right. Accuracy as a function of the number of topics on the UIUC-Sport dataset.

3. multi-class sLDA: This is the multi-class sLDA model,
described in this paper.

4. multi-class sLDA with annotations: This is multi-class
sLDA with annotations, described in this paper.

Note all testing is performed on unlabeled and unannotated
images.

The results are illustrated in the graphs of Figure 2 and
in the confusion matrices of Figure 3.2 Our models—multi-
class sLDA and multi-class sLDA with annotations— per-
form better than the other approaches. They reduce the error
of Fei-Fei and Perona, 2005 by at least 10% on both data
sets, and even more for Bosch et al., 2006. This demon-
strates that multi-class sLDA is a better classifier, and that
joint modeling does not negatively affect classification ac-
curacy when annotation information is available. In fact, it
usually increases the accuracy.

Observe that the model of [5], unsupervised LDA com-
bined with KNN, gives the worst performance of these
methods. This highlights the difference between finding
topics that are predictive, as our models do, and finding
topics in an unsupervised way. The accuracy of unsuper-
vised LDA might be increased by using some of the other
visual features suggested by [5]. Here, we restrict ourselves
to SIFT features in order to compare models, rather than
feature sets.

As the number of topics increases, the multi-class sLDA
models (with and without annotation) do not overfit until
around 100 topics, while Fei-Fei and Perona, 2005 begins
to overfit at 40 topics. This suggests that multi-class sLDA,
which combines aspects of both generative and discrimina-
tive classification, can handle more latent features than a

2Other than the topic models listed, we also tested an SVM-based ap-
proach using SIFT image features. The SVM yielded much worse perfor-
mance than the topic models (47% for the LabelMe data, and 20% for the
UIUC-Sport data). These are not marked on the plots.

purely generative approach. On one hand, a large number
of topics increases the possibility of overfitting; on the other
hand, it provides more latent features for building the clas-
sifier.

Image Annotation. In the case of multi-class sLDA with
annotations, we can use the same trained model for image
annotation. We emphasize that our models are designed for
simultaneous classification and annotation. For image an-
notation, we compare following two methods,

1. Blei and Jordan, 2003: This is the corr-LDA model
from [2], trained on annotated images.

2. multi-class sLDA with annotations: This is exactly the
same model trained for image classification in the pre-
vious section. In testing annotation, we observe only
images.

To measure image annotation performance, we use an
evaluation measure from information retrieval. Specifi-
cally, we examine the top-N F-measure3, denoted as F-
measure@N , where we set N = 5. We find that multi-
class sLDA with annotations performs slightly better than
corr-LDA over all the numbers of topics tested (about 1%
relative improvement). For example, considering models
with 100 topics, the LabelMe F-measures are 38.2% (corr-
LDA) and 38.7% (multi-class sLDA with annotations); on
UIUC-Sport, they are 34.7% (corr-LDA) and 35.0% (multi-
class sLDA with annotations).

These results demonstrate that our models can perform
classification and annotation with the same latent space.
With a single trained model, we find the annotation per-
formance that is competitive with the state-of-the-art, and
classification performance that is superior.

3F-measure is defined as 2 ∗ precision ∗ recall/(precision + recall).

6

# of components

• Uses GLM sLDA for multiclass classification.

• Uses ideas from Blei and Jordan (2004) for annotation.



Supervised topic models

θd Zd,n Wd,n
N

D

K
βk

α

Yd η, σ
2

• SLDA enables model-based regression where the predictor
“variable” is a text document.

• It can easily be used wherever LDA is used in an unsupervised
fashion (e.g., images, genes, music).

• SLDA is a supervised dimension-reduction technique, whereas
LDA performs unsupervised dimension reduction.
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Many data sets contain connected observations.

• For example:
• Citation networks of documents
• Hyperlinked networks of web-pages.
• Friend-connected social network profiles
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Research has focused on finding communities and patterns in
the link-structure of these networks.

• We adapt sLDA to pairwise response variables.
This adaptation leads to a model of content and connection.

• RTMs find related hidden structure in both types of data.
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Per-pair binary 

link variable

N

θi θj

Zin Zjn

Win Wjn

This structure is repeated
for all pairs of documents

Yij

• Adapt fitting algorithm for sLDA with binary GLM response

• RTMs allow predictions about new and unlinked data. These
predictions are out of reach for traditional network models.
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Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo

R
T

M
(ψ

e
)

Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
D

A
+

R
e
g
r
e
ssio

n

Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations

R
T

M
(ψ

e
)

A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly

L
D

A
+

R
e
g
r
e
ssio

n

Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-

Given a new document, which documents is it likely to link to?



Predicting links from documents

16 J. CHANG AND D. BLEI

Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo

R
T

M
(ψ

e
)

Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
D

A
+

R
e
g
r
e
ssio

n

Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations

R
T

M
(ψ

e
)

A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly

L
D

A
+

R
e
g
r
e
ssio

n

Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-

Given a new document, which documents is it likely to link to?



Predictive performance of each type

5 10 15 20 25

!
3
6
0
0

!
3
5
5
0

!
3
5
0
0

!
3
4
5
0

Cora

Number of topics

W
o

rd
 L

o
g

 L
ik

e
li
h

o
o

d
5 10 15 20 25

!
1
4
0
0
0

!
1
3
5
0
0

!
1
3
0
0
0

Cora

Number of topics

L
in

k
 L

o
g

 L
ik

e
li
h

o
o

d

RTM,,  !!""

RTM,,  !!e

LDA + Regression       

Mixed!Membership

Unigram/Bernoulli

Cora corpus (McCallum et al., 2000)



Predictive performance of each type

5 10 15 20 25

!
3
3
5
0

!
3
3
0
0

!
3
2
5
0

!
3
2
0
0

WebKB

Number of topics

L
in

k
 L

o
g

 L
ik

e
li
h

o
o

d

5 10 15 20 25
!
1
1
4
5

!
1
1
4
0

!
1
1
3
5

!
1
1
3
0

WebKB

Number of topics

W
o

rd
 L

o
g

 L
ik

e
li
h

o
o

d

RTM,,  !!""

RTM,,  !!e

LDA + Regression       

Mixed!Membership

Unigram/Bernoulli

WebKB corpus (Craven et al., 1998)



Predictive performance of each type

5 10 15 20 25

!
4
7
5
0

!
4
7
0
0

!
4
6
5
0

!
4
6
0
0

!
4
5
5
0

!
4
5
0
0

!
4
4
5
0

PNAS

Number of topics

L
in

k
 L

o
g

 L
ik

e
li

h
o

o
d

5 10 15 20 25
!
2
9
7
0

!
2
9
6
0

!
2
9
5
0

!
2
9
4
0

PNAS

Number of topics

W
o

rd
 L

o
g

 L
ik

e
li
h

o
o

d

RTM,,  !!""

RTM,,  !!e

LDA + Regression       

Mixed!Membership

Unigram/Bernoulli

PNAS corpus (courtesy of JSTOR)



Spatially consistent topics18 J. CHANG AND D. BLEI
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Fig 5. A comparison between RTM (left) and LDA (right) of topic distributions on local
news data. Each color/row depicts a single topic. Each state’s color intensity indicates the
magnitude of that topic’s component. The corresponding words associated with each topic
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• For exploratory tasks, RTMs can be used to “guide” the topics

• Documents are geographically-tagged news articles from Yahoo!
Links are the adjacency matrix of states

• RTM finds spatially consistent topics.



Relational topic models
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• RTMs let us analyze connected documents, modeling both
content and connections.

• Most network models cannot predict with new and unlinked data.

• RTMs allow for such predictions
• links given the new words of a document
• words given the links of a new document



The ideal point model
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p(vij) = f(d(xi, aj))

• A model devised to uncover voting patterns (Clinton et al., 2004).
• We observe roll call data vij .
• Bills attached to discrimination parameters aj .

Senators attached to ideal points xi .



The ideal point model
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• Posterior inference reveals the political spectrum of senators
• Widely used in quantitative political science.



The ideal point model is limited for prediction
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• We can predict a missing vote.
• But we cannot predict all the missing votes from a bill.
• Cf. the limitations of collaborative filtering



Ideal point topic models (Gerrish and Blei, 2010)

probabilistic
topic model
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Use supervised topic modeling assumptions as a predictive
mechanism from bill texts to bill discrimination.



Ideal point topic models
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Ideal point topics

dod,defense,defense and appropriation,military,subtitle
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child,fire,attorney,internet,bills
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child,center,poison,victim,abuse
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science,director,technology,mathematics,bills

computer,alien,bills,user,collection
head,start,child,technology,award

loss,crop,producer,agriculture,trade
bills,tax,subparagraph,loss,taxable

cover,bills,bridge,transaction,following
transportation,rail,railroad,passenger,homeland security

business,administrator,bills,business concern,loan
defense,iraq,transfer,expense,chapter
medicare,medicaid,child,chip,coverage
student,loan,institution,lender,school

energy,fuel,standard,administrator,lamp
housing,mortgage,loan,family,recipient

bank,transfer,requires,holding company,industrial
county,eligible,ballot,election,jurisdiction

tax credit,budget authority,energy,outlays,tax

In addition to senators and bills, IPTM places topics on the spectrum.



Prediction on completely held-out votes
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Versus the LASSO, the IPTM correctly predicted 126,000 more votes.



Summary: Supervised topic models

• Many of documents are associated with response variables.

• Supervised LDA embeds LDA in a generalized linear model that
is conditioned on the latent topic assignments.

• Relational topic models use sLDA assumptions with pair-wise
responses to model networks of documents.

• Ideal point topic models demonstrates how the response
variables can themselves be latent variables. In this case, they
are used downstream in a model of legislative behavior.

• Note that sLDA and the RTM (and others) are implemented in
Jonathan Chang’s excellent R package “lda.”



Still other ways to build on LDA

New applications—
• Syntactic topic models (Boyd-Graber and Blei 2009)

• Topic models on images (Fei-fei and Perona 2005 and others)

• Topic models on social network data (Airoldi et al. 2008)

• Topic models on music data (Hoffman et al. 2008)

• Topic models for user recommendation (Wang and Blei, 2011)

Testing and relaxing assumptions—
• Spike and slab priors (Wang and Blei 2009 and Williamson et al. 2010)

• Models of word contagion (Elkan 2006)

• N-gram topic models (Wallach 2006)



Bayesian nonparametric topic models

• Why Bayesian nonparametric models?
• The Chinese restaurant process
• Chinese restaurant process mixture models
• The Chinese restaurant franchise
• Bayesian nonparametric topic models



Why Bayesian nonparametric models?

• Topic models assume that the number of topics is fixed.

• It can be determined by cross validation and other model
selection techniques.

• Bayesian nonparametric methods skirt model selection—
• The data determine the number of topics during inference
• Future data can exhibit new topics

• This is really a field unto itself, but it has found wide application
in topic modeling.



The Chinese restaurant process (CRP)
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• N customers arrive to an infinite-table restaurant. Each sits down
according to how many people are sitting at each table,

p(zi = k | z1:(i−1), α) ∝
{

nk for k ≤ K
α for k = K + 1.

• The resulting seating plan provides a partition

• This distribution is exchangeable: Seating plan probabilities are
the same regardless of the order of customers (Pitman, 2002).



CRP mixture models
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• Associate each table with a topic (β∗).
Associate each customer with a data point (grey node).

• The number of clusters is infinite a priori; the data determines
the number of clusters in the posterior.

• Further: the next data point might sit at new table.

• Exchangeability makes inference easy (see Neal, 2000).



The CRP is not a mixed-membership model

θd Zd,n Wd,n
N

D K
βk

α η

• Mixture models draw each data point from one component.

• The advantage of LDA is that it’s a mixed membership model.

• This is addressed by the Chinese restaurant franchise.



The Chinese restaurant franchise (Teh et al., 2006)
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At the corpus level, topics 
are drawn from a prior.

Each document-level table is 
associated with a customer at 
the corpus level restaurant.

Each word is associated with a customer at 
the document's restuarant.  It is drawn from 
the topic that it's table is associated with

Corpus level restaurant

Document level restaurants



The CRF selects the “right” number of topics
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Figure 3: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.

Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of

topics for the hierarchical Dirichlet process mixture over 100 posterior samples.
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Extended to find hierarchies (Blei et al., 2010)
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An optimal algorithm for intersecting line segments in the plane
Recontamination does not help to search a graph
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On the power of bounded concurrency I: finite automata
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Authoritative sources in a hyperlinked environment
Balanced sequences and optimal routing
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The maximum concurrent flow problem
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Module algebra
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Closure properties of constraints
Dynamic functional dependencies and database aging



BNP correlated topic model (Paisley et al., 2011)
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Summary: Bayesian nonparametrics

• Bayesian nonparametrics is a growing field (Hjort et al., 2011).

• BNP methods can define priors over combinatorial structures.

• In the posterior, the documents determine the particular form of
the structure that is best for the corpus at hand.

• These models are also interpretable as random distribution
models, such as the Dirichlet process
(Fergusen 1973, Antoniak 1974).

• Recent innovations:
• Improved inference methods (Blei and Jordan, 2005)
• Dependent models, such as time series models

(MacEachern 1999, Dunson 2010)
• Models for predictions (Hannah et al. 2011)
• Models for matrix factorization and other non-mixtures

(Griffiths and Ghahramani, 2011)



Algorithms



So far...

Assumptions
Inference 
algorithm

Data

Discovered structure

• We can express many kinds of assumptions about a corpus.

• Next: How can we analyze it under those assumptions?



Posterior inference

Topics Documents Topic proportions and
assignments

• Posterior inference is the main computational problem.
• Inference links observed data to statistical assumptions.
• Inference on large data is crucial for topic modeling applications.



Posterior inference

Topics Documents Topic proportions and
assignments

• Our goal is to compute the distribution of the hidden variables
conditioned on the documents

p(topics, proportions, assignments |documents)



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• The joint distribution of the latent variables and documents is

∏K
i=1 p(βi | η)

∏D
d=1 p(θd |α)

(∏N
n=1 p(zd ,n | θd )p(wd ,n |β1:K , zd ,n)

)
.

• The posterior of the latent variables given the documents is

p(β1:K , θ1:D, z1:D,1:N |w1:D,1:N).



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• This is equal to

p(β1:K , θ1:D, z1:D,w1:D)∫
β1:K

∫
θ1:D

∑
z1:D

p(β1:K , θ1:D, z1:D,w1:D)
.

• We can’t compute the denominator, the marginal p(w1:D).
• This is the crux of the inference problem.



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• There is a large literature on approximating the posterior.

• We will focus on
• Gibbs sampling
• Mean-field variational methods (batch and online)



Markov chain Monte Carlo

• Construct a Markov chain on the hidden variables, whose
limiting distribution is the posterior.

• Collect independent samples from that distribution;
approximate the posterior with them

• In Gibbs sampling the chain is defined by the conditional
distribution of each hidden variable given observations and the
current setting of the other hidden variables.



Local and global variables

θd Zd,n Wd,n
N

D K
βk

α η

• Local variables are local to each document
• Topic proportions θd
• Topic assignemnts zd ,n

• Global variables are shared by the corpus
• Topics βk



Local and global variables

θd Zd,n Wd,n
N

D K
βk

α η

• Assume the topics are fixed.

• Even “local inference” is intractable,

p(θ, z1:N |w1:N , β1:K ) =
p(θ)

∏N
n=1 p(zn | θ)p(wn |βzn )∫

θ p(θ)
∏N

n=1
∑

zn
p(zn | θ)p(wn |βzn )

.



Local Gibbs sampling for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• We observe words w = w1:N . The Markov chain is defined on
{θ, z1:N}, the topic proportions and topic assignments.

• Some notation—

n(z1:N) =
∑N

n=1 zn

mk (z1:D,W) =
∑D

d=1
∑N

n=1 zk
d ,nwd ,n.

• n(z1:N) are topic counts;
mk (z1:N ,W) are within-topic word counts.



Local Gibbs sampling for LDA

θd Zd,n Wd,n
N

D K
βk

α η

A simple Gibbs sampler is

θ |w, z1:N ∼ Dir(γ)

zn | θ,w ∼ Mult(φn)

where

γ = α + n(z1:N)

φn ∝ θ · p(wn |β1:K ).



Collapsed local Gibbs sampling

θd Zd,n Wd,n
N

D K
βk

α η

• The topic proportions θ can be integrated out,

p(zn | z−n,w) = p(wn |β1:K ) ·
∫

θ
p(zn | θ)p(θ | z−n)dθ

• A collapsed Gibbs sampler constructs a chain on z1:N ,

zn | z−n,w ∼ Mult(φn),

where φn ∝ p(wn |β1:K )(n(z−n) + α).



Example inference
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Sampling the topics

θd Zd,n Wd,n
N

D K
βk

α η

• We observe the corpus W = w1:D.
• We define the chain on {z1:D, θ1:D, β1:K}.
• First, sample latent variables (zd , θd ) for each document.
• Then, sample each topic from

βk | z1:D,W ∼ Dir(λk ),

where
λk := η + mk (z1:D,W).

Recall mk (z1:D,W) are words counts for topic k .



Collapsed Gibbs sampling with topics

θd Zd,n Wd,n
N

D K
βk

α η

• We can integrate out the topics β1:K too.

• The sampler is defined on the topic assigments z1:D,

p(zn,d = k | z−(n,d),W) ∝
(

mk (z−(n,d),W) + η∑
v mv

k (z−(n,d)) + Vη

)
(nk (z−i) + α)

• This is an excellent Gibbs sampler for LDA. It was developed by
Giffiths and Steyvers (2002) and is widely used.



Example topic inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Gibbs sampling for LDA in practice

• In practice:
1 Obtain a corpus of documents W
2 Run the Gibbs sampler for some number of iterations.
3 Store states at some lag, or store the MAP state.

• Look at counts like mk (z1:D,W) to investigate the topics;
look at n(zd ) to investigate how each document exhibits them.

• A good habit: Assess the convergence of the chain.
• Monitor the log probability of the state & observations.

(Its exponential is proportional to the posterior.)
• Do something fancier, e.g., Raftery and Lewis (1992).



Assessing convergence example
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Assessing convergence example
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Gibbs sampling for LDA

• Simple algorithm for sampling from a complex distribution.

• Works well in practice. Is the best first algorithm to try.

• However
• Can be slow for very large data sets
• It is difficult to handle nonconjugacy; it is hard to generalize

to the dynamic topic model and correlated topic model.



Variational inference

• Variational inference replaces sampling with optimization.

• The main idea—

• Place a distribution over the hidden variables with free
parameters, called variational parameters.

• Optimize the variational parameters to make the distribution
close (in KL divergence) to the true posterior

• In some settings, variational inference is faster than MCMC.

• It is easier to handle nonconjugate pairs of distributions with
variational inference. (This is important in the CTM, DTM, etc.)



A useful picture (from Wainwright and Jordan, 2008)

Haykin, Principe, Sejnowski, and McWhirter: New Directions in Statistical Signal Processing: From Systems to Brain 2005/03/04 21:55

54 A Variational Principle for Graphical Models

PSfrag replacements

µe

MARG(G)

Mtract(G; H)

Figure 11.9 The set Mtract(G; H) of mean parameters that arise from tractable

distributions is a non-convex inner bound on M(G). Illustrated here is the multi-

nomial case where M(G) ≡ MARG(G) is a polytope. The circles correspond to

mean parameters that arise from delta distributions with all their mass on a single

configuration , and belong to both M(G) and Mtract(G; H).

11.6.5 Parameter estimation and variational EM

Mean field methods also play an important role in the problem of parameter es-

timation, in which the goal is to estimate model parameters on the basis of par-

tial observations. The expectation-maximization (EM) algorithm [ Dempster et al.

(1977)] provides a general approach to maximum likelihood parameter estimation

in the case in which some subset of variables are observed whereas others are unob-

served. Although the EM algorithm is often presented as an alternation between an

expectation step (E step) and a maximization step (M step), it is also possible to

take a variational perspective on EM, and view both steps as maximization steps [

Csiszár and Tusnády (1984); Neal and Hinton (1999)]. More concretely, in the expo-

nential family setting, the E step reduces to the computation of expected sufficient

statistics—i.e., mean parameters. As we have seen, the variational framework pro-

vides a general class of methods for computing approximations of mean parameters.

This observation suggests a general class of variational EM algorithms, in which the

approximation provided by a variational inference algorithm is substituted for the

mean parameters in the E step. In general, as a consequence of making such a

substitution, one loses the guarantees that are associated with the EM algorithm.

In the specific case of mean field algorithms, however, a convergence guarantee is

retained: in particular, the algorithm will converge to a stationary point of a lower

bound for the likelihood function [Wainwright and Jordan (2003a)].

11.7 Bethe entropy approximation and sum-product algorithm

In this section, we turn to another important message-passing algorithm for approx-

imate inference, known either as belief propagation, or the sum-product algorithm. In



Variational inference (in general)

• Let x = x1:N be observed variables;
let z = z1:M be the latent variables.

• Our goal is to compute the posterior distribution

p(z | x) =
p(z, x)∫
p(z, x)dz

• For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute.



Variational inference

• Introduce a distribution over the latent variables qν(z),
parameterized by variational parameters ν.

• Use Jensen’s inequality to bound the log probability of the
observations, (Jordan et al., 1999)

log p(x) = log
∫

p(z, x)dz

= log
∫

p(z, x)
qν(z)

qν(z)
dz

≥ Eqν [log p(Z, x)]− Eqν [log qν(Z)]

(J. McAuliffe calls this the evidence lower bound, or ELBO.)

• Optimize the variational parameters to tighten this bound.

• This is the same as finding the member of the family qν that is
closest in KL divergence to p(z | x).



Mean-field variational inference

• Complexity is determined by the factorization of qν

• In mean field variational inference qν is fully factored

qν(z) =
M∏

m=1

qνm (zm).

• Each latent variable is independently governed by its own
variational parameter νm.

• In the true posterior they can exhibit dependence.
(Often, this is what makes exact inference difficult.)



Variational inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

• The mean field distribution places a variational parameter on
each hidden variable.

• Optimize these with coordinate ascent, iteratively optimizing
each parameter while holding the others fixed.



Variational inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

• In the “local step” we iteratively update the parameters for each
document, holding the topic parameters fixed.

γ(t+1) = α +
∑N

n=1 φ
(t)
n

φ
(t+1)
n ∝ exp{Eq[log θ] + Eq[logβ.,wn ]}.



Example inference
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Variational inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

• In the “global step” we aggregate the parameters computed from
the local step and update the parameters for the topics,

λk = η +
∑

d

∑

n

wd ,nφd ,n.



Example topic inference

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Variational inference for LDA (sketch)

1: Initialize topics randomly.
2: repeat
3: for each document do
4: repeat
5: Update the topic assignment variational parameters.
6: Update the topic proportions variational parameters.
7: until document objective converges
8: end for
9: Update the topics from aggregated per-document parameters.

10: until corpus objective converges.



Variational inference for LDA

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k |change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while



“E step”

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k |change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while

Do variational inference for each document.



“M step”

1: Initialize topics λ1:K randomly.
2: while relative improvement in L(w,φ,γ,λ) > ε do
3: for d = 1 to D do
4: Initialize γd ,k = 1.
5: repeat
6: Set φd ,n ∝ exp{Eq[log θd ] + Eq[logβ·,wn ]}
7: Set γd = α +

∑
n φd ,n

8: until 1
K
∑

k | change in γd ,k | < ε
9: end for

10: Set λk = η +
∑

d
∑

n wd ,nφd ,n
11: end while

Update the posterior estimates of the topics based on the “E step.”



Online inference for LDA (with M. Hoffman and F. Bach)

Sample one document Update the modelAnalyze it

• Our goal is to use this (and related) models for analyzing
massive collections of millions of documents.

• But, in the first step of batch inference we estimate the posterior
for every document based on randomly initialized topics.



Online inference for LDA (with M. Hoffman and F. Bach)

Sample one document Update the modelAnalyze it

• Online variational inference is much more efficient.

• It allows us to easily analyze millions of documents.

• It lets us develop topic models on streaming collections.



Online inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

1 Randomly pick a document.
2 Perform local variational inference with the current topics.
3 Form “fake” topics, treating the sampled document as though it

were the only document in the collection.
4 Update the topics to be a weighted average of the fake topics

and current topics.



Online variational inference for LDA (sketch)

1: Define an appropriate sequence of weights.
2: Initialize topics randomly.
3: for ever do
4: Choose a random document d .
5: repeat
6: Update the topic assignment variational parameters.
7: Update the topic proportions variational parameters.
8: until document objective converges
9: Compute topics as though d is the only document.

10: Set the topics to a weighted average of the current topics and
the topics from step 9.

11: end for



On-line variational inference for LDA

1: Define ρt , (τ0 + t)−κ

2: Initialize λ randomly.
3: for t = 0 to∞ do
4: Choose a random document wt
5: Initialize γtk = 1. (The constant 1 is arbitrary.)
6: repeat
7: Set φt ,n ∝ exp{Eq[log θt ] + Eq[logβ·,wn ]}
8: Set γt = α +

∑
n φt ,n

9: until 1
K
∑

k |change in γt ,k | < ε

10: Compute λ̃k = η + D
∑

n wt ,nφt ,n
11: Set λk = (1− ρt )λk + ρt λ̃k .
12: end for



Analyzing 3.3M articles from Wikipedia
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Why does this work?

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

• Why waste time with the real gradient, when a cheaper noisy
estimate of the gradient will do (Robbins and Monro, 1951)?

• Idea: Follow a noisy estimate of the gradient with a step-size.

• By decreasing the step-size according to a certain schedule, we
guarantee convergence to a local optimum.

• See Hoffman et al. (2010) and Sato (2001).



Online inference is promising, in general

• Stochastic variational methods are a general way to approximate
the posterior for massive/streaming data.

• No need to process the whole data set in advance; can easily
link to web APIs and other data sources

• Powerful algorithm for topic modeling, and can be adapted
hierarchical models for many types of data.

• Software and papers: www.cs.princeton.edu/∼blei/



Latent Dirichlet allocation (flashback)

θd Zd,n Wd,n
N

D K
βk

α η

• This joint defines a posterior.

• From a collection of documents, infer
• Per-word topic assignment zd ,n
• Per-document topic proportions θd
• Per-corpus topic distributions βk

• Then use posterior expectations to perform the task at hand,
e.g., information retrieval, document similarity, exploration, ...



Latent Dirichlet allocation (flashback)

θd Zd,n Wd,n
N

D K
βk

α η

Approximate posterior inference algorithms
• Mean field variational methods (Blei et al., 2001, 2003)
• Expectation propagation (Minka and Lafferty, 2002)
• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
• Collapsed variational inference (Teh et al., 2006)
• Online variational inference (Hoffman et al., 2010)

Also see Mukherjee and Blei (2009) and Asuncion et al. (2009).



Discussion



This tutorial

• What are topic models?
• What kinds of things can they do?
• How do I compute with a topic model?
• What are some unsanswered questions in this field?
• How can I learn more?



Introduction to topic modeling

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• LDA assumes that there are K topics shared by the collection.
• Each document exhibits the topics with different proportions.
• Each word is drawn from one topic.
• We discover the structure that best explain a corpus.



Extensions of LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper

! " w v # $

t g % &

N
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b
2

T BG2

S T

B

Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.

!

!T

"

#k

$k

% M

&d

!D

'

Parse trees 

grouped into M 

documents

(a) Overall Graphical Model

w1:laid

w2:phrases

w6:forw5:his

w4:some w5:mind

w7:years

w3:in

z1

z2 z3

z4

z5

z5

z6

z7

(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• Topic models can be adapted to many settings

• Bayesian nonparametric topic models let the corpus determine
the number of topics (or more complicated topic structure).
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• Posterior inference is the central computational problem.

• We discussed three algorithms
• MCMC based on collapsed Gibbs sampling
• Mean-field variational inference
• Online variational inference



Some open issues

• Model interpretation and model checking
Which model should I choose for which task?
(Chang et al. 2009, Ramadge et al. 2009, Newman et al. 2010, Mimno and
Blei 2011, Mimno et al. 2011)

• Incorporating corpus, discourse, or linguistic structure
How can our knowledge of language help us build and use
exploratory models of text?

• Interfaces and “downstream” applications of topic modeling
What can I do with an annotated corpus? How can I incorporate
latent variables into a user interface?

• Theoretical understanding of approximate inference
What do we know about variational inference from either the
statistical or learning perspective?



Interpretation I: Human studies of topic models
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Figure 6: The topic log odds (Equation 2) for the three models on two corpora. Higher is better. Although CTM
generally achieves a better predictive likelihood than the other models (Table 1), the topics it infers fare worst
when evaluated against human judgments.

m and let jm
d,∗ denote the “true” intruder, i.e., the one generated by the model. We define the topic

log odds as the log ratio of the probability mass assigned to the true intruder to the probability mass
assigned to the intruder selected by the subject,

TLOm
d = (

�
s log θ̂m

d,jm
d,∗

− log θ̂m
d,jm

d,s
)/S. (2)

The higher the value of TLOm
d , the greater the correspondence between the judgments of the model

and the subjects. The upper bound on TLOm
d is 0. This is achieved when the subjects choose

intruders with a mixture proportion no higher than the true intruder’s.

Figure 6 shows boxplots of the topic log odds for the three models. As with model precision, LDA and
pLSI generally outperform CTM. Again, this trend runs counter to CTM’s superior performance on
predictive likelihood. A histogram of the TLO of individual Wikipedia documents is given in Figure 4
(right) for the fifty-topic LDA model. Documents about very specific, unambiguous concepts, such as
“Lindy Hop,” have high TLO because it is easy for both humans and the model to assign the document
to a particular topic. When documents express multiple disparate topics, human judgments diverge
from those of the model. At the low end of the scale is the article “Book” which touches on diverse
areas such as history, science, and commerce. It is difficult for LDA to pin down specific themes in
this article which match human perceptions.

Figure 5 (bottom row) shows that, as with model precision, increasing predictive likelihood does
not imply improved topic log odds scores. While the topic log odds are nearly constant across
all numbers of topics for LDA and pLSI, for CTM topic log odds and predictive likelihood are
negatively correlated, yielding the surprising conclusion that higher predictive likelihoods do not lead
to improved model interpretability.

5 Discussion

We presented the first validation of the assumed coherence and relevance of topic models using
human experiments. For three topic models, we demonstrated that traditional metrics do not capture
whether topics are coherent or not. Traditional metrics are, indeed, negatively correlated with the
measures of topic quality developed in this paper. Our measures enable new forms of model selection
and suggest that practitioners developing topic models should thus focus on evaluations that depend
on real-world task performance rather than optimizing likelihood-based measures.

In a more qualitative vein, this work validates the use of topics for corpus exploration and information
retrieval. Humans are able to appreciate the semantic coherence of topics and can associate the same
documents with a topic that a topic model does. An intriguing possibility is the development of
models that explicitly seek to optimize the measures we develop here either by incorporating human
judgments into the model-learning framework or creating a computational proxy that simulates human
judgments.
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Interpretation II: Labelled LDA on JSTOR

Frances Stokes Berry;William D. Berry.

American Journal of Political Science

(1992), pp. 715-742

Journal Disciplines:

Political Science

Blake LeBaron. Philosophical

Transactions: Physical Sciences and

Engineering (1994), pp. 397-404

Journal Disciplines:

Mathematics

Biological Sciences

General Science

Gerald Marwell;Pamela Oliver. Social

Psychology Quarterly (1994), pp. 373

Journal Disciplines:

Psychology

Sociology

Kun Y. Park. Journal of Peace Research

(1993), pp. 79-93

Journal Disciplines:

Political Science

Herbert Hovenkamp. California Law

Review (1990), pp. 815-852

Journal Disciplines:

Law

Virginia Gray;David Lowery. Political

Research Quarterly (1993), pp. 81-97

Journal Disciplines:

Political Science

Use the sliders to adjust the

discipline weights. You can select

inactive disciplines as well.

Finance

Business

Statistics

Economics

Philosophy

Psychology

History of Science & Technology

African American Studies

African Studies

American Indian Studies

Anthropology

Aquatic Sciences

Archaeology

Architecture & Architectural History

Art & Art History

Asian Studies

Biological Sciences

empirical  Search

The current index is only a small sample of JSTOR's collections.

Index size: 18032 documents

Showing 25 of 999 results.

Tax Innovation in the States: Capitalizing on Political Opportunity

Chaos and Nonlinear Forecastability in Economics and Finance

Reply: Theory Is Not a Social Dilemma

'Pouring New Wine into Fresh Wineskins': Defense Spending and Economic Growth in

LDCs with Application to South Korea

Positivism in Law & Economics

The Diversity of State Interest Group Systems

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Discipline Browser http://dbrowser.jstor.org/browser.cgi?q=empirical+bayes&btnG...
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(see Ramadge et al. 2009 and Ramadge et al. 2011)



Interptetation III: Mutual information discrepancy

4

consumption

earnings

estate

exemption

funds

income

organizations

revenue

subsidies

tax
taxation

taxes

taxpayers

treasury
year

6

crime

crimes

defendant
defendants

evidence

guilty

judge

judges

jurors

jury

offense

punishment

sentence

sentencing

trial

7

app

cause

class

damages

defendant

defendants
evidence

information

medical

plaintiff

police

reasonable

rule

standard

tort

11

amendment

civil

clause

congress

congressional
doctrine

federal

government

jurisdiction

legislation

national

protection

statute

statutes

supreme

14

accompanying

civil

criminal

force

human

language

lawyers

life

notes

people

person

persons

society

status

world

10

bargaining

collective

employee

employees

employer
employers
employment

industrial

job

labor

union

unions

work

worker

workers

15

amendment

conduct

content

context
culture

equality

expression

free

freedom

ideas

information
protect

protected

speech

values

9

black

blacks

discrimination

education

group

minority
protection

race

racial

religious

school

schools

students

supreme

white

8

bankruptcy

costs

economic

efficiency

expected

goods

investment

likely

pay
product

property
risk

rule
rules

transaction

5

choice

control

current

effects

federal

future

government

greater

group

level

number

policy

private

problems

property

3

child

children

discrimination

family

female

gender

male

marriage

men

parents

sex

sexual

social

woman

women

1

assets

capital

corporate

cost

efficient

firm

firms

insurance

market

offer

price

share

shareholders
stock

value

17

antitrust

business

commercial

consumer
consumers

economic
industry

information

investors

market

prices

protection

regulation

securities

standard

19

actions

cir

claim

claims
conduct

constitutional

criminal

immunity

inc

judgment

liability

litigation

plaintiffs

suit

supp

12

argued

authority

early

good

great

john

justice

laws

limited

moral

review

said

term

true

war

13

agreement

bargaining

breach

contract

contracting

contracts

contractual

creditors

debt
exchange

liability

limited

parties

party

terms

16

amendment

article

citizens

constitution

constitutional

fourteenth

government

history

justice

legislative

majority

opinion

people

political

republican

2

administrative

agency

authority
committee

cong

decisions

executive

foreign
judicial

legislative

policy

powers

president

senate

statutory

20

community

direct

economic

equal

groups

history

international

likely

local

members

national

political

reform

report

section

18

argument

claim

common

decisions

judicial

principle

reason

role

rule

rules

social

terms

text

theory

work

(see Mimno and Blei 2011)



Topic modeling resources

• The topic modeling mailing list is a good discussion group.
• Bibliography: http://www.cs.princeton.edi/∼mimno/
• Software and papers: http://www.cs.princeton.edu/∼blei/



If you remember one picture...

Assumptions
Inference 
algorithm

Data

Discovered structure



“We should seek out unfamiliar summaries of observational material,
and establish their useful properties... And still more novelty can
come from finding, and evading, still deeper lying constraints.”
(J. Tukey, The Future of Data Analysis, 1962)


