Spell Checking:
Edit Distance

VSM, session 8

Northeastern UniV€I‘Sity CS6200: Information Retrieval
College of Computer and Information Science Slides by: Jesse Anderton

Spell Checking

poiner sisters

10-15% of all queries contain spelling brimingham news
errors, so spell checking can helpa
substantial fraction of users.

A straightforward approach IS 10
replace words not found in a speling marshmellow worla
dictionary. miniture golf courses

We typically try to find the word from psyhics
the dictionary with the shortest edit home doceration

distance to the word the user typed. Example Errors

coO~dOUDN B WN K-

Damerau-Levenshteln Distance

def editDistance(sl, s2):

Tnitialize the table Damerau-Levenshtein Distance counts the

d = [[@] * (len(s2) + 1) for _ in range(len(sl) + 1)] minimum number of insertions, deletions,
for i in range(len(d)):

dlilre] = i substitutions, or transpositions to transform one
for j in range(len(d[@])): string into another.

dle1[jl = j
Populate table » Insertion: extenssions — extensions

for i in range(1, len(sl) + 1):
for j in range(1l, len(s2) + 1):
cost = @ if s1l[i - 1] == s2[j - 1] else 1
dli] [j] = min(

» Deletion: poiner = pointer

dli - 1113 1+1, # deletion » Substitution: marshmellow —

dli 1[7 - 11 + 1, # insertion h !

dli - 1]1[j - 1] + cost, # substitution marsnmaliow

)

if (i >1and j > 1and s1[i - 1] == s2[j - 2]) Han: hrimi — hirmi

ond S1Mi — 2] == s2[] - 11): ransposition: brimingham — birmingham

dli] [j] = min(_ , . .
d[i] [j1, o A dynamic programming algorithm is used to
d[i-2][j-2] + cost, # transposition calculate this efficiently.

)
return d[len(s1)][len(s2)]

OoOoO~JNOOUT S WNBK-

Example: edit Distance

def editDistance(sl, s2):

Initialize the table
d = [[0] * (len(s2) + 1) for _ in range(len(sl) + 1)]
for 1 in range(len(d)):
dli] [0] = i
for j in range(len(d[@])):
dlo]l[j] =]

Populate table
for i in range(1, len(sl) + 1):
for j in range(1l, len(s2) + 1):
cost = @ if s1[i - 1] == s2[j - 1] else 1
dli] [j] = min(

dli - 1] [] + 1, # deletion
dli 1l - 1] + 1, # insertion
dli - 1]1[j - 1] + cost, # substitution

)
if (1>1and j >1and s1[i - 1] == s2[j - 2]

and s1[i - 2] == s2[j - 1]):

dli] [j] = min(
dlil [j],
d[i-2]1[j-2] + cost, # transposition
)

return d[len(sl)][len(s2)]

..

..

Optimizations

t's not efficient to calculate edit distance between a query term and
each word In the spelling dictionary.

» People usually get the first letter of the word right, so we can
restrict our search to words starting with the same letter.

» \We can restrict our search to words with the same or similar
length.

» We can restrict our search to words that sound the same, using a
phonetic code to group words (such as Soundex).

Soundex

1. Keep the first letter (in upper case).
2. Replace these letters with hyphens: a,e,i,0,u,y,h,w.

3. Replace the other letters by numbers as follows:

. b,f,p,v

. ¢,g,),k,q,s,X%,2
- d,t

I

m,n

r

4. Delete adjacent repeats of a number.

5. Delete the hyphens.

6. Keep the first three numbers or pad out with zeros.

extenssions — E235; extensions — E235
marshmellow — M625; marshmallow — M625
brimingham — B655; birmingham — B655
poiner — P560; pointer — P536

Developed in the early 20t century, and
first patented in 1918.

The idea Is to generate a code based
how how words sound, so similar-
sounding words get the same code.

Many improved algo
developed, but Sour
common variant in A

ithms have been
dex is still the most

merican English.

Commonly supported by database
systems, such as Oracle, DB2, MySQL,
etc. and used, e.g., for name comparison.

t's very common for use

Wrapping Up

(S

to misspell words, so spelling correction has a noticeable

impact on query perform

dl

Ce.

Given a spelling dictionary, we can employ a quick dynamic programming algorithm on
similar-sounding words to find the one that’s closest in spelling to what the user typed.

 What if there are multiple candidates with equal minimal edit distance?

 What if the word the user intended is not in the spelling dictionary (e.g. a name)?

 What if the word the user typed is in the dictionary, but it's not the word they

intended”?

Next, we'll look at a probabilistic approach that helps resolve some of these problems.

