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Abstract. With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is 

both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support 

end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the 

SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit 

the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by 

analyzing the general background and history of the QA research field, from influential works from the artificial intelligence 

and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in 

TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open user-

friendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to 

support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research 

area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent re-

trieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources. 
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1. Introduction 

The emerging Semantic Web (SW) [7] offers a 

wealth of semantic data about a wide range of topics, 

representing real community agreement. We are 

quickly reaching the critical mass required to enable a 

true vision of a large scale, distributed SW with real-

world datasets, leading to new research possibilities 

that can benefit from exploiting and reusing this vast 

resources, unprecedented in the history of computer 

science. Hence, there is now a renewed interest in the 

search engine market towards the introduction of 

semantics in order to improve over current keyword 

search technologies [6,29,43]. 

The notion of introducing semantics to search on 

the Web is not understood in a unique way. Accord-

ing to [29] the two most common uses of SW tech-

nology are: (1) to interpret Web queries and Web 

resources annotated with respect to the background 

knowledge described by underlying ontologies, and 

(2) to search in the structured large datasets and 

Knowledge Bases (KBs) of the SW as an alternative 

or a complement to the current web. 

Apart from the benefits that can be obtained as 

more semantic data is published on the Web, the 

emergence and continued growth of a large scale SW 

poses some challenges and drawbacks: 

− There is a gap between users and the SW: it is 

difficult for end-users to understand the com-
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plexity of the logic-based SW. Solutions that can 

allow the typical Web user to profit from the ex-

pressive power of SW data-models, while hiding 

the complexity behind them, are of crucial im-

portance. 

− The processes of searching and querying content 

that is massive in scale and highly heterogene-

ous have become increasingly challenging: cur-

rent approaches to querying semantic data have 

difficulties to scale their models successfully to 

cope with the increasing amount of distributed 

semantic data available online. 

Hence, there is a need for user-friendly interfaces that 

can scale up to the Web of Data, to support end users 

in querying this heterogeneous information space. 

Consistent with the role played by ontologies in 

structuring semantic information on the Web, recent 

years have witnessed the rise of ontology-based 

Question Answering (QA) as a new paradigm of re-

search, to exploit the expressive power of ontologies 

and go beyond the relatively impoverished represen-

tation of user information needs in keyword-based 

queries. QA systems have been investigated by sev-

eral communities [45], e.g., Information Retrieval 

(IR), artificial intelligence and database communities. 

Traditionally, QA approaches have largely been fo-

cused on retrieving answers from raw text, with the 

emphasis on using ontologies to mark-up Web re-

sources and improve retrieval by using query expan-

sion [70]. The novelty of this trend of ontology-based 

QA is to exploit the SW information for making 

sense of, and answering, user queries. 

In this paper, we present a survey of ontology-

based QA systems and other related work. We look at 

the promises of this novel research area from two 

perspectives. First, its contributions to the area of QA 

systems in general; and second, its potential to go 

beyond the current state of the art in SW interfaces 

for end-users, thus, helping to bridge the gap between 

the user and the SW. 

We seek a comprehensive perspective on this nov-

el area by analyzing the key dimensions in the formu-

lations of the QA problem in Section 2. We classify a 

QA system, or any approach to query the SW con-

tent, according to four dimensions based on the type 

of questions (input), the sources (unstructured data 

such as documents, or structured data in a semantic or 

non-semantic space), the scope (domain-specific, 

open-domain), and the traditional intrinsic problems 

derived from the search environment and scope of the 

system. To start with, we introduce in Section 3 the 

general background and history of the QA research 

field, from the influential works in the early days of 

research on architectures for Natural Language Inter-

faces to Databases (NLIDB) in the 70s (Section 3.1), 

through the approaches to open domain QA over text 

(Section 3.2), to the latest proprietary (commercial) 

semantic QA systems, based on data that is by and 

large manually coded and homogeneous (Sec-

tion 3.3). Then, in Section 4 we discuss the state of 

the art in ontology-based QA systems (Section 4.1), 

in particular analyzing their drawbacks (restricted 

domain) when considering the SW in the large (Sec-

tion 4.2). We then review the latest trends in open 

domain QA interfaces for the SW (Section 4.3) and 

look at the evaluations that have been conducted to 

test them (Section 4.4). We finish this section with a 

discussion on the competences of these systems in the 

QA scenario (Section 4.5), highlighting the open is-

sues (Section 4.6). In Section 5, we focus on ap-

proaches developed in the last decade, that have at-

tempted to support end users in querying the SW data 

in the large, from early global-view information sys-

tems (Section 5.1) and restricted domain semantic 

search (Section 5.2), to the latest works on open do-

main large scale semantic search and Linked Data [9] 

interfaces (Section 5.3). In Section 6, we argue that 

this new ontology-based search paradigm based on 

natural language QA, is a promising direction to-

wards the realization of user-friendly interfaces for 

all the analyzed dimensions, as it allows users to ex-

press arbitrarily complex information needs in an 

intuitive fashion. We conclude in Section 7 with an 

outlook for this research area, in particular, our view 

on the potential directions ahead to realize its ulti-

mate goal: to retrieve and combine answers from 

multiple, heterogeneous and automatically discovered 

semantic sources. 

2. Goals and dimensions of Question Answering 

The goal of QA systems, as defined by [45], is to 

allow users to ask questions in Natural Language 

(NL), using their own terminology, and receive a 

concise answer. In this section, we give an overview 

of the multiple dimensions in the QA process. These 

dimensions can be extended beyond NL QA systems 

to any approach to help users to locate and query 

structured data on the Web. 

We can classify a QA system, and any semantic 

approach for searching and querying SW content, 

according to four interlinked dimensions (see Fig. 1): 

(1) the input or type of questions it is able to accept 

(facts, dialogs, etc); (2) the sources from which it can 
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derive the answers (structured vs. unstructured data); 

(3) the scope (domain specific vs. domain indepen-

dent), and (4) how it copes with the traditional intrin-

sic problems that the search environment imposes in 

any non-trivial search system (e.g., adaptability and 

ambiguity). 

At the input level, the issue is balancing usability 

and higher expressivity at the level of the query, hid-

ing the complexity of SQL-like query languages, 

while allowing the user to express his / her informa-

tion needs fully. Different kinds of search inputs pro-

vide complementary affordances to support the ordi-

nary user in querying the semantic data. The best 

feature of keyword-based search is its simplicity. 

Nevertheless, in this simplicity lie its main limita-

tions: the lack of expressivity, e.g., in expressing rela-

tionships between words, and the lack of context to 

disambiguate between different interpretations of the 

keywords. In [79], QA systems are classified, accord-

ing to the complexity of the input question and the 

difficulty of extracting the answer, in five increasing-

ly sophisticated types: systems capable of processing 

factual questions (factoids), systems enabling reason-

ing mechanisms, systems that fuse answers from dif-

ferent sources, interactive (dialog) systems and sys-

tems capable of analogical reasoning. Most research 

in QA focuses on factual QA, where we can distin-

guish between Wh-queries (who, what, how many, 

etc.), commands (name all, give me, etc.) requiring 

an element or list of elements as an answer, or affir-

mation / negation questions. As pointed out in [47] 

more difficult kinds of factual questions include those 

which ask for opinion, like Why or How questions, 

which require understanding of causality or instru-

mental relations, What questions which provide little 

constraint in the answer type, and definition questions. 

In this survey we focus on factual QA, including 

open-domain definition questions, i.e., What-queries 

about arbitrary concepts. In the SW context factual 

QA means that answers are ground facts as typically 

found in KBs and provides an initial foundation to 

tackle more ambitious forms of QA. 

QA systems can also be classified according to the 

different sources used to generate an answer as fol-

lows: 

− Natural Language interfaces to structured data 

on databases (NLIDB traced back to the late six-

ties [3]). 

− QA over semi-structured data (e.g., health 

records, yellow pages, wikipedia infoboxes). 

− Open QA over free text, fostered by the 

open-domain QA track introduced by TREC 

(http://trec.nist.gov) in 1999 (TREC-8). 

− QA over structured semantic data, where the 

semantics contained in ontologies provide the 

context needed to solve ambiguities, interpret 

and answer the user query. 

Another distinction between QA systems is whether 

they are domain-specific (closed domain) or domain-

independent (open domain). Ontology-based QA 

emerged as a combination of ideas of two different 

research areas – it enhances the scope of closed 

NLIDB over structured data, by being agnostic to the 

domain of the ontology that it exploits; and also 

presents complementary affordances to open QA over 

free text (TREC), the advantage being that it can help 

with answering questions requiring situation-specific 

answers, where multiple pieces of information (from 

one or several sources) need to be assembled to infer 

the answers at run time. Nonetheless, most ontology-

based QA systems are akin to NLIDB in the sense 

that they are able to extract precise answers from 

structured data in a specific domain scenario, instead 

of retrieving relevant paragraphs of text in an open 

scenario. Latest proprietary QA systems over struc-

tured data, such as TrueKnowledge and Powerset 

(detailed in Section 3.3), are open domain but re-

stricted to their own proprietary sources. 

A challenge for domain-independent systems 

comes from the search environment that can be cha-

racterized by large scale, heterogeneity, openness and 

multilinguality. The search environment influences to 

what level semantic systems perform a deep exploita-

tion of the semantic data. In order to take full advan-

 

Fig. 1. The dimensions of Question Answering and query and 
search interfaces in general. 
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tage of the inherent characteristics of the semantic 

information space to extract the most accurate an-

swers for the users, QA systems need to tackle vari-

ous traditional intrinsic problems derived from the 

search environment, such as: 

− Mapping the terminology and information needs 

of the user into the terminology used by the 

sources, in such a form that: (1) it can be eva-

luated using standard query processing and infe-

rencing techniques, (2) it does not affect porta-

bility or adaptability of the systems to new do-

mains, and (3) it leads to the correct answer.  

− Disambiguating between all possible interpreta-

tions of a user query. Independently of the type 

of query, any non-trivial NL QA system has to 

deal with ambiguity. Furthermore, in an open 

scenario, ambiguity cannot be solved by means 

of an internal unambiguous knowledge represen-

tation, as in domain-restricted scenarios. In 

open-domain scenarios, systems face the prob-

lem of polysemous words, with different mean-

ings according to different domains. 

− Because answers may come from different 

sources, and different sources have varying le-

vels of quality and trust, knowledge fusion and 

ranking measures should be applied to select the 

better sources, fuse similar answers together, 

and rank the answers across sources.  

− With regards to scalability, in general terms, 

there is a trade-off between the complexity of 

the querying process and the amount of data sys-

tems can use in response to a user demand in a 

reasonable time. 

Multilinguality issues, the ability to answer a ques-

tion posed in one language using an answer corpus in 

another language, fostered by the Multilingual Ques-

tion Answering Track at the cross language evalua-

tion forum (CLEF)1 since 2002 [33], are not reviewed 

in this survey. This is because in the context of QA in 

the open SW, challenges such as scalability and hete-

rogeneity need to be tackled first to obtain answers 

across sources. 

NL interfaces are an often-proposed solution in the 

literature for casual users [51], being particularly ap-

propriate in domains for which there are authoritative 

and comprehensive databases or resources [80]. 

However, their success has been typically oversha-

dowed by both the brittleness and habitability prob-

                                                           
1 http://clef.isti.cnr.it 

lems [91], defined as the mismatch between the user 

expectations and the capabilities of the system with 

respect to its NL understanding and what it knows 

about (users do not know what it is possible to ask). 

As stated in [94] iterative and exploratory search 

modes are important to the usability of all search 

systems, to support the user in understanding what is 

the knowledge of the system and what subset of NL 

is possible to ask about. Systems also should be able 

to provide justifications for an answer in an intuitive 

way (NL generation), suggest the presence of unre-

quested but related information, and actively help the 

user by recommending searches or proposing alter-

nate paths of exploration. For example, view based 

search and forms can help the user to explore the 

search space better than keyword-based or NL query-

ing systems, but they become tedious to use in large 

spaces and impossible in heterogeneous ones. 

Usability of NL interfaces is not covered in this 

review so for additional information we refer the 

reader to [94] and [51]. 

3. Related work on Question Answering 

Here we present a short survey of related work on 

QA targeted to different types of sources: structured 

databases, unstructured free text and precompiled 

semantic KBs. 

3.1. NLIDB: Natural Language interfaces to 

databases 

The use of NL to access relational databases can 

be traced back to the late sixties and early seventies 

[3]. The first QA systems were developed in the six-

ties and they were basically NL interfaces to expert 

systems, tailored to specific domains, the most fam-

ous ones being BASEBALL [35] and LUNAR [98] 

Both systems were domain specific, the former ans-

wered questions about the US baseball league over 

the period of one year, the later answered questions 

about the geological analysis of rocks returned by the 

Apollo missions. LUNAR was able to answer 90% of 

the questions in its domain when posed by untrained 

geologists. In [3] a detailed overview of the state of 

the art for these early systems can be found. 

Some of the early NLIDB approaches relied on 

pattern-matching techniques. In the example de-

scribed by [3], a rule says that if a user’s request con-

tains the word “capital” followed by a country name, 

the system should print the capital which corresponds 
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to the country name, so the same rule will handle 

“what is the capital of Italy?”, “print the capital of 

Italy”, “could you please tell me the capital of Italy”. 

This shallowness of the pattern-matching would often 

lead to failures but it has also been an unexpectedly 

effective technique for exploiting domain-specific 

data sources. 

The main drawback of these early NLIDB systems 

is that they were built having a particular database in 

mind, thus they could not be easily modified to be 

used with different databases and were difficult to 

port to different application domains. Configuration 

phases were tedious and required a long time, be-

cause of domain-specific grammars, hard-wired 

knowledge or hand-written mapping rules that had to 

be developed by domain experts. 

The next generation of NLIDBs used an interme-

diate representation language, which expressed the 

meaning of the user’s question in terms of high-level 

concepts, independently of the database’s structure 

[3]. Thus, separating the (domain-independent) lin-

guistic process from the (domain-dependent) map-

ping process into the database, to improve the porta-

bility of the front end [68]. 

The formal semantics approach presented in [25] 

follows this paradigm and clearly separates between 

the NL front ends, which have a very high degree of 

portability, from the back end. The front end provides 

a mapping between sentences of English and expres-

sions of a formal semantic theory, and the back end 

maps these into expressions, which are meaningful 

with respect to the domain in question. Adapting a 

developed system to a new application requires alter-

ing the domain specific back end alone. 

MASQUE/SQL [2] is a portable NL front end to 

SQL databases. It first translates the NL query into an 

intermediate logic representation, and then translates 

the logic query into SQL. The semi-automatic confi-

guration procedure uses a built-in domain editor, 

which helps the user to describe the entity types to 

which the database refers, using an is-a hierarchy, 

and then to declare the words expected to appear in 

the NL questions and to define their meaning in terms 

of a logic predicate that is linked to a database ta-

ble/view. 

More recent work in the area (2003) can be found 

in PRECISE [85]. PRECISE maps questions to the 

corresponding SQL query by identifying classes of 

questions that are understood in a well defined sense: 

the paper defines a formal notion of semantically 

tractable questions. Questions are translated into sets 

of attribute/value pairs and a relation token corres-

ponds to either an attribute token or a value token. 

Each attribute in the database is associated with a wh-

value (what, where, etc.). Also, a lexicon is used to 

find synonyms. The database elements selected by 

the matcher are assembled into a SQL query, if more 

than one possible query is found, the user is asked to 

choose between the possible interpretations. However, 

in PRECISE the problem of finding a mapping from 

the tokenization to the database requires all tokens to 

be distinct; questions with unknown words are not 

semantically tractable and cannot be handled. As a 

consequence, PRECISE will not answer a question 

that contains words absent from its lexicon. Using the 

example suggested in [85], the question “what are 

some of the neighbourhoods of Chicago?” cannot be 

handled by PRECISE because the word “neighbour-

hood” is unknown. When tested on several hundred 

questions, 80% of them were semantically tractable 

questions, which PRECISE answered correctly, and 

the other 20% were not handled. 

NLI have attracted considerable interest in the 

Health Care area. In the approach presented in [41] 

users can pose complex NL queries to a large medical 

repository, question formulation is facilitated by 

means of Conceptual Authoring. A logical represen-

tation is constructed using a query editing NL inter-

face, where, instead of typing in text, all editing oper-

ations are defined directly on an underlying logical 

representation governed by a predefined ontology 

ensuring that no problem of interpretation arises. 

However, all these approaches still need an inten-

sive configuration procedure. To reduce the formal 

complexity of creating underlying grammars for dif-

ferent domains, [75], and most recently C-PHRASE 

[74] present a state-of-the-art authoring system for 

NLIDB. The author builds the semantic grammar 

through a series of naming, tailoring and defining 

operations within a web-based GUI, as such the NLI 

can be configured by non-specialized, web based 

technical teams. In that system queries are 

represented as expressions in an extended version of 

Codd’s Tuple Calculus, which may be directly 

mapped to SQL queries or first-order logic expres-

sions. Higher-order predicates are also used to sup-

port ranking and superlatives. 

3.2. Open domain Question Answering over text 

3.2.1. Document-based Question Answering 

Most current work on QA, which has been rekin-

dled largely by the TREC Text Retrieval Conference 

(sponsored by the American National Institute, NIST, 

and the Defense Advanced Research Projects Agency, 

V. Lopez et al. / Is Question Answering fit for the Semantic Web?: A survey 129



DARPA) and by the cross-lingual QA Track at CLEF, 

is somewhat different in nature from querying struc-

tured data. These campaigns enable research in QA 

from the IR perspective, where the task consists in 

finding the text that contains the answer to the ques-

tion and extracting the answer. The ARDA’s Ad-

vanced Question Answering for Intelligence funded 

the AQUAINT program, a multi-project effort to im-

prove the performance of QA systems over free large 

heterogeneous collections of structured and unstruc-

tured text or media. Given the large, uncontrolled text 

files and the very weak world knowledge available 

from WordNet and gazetteers, these systems have 

performed surprisingly well. For example, the LCC 

system [77] that uses a deep linguistic analysis and 

iterative strategy obtained a score of 0.856 by ans-

wering correctly 415 questions out of 500 in TREC-

11 (2002). 

There are linguistic problems common in most 

kinds of NL understanding systems. A high-level 

overview on the state of the art techniques for open 

QA can be found in [83]. Some of the methods use 

shallow keyword-based expansion techniques to lo-

cate interesting sentences from the retrieved docu-

ments, based on the presence of words that refer to 

entities of the same type of the expected answer type. 

Ranking is based on syntactic features such as word 

order or similarity to the query. Templates can be 

used to find answers that are just reformulations of 

the question. Most of the systems classify the query 

based on the type of the answer expected: e.g., a 

name (i.e., person, organization), a quantity (mone-

tary value, distance, length, size) or a date. Classes of 

questions are arranged hierarchically in taxonomies 

and different types of questions require different 

strategies. These systems often utilize world know-

ledge that can be found in large lexical resources 

such as WordNet, or ontologies such as Suggested 

Upper Merged Ontology (SUMO) to pinpoint ques-

tion types and match entities to the expected answer 

type. More sophisticated syntactic, semantic and con-

textual processing to construct an answer might in-

clude: named-entity (NE) recognition, relation extrac-

tion, co-reference resolution, syntactic alternations, 

word sense disambiguation (WSD), logical inferences 

and temporal-spatial reasoning. 

Going into more details, QA applications for text 

typically involve two steps, as pointed out by [45]: 

(1) “identifying the semantic type of the entity sought 

by the question”; and (2) “determining additional 

constraints on the answer entity”. Constraints can 

include, for example, keywords (that may be ex-

panded using synonyms or morphological variants) to 

be used in the matching of candidate answers, and 

syntactic or semantic relations between a candidate 

answer entity and other entities in the question. Vari-

ous systems have, therefore built hierarchies of ques-

tion types based on the types of answers sought 

[46,78,87,99]. NE recognition and information ex-

traction (IE) are powerful tools in free text QA. The 

study presented in [87] showed that over 80% of 

questions asked for a named entity as a response. 

For instance, in LASSO [78] a question type hie-

rarchy was constructed from the analysis of the 

TREC-8 training data, and a score of 55.5% for short 

answers and 64.5% for long answers was achieved. 

Given a question, LASSO can find automatically (a) 

the type of the question (what, why, who, how, 

where), (b) the type of the answer (person, location, 

etc.), (c) the focus of the question, defined as the 

“main information required by the interrogation” 

(useful for “what” questions, which usually leave 

implicit the type of the answer which is sought), (d) 

the relevant keywords from the question. Occasional-

ly, some words of the question do not occur in the 

answer (for example, the focus “day of the week” is 

very unlikely to appear in the answer). Therefore, 

LASSO implements NE recognition heuristics for 

locating the possible answers. 

The best results of the TREC-9 competition were 

obtained by the FALCON system described in [42], 

with a score of 58% for short answers and 76% for 

long answers. In FALCON the semantic categories of 

the answers are mapped into categories covered by a 

NE Recognizer. When the answer type is identified, it 

is mapped into an answer taxonomy, where the top 

categories are connected to several word classes from 

WordNet. In an example presented in [42], FALCON 

identifies the expected answer type of the question 

“what do penguins eat?” as food because “it is the 

most widely used concept in the glosses of the sub-

hierarchy of the noun synset {eating, feeding}”. All 

nouns (and lexical alterations), immediately related to 

the concept that determines the answer type, are con-

sidered among the other query keywords. Also, 

FALCON gives a cached answer if the similar ques-

tion has already been asked before; a similarity 

measure is calculated to see if the given question is a 

reformulation of a previous one. 

The system described in Litkowski et al. [61], 

called DIMAP, extracts “semantic relation triples” 

after a document is parsed, converting a document 

into triples. The DIMAP triples are stored in a data-

base in order to be used to answer the question. The 

semantic relation triple described consists of a dis-

course entity, a semantic relation that characterizes 
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the entity’s role in the sentence and a governing word 

to which the entity stands in the semantic relation. 

The parsing process generates an average of 9.8 

triples per sentence in a document. The same analysis 

was done for each question, generating on average 

3.3 triples per sentence, with one triple for each ques-

tion containing an unbound variable, corresponding 

to the type of question (the system categorized ques-

tions in six types: time, location, who, what, size and 

number questions). 

3.2.2. Question Answering on the Web 

QA systems over the Web have the same three 

main components as QA systems designed to extract 

answers to factual questions by consulting a reposito-

ry of documents (TREC): (1) a query formulation 

mechanism that translates the NL queries into the 

required IR queries, (2) a search engine over the Web, 

instead of an IR engine searching the documents, and 

(3) the answer extraction module that extracts an-

swers from the retrieved documents. A technique 

commonly shared in Web and TREC-systems, is to 

use WordNet or NE tagging to classify the type of the 

answer. 

For instance, Mulder [55] is a QA system for fac-

tual questions over the Web, which relies on multiple 

queries sent to the search engine Google. To form the 

right queries for the search engine, the query is classi-

fied using WordNet to determine the type of the ob-

ject of the verb in the question (numerical, nominal, 

temporal), then a reformulation module converts a 

question into a set of keyword queries by using dif-

ferent strategies: extracting the most important key-

words, quoting partial sentences (detecting noun 

phrases), conjugating the verb, or performing query 

expansion with WordNet. In Mulder, an answer is 

extracted from the snippets or summaries returned by 

Google, which is less expensive than extracting an-

swers directly from a Web page. Then, to reduce the 

noise or incorrect information typically found on the 

Web and improve accuracy, Mulder clusters similar 

answers together and picks the best answer with a 

voting procedure. Mulder takes advantage of Google 

ranking algorithms base on PageRank, the proximity 

or frequency of the words, and the wider coverage 

provided by Google: “with a large collection there is 

a higher probability of finding target sentences”. An 

evaluation using the TREC-8 questions, based on the 

Web, instead of the TREC document collection, 

showed that Mulder’s recall is more than a factor of 

three higher than AskJeeves. 

The search engine AskJeeves
2 looks up the user’s 

question in its database and returns a list of matching 

questions that it knows how to answer, the user se-

lects the most appropriate entry in the list, and he is 

taken to the Web pages where the answer can be 

found. AskJeeves relies on human editors to match 

question templates with authoritative sites. 

Other approaches are based on statistical or seman-

tic similarities. For example, FAQ Finder [12] is a 

NL QA system that uses files of FAQs as its KB; it 

uses two metrics to match questions to answers: sta-

tistical similarity and semantic similarity. For shorter 

answers over limited structured data, NLP-based sys-

tems have generally performed better than statistical 

based ones, which need a lot of domain specific train-

ing and long documents with large quantities of data 

containing enough words for statistical comparisons 

to be considered meaningful. Semantic similarity 

scores rely on finding connections through WordNet 

between the user’s question and the answer. The 

main problem here is the inability to cope with words 

that are not explicitly found in the KB. Gurevych’s 

[40] approach tries to identify semantically equiva-

lent questions, which are paraphrases of user queries, 

already answered in social Q&A sites, such as Ya-

hoo!Answers. 

Finally, Google itself is also evolving into a NL 

search engine, providing precise answers to some 

specific factual queries, together with the Web pages 

from which the answers have been obtained. Howev-

er, it does not yet distinguish between queries such as 

“where Barack Obama was born” or “when Barack 

Obama was born” (as per May 2011). 

3.3. Latest developments on structured (proprietary) 

open Question Answering 

As we have seen in the previous subsections, 

large-scale, open-domain QA has been stimulated in 

the last decade (since 1999) by the TREC QA track 

evaluations. The current trend is to introduce seman-

tics to search for Web pages based on the meaning of 

the words in the query, rather than just matching 

keywords and ranking pages by popularity. Within 

this context, there are also approaches that focus on 

directly obtaining structured answers to user queries 

from pre-compiled semantic information, which is 

used to understand and disambiguate the intended 

meaning and relationships of the words in the query. 

                                                           
2 http://www.ask.co.uk 
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This class of systems includes START, which 

came online in 1993 as the first QA system available 

on the Web, and several industrial startups such as 

Powerset, Wolfram Alpha and True Knowledge 3 , 

among others. These systems use a well-established 

approach, which consists of semi-automatically 

building their own homogeneous, comprehensive 

factual KB about the world, similarly to OpenCyc 

and Freebase4. 

START [49] answers questions about geography 

and the MIT infolab, with a performance of 67% over 

326 thousand queries. It uses highly edited KBs to 

retrieve tuples in the subject-relation-object form, as 

pointed out by [49], although not all possible queries 

can be represented in the binary relational model, in 

practice these exceptions occur very infrequently. 

START compares the user query against the annota-

tions derived from the KB. However, START suffers 

from the knowledge acquisition bottleneck, as only 

trained individuals can add knowledge and expand 

the system’s coverage (by integrating new Web 

sources).  

Commercial systems include PowerSet, which tries 

to match the meaning of a query with the meaning of 

a sentence in Wikipedia. Powerset not only works on 

the query side of the search (converting the NL que-

ries into database understandable queries, and then 

highlighting the relevant passage of the document), 

but it also reads every word of every (Wikipedia) 

page to extract the semantic meaning. It does so by 

compiling factzs – similar to triples, from pages 

across Wikipedia, together with the Wikipedia page 

locations and sentences that support each factz and 

using Freebase and its semantic resources to annotate 

them. The Wolfram Alpha knowledge inference en-

gine builds a broad trusted KB about the world by 

ingesting massive amounts of information (approx. 

10TBs, still a tiny fraction of the Web), while True 

Knowledge relies on users to add and curate informa-

tion. 

4. Semantic ontology-based Question Answering 

In this section we look at ontology-based semantic 

QA systems (also referred in this paper as semantic 

QA systems), which take queries expressed in NL 

                                                           
3 http://www.powerset.com/, 
   http://www.wolframalpha.com/index.html, and 
   http://www.trueknowledge.com/ 
4 www.opencyc.org, http://www.freebase.com 

and a given ontology as input, and return answers 

drawn from one or more KBs that subscribe to the 

ontology. Therefore, they do not require the user to 

learn the vocabulary or structure of the ontology to be 

queried.  

4.1. Ontology-specific QA systems 

Since the steady growth of the SW and the emer-

gence of large-scale semantics the necessity of NLI to 

ontology-based repositories has become more acute, 

re-igniting interest in NL front ends. This trend has 

also been supported by usability studies [51], which 

show that casual users, typically overwhelmed by the 

formal logic of the SW, prefer to use a NL interface 

to query an ontology. Hence, in the past few years 

there has been much interest in ontology based QA 

systems, where the power of ontologies as a model of 

knowledge is directly exploited for the query analysis 

and translation, thus providing a new twist on the old 

issues of NLIDB, by focusing on portability and per-

formance, and replacing the costly domain specific 

NLP techniques with shallow but domain-

independent ones. A wide range of off-the-shelf 

components, including triple stores (e.g., Sesame5) or 

text retrieval engines (e.g., Lucene 6 ), domain-

independent linguistic resources, such as WordNet 

and FrameNet7, and NLP Parsers, such as Stanford 

Parser (Klein and Manning, 2002), support the evolu-

tion of these new NLI. 

Ontology-based QA systems vary on two main as-

pects: (1) the degree of domain customization they 

require, which correlates with their retrieval perfor-

mance, and (2) the subset of NL they are able to un-

derstand (full grammar-based NL, controlled or 

guided NL, pattern based), in order to reduce both 

complexity and the habitability problem, pointed out 

as the main issue that hampers the successful use of 

NLI [51]. 

At one end of the spectrum, systems are tailored to 

a domain and most of the customization has to be 

performed or supervised by domain experts. For in-

stance QACID [32] is based on a collection of que-

ries from a given domain that are analyzed and 

grouped into clusters, where each cluster, containing 

alternative formulations of the same query, is ma-

nually associated with SPARQL queries. In the mid-

                                                           
5 http://www.openrdf.org/ 
6 http://lucene.apache.org/ 
7 http://wordnet.princeton.edu, 
   http://framenet.icsi.berkeley.edu 
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dle of the spectrum, a system such as ORAKEL [15] 

requires a significant domain-specific lexicon custo-

mization process, while for systems like the e-

librarian [59] performance is dependent on the ma-

nual creation of a domain dependent lexicon and dic-

tionary. At the other end of the spectrum, in systems 

like AquaLog [67], the customization is done on the 

fly while the system is being used, by using interac-

tivity to learn the jargon of the user over time. GIN-

SENG [8] guides the user through menus to specify 

NL queries, while systems such as PANTO [96], 

NLP-Reduce, Querix [53] and QuestIO [88], generate 

lexicons, or ontology annotations (FREya by Daml-

janovic et al.), on demand when a KB is loaded. In 

what follows, we look into these systems in detail and 

present a comparison in Table 1. 

AquaLog [67] allows the user to choose an ontol-

ogy and then ask NL queries with respect to the un-

iverse of discourse covered by the ontology. Aqua-

Log is ontology independent because the configura-

tion time required to customize the system for a par-

ticular ontology is negligible. The reason for this is 

that the architecture of the system and the reasoning 

methods are completely domain-independent, relying 

on the semantics of the ontology, and the use of ge-

neric lexical resources, such as WordNet. In a first 

step, the Linguistic Component uses the GATE infra-

structure and resources [20] to obtain a set of linguis-

tic annotations associated with the input query. The 

set of annotations is extended by the use of JAPE 

grammars
8 to identify terms, relations, question indi-

                                                           
8 JAPE is a language for creating regular expressions applied to 

linguistic annotations in a text corpus 

cators (who, what, etc.), features (voice and tense) 

and to classify the query into a category. Knowing 

the category and GATE annotations for the query, the 

Linguistic Component creates the linguistic triples or 

Query-Triples. Then, these Query-Triples are further 

processed and interpreted by the Relation Similarity 

Service, which maps the Query-Triples to ontology-

compliant Onto-Triples, from which an answer is 

derived. AquaLog identifies ontology mappings for 

all the terms and relations in the Query-Triples by 

means of string based comparison methods and 

WordNet. In addition, AquaLog’s interactive relation 

similarity service uses the ontology taxonomy and 

relationships to disambiguate between the alternative 

representations of the user query. When the ambigui-

ty cannot be resolved by domain knowledge the user 

is asked to choose between the alternative readings. 

AquaLog includes a learning component to automati-

cally obtain domain-dependent knowledge by creat-

ing a lexicon, which ensures that the performance of 

the system improves over time, in response to the 

particular community jargon (vocabulary) used by 

end users. AquaLog uses generalization rules to learn 

novel associations between the NL relations used by 

the users and the ontology structure. Once the ques-

tion is entirely mapped to the underlying ontological 

structure the corresponding instances are obtained as 

an answer. 

QACID [32] relies on the ontology, a collection of 

user queries, and an entailment engine that associates 

new queries to a cluster of existing queries. Each 

query is considered as a bag of words, the mapping 

between words in NL queries to instances in a KB 

is done through string distance metrics [17] and an 

 

Table 1 
Ontology-based QA approaches classified by the subset of NL and degree of customization 

Ontology-

based QA 

systems 

Subset of NL Customization Ontology-independent 

Guided 

NL 

Bag of 

words 

Full 

shallow 

grammar 

Domain 

grammar / 

collection 

Domain 

lexicons 

User 

learning  

Relation 

(Triple) 

based 

Pattern-matching 

(structural lexicon) 

QACID  +  + +    

ORAKEL   + + +    

e-Librarian   +  +    

GINSENG +       + 

NLPReduce  +      + 

Querix   +    + + 

AquaLog   +   + + (entity lexicon only) 

PANTO   +    + + 

QuestIO  +     + + (gazetteers) 

FreyA   +   + + + (gazetters) 
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ontological lexicon. Prior to launching the corres-

ponding SPARQL query for the cluster, the SPARQL 

generator replaces the ontology concepts with the 

instances mapped for the original NL query. This 

system is at the domain-specific end of the spectrum 

because the performance depends on the variety of 

questions collected in the domain, the process is do-

main-dependent, costly and can only be applied to 

domains with limited coverage. 

ORAKEL [15] is a NL interface that translates 

factual wh-queries into F-logic or SPARQL and eva-

luates them with respect to a given KB. The main 

feature is that it makes use of a compositional seman-

tic construction approach thus being able to handle 

questions involving quantification, conjunction and 

negation. In order to translate factual wh-queries it 

uses an underlying syntactic theory built on a variant 

of a Lexicalized Tree Adjoining Grammar (LTAG), 

extended to include ontological information. The 

parser makes use of two different lexicons: the gener-

al lexicon and the domain lexicon. The general or 

domain independent lexicon includes closed-class 

words such as determiners, i.e., a, the, every, etc., as 

well as question pronouns, i.e., who, which, etc. The 

domain lexicon, in which natural expressions, verbs, 

adjectives and relational nouns, are mapped to cor-

responding relations specified in the domain ontology, 

varies from application to application and, for each 

application, this lexicon has to be partially generated 

by a domain expert. The semantic representation of 

the words in the domain independent lexicon makes 

reference to domain independent categories, as given 

for example by a foundational ontology such as 

DOLCE. This assumes that the domain ontology is 

somehow aligned to the foundational categories pro-

vided by the foundational ontology. Therefore, the 

domain expert is only involved in the creation of the 

domain specific lexicon, which is actually the most 

important lexicon as it is the one containing the map-

ping of linguistic expressions to domain-specific pre-

dicates. The domain expert has to instantiate subcate-

gorization frames, which represent linguistic struc-

tures (e.g., verbs with their arguments), and maps 

these to domain-specific relations in the ontology. 

WordNet is used with the purpose to suggest syn-

onyms (in the most frequent sense of the word) for 

the verb or noun currently edited. The approach is 

independent of the target language, which only re-

quires a declarative description in Prolog of the trans-

formation from the logical form to the target lan-

guage. 

The e-Librarian [59] understands the sense of the 

user query to retrieve multimedia resources from a 

KB. First, the NL query is pre-processed into its lin-

guistic classes, in the form of triples, and translated 

into an unambiguous logical form, by mapping the 

query to an ontology to solve ambiguities. If a query 

is composed of several linguistic clauses, each one is 

translated separately and the logical concatenation 

depends on the conjunction words used in the ques-

tion. The system relies on simple, string-based com-

parison methods (e.g., edit distance metrics) and a 

domain dictionary to look up lexically related words 

(synonyms) because general-purpose dictionaries like 

WordNet are often not appropriate for specific do-

mains. Regarding portability, the creation of this dic-

tionary is costly, as it has to be created for each do-

main, but the strong advantage of this is that it pro-

vides very high performance, which is difficult to 

obtain with general-purpose dictionaries (from 229 

user queries, 97% were correctly answered in the 

evaluation). The e-librarian does not return the an-

swer to the user’s question, but it retrieves the most 

pertinent document(s) in which the user finds the 

answer to her question. 

Moving into the systems that do not necessitate 

any customization effort or previous pre-processing, 

[51] presented four different ontology-independent 

query interfaces with the purpose of studying the 

usability of NLI for casual end-users. These four sys-

tems lie at different positions of what they call the 

Formality Continuum, where the freedom of a full 

NL and the structuredness of a formal query language 

are at opposite ends of the continuum. The first two 

interfaces, NLP-Reduce and Querix allow users to 

pose questions in full or slightly controlled English. 

The third interface Ginseng / GINO offers query for-

mulation in a controlled language akin to English. 

Therefore, the first three interfaces lie on the NL end 

of the Formality Continuum towards its middle. As 

such, they analyze a user query, match it to the con-

tent of a KB, and translate these matches into state-

ments of a formal query language (i.e., SPARQL) in 

order to execute it. The last interface, Semantic Crys-

tal, belongs to the formal approaches, as it exhibits a 

graphical query language. The guided and controlled 

entry overcomes the habitability problem of NL sys-

tems (providing a trade-off between structuredness 

and freedom) and ensuring all queries make sense in 

the context of the loaded KB. However, as stated in 

this usability study “users favor query languages that 

impose some structure but do not overly restrict 

them”, thus, from the four systems, Querix was the 

interface preferred by the users, which query lan-

guage (full English) was perceived as a natural, not 

formal, guiding structure. 
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The interface that has the least restrictive and most 

natural query language, NLP-Reduce [52], allows 

almost any NL input (from ungrammatical inputs, 

like keywords and sentence fragments, to full English 

sentences). It processes NL queries as bags of words, 

employing only two basic NLP techniques: stemming 

and synonym expansion. Essentially, it attempts to 

match the parsed question words to the synonym-

enhanced triples stored in the lexicon (the lexicon is 

generated from a KB and expanded with WordNet 

synonyms), and generates SPARQL statements for 

those matches. It retrieves all those triples for which 

at least one of the question words occur as an object 

property or literal, favouring triples which cover most 

words and with best matches, and joins the resultant 

triples to cover the query. 

The second interface Querix [53] is also a pattern 

matching NLI, however, the input is narrowed to full 

English (grammatically correct) questions, restricted 

only with regard to sentence beginnings (i.e., only 

questions starting with “which”, “what”, “how many”, 

“how much”, “give me” or “does”). In contrast with 

NLP-Reduce, Querix makes use of the syntactical 

structure of input questions to find better matches in 

the KB. Querix uses the Stanford parser to analyze 

the input query, then, from the parser’s syntax tree, 

extended with WordNet synonyms, it identifies triple 

patterns for the query. These triple patterns are 

matched in the synonym-enhanced KB by applying 

pattern matching algorithms. When a KB is chosen, 

the RDF triples are loaded into a Jena model, using 

the Pellet reasoner to infer all implicitly defined 

triples and WordNet to produce synonym-enhanced 

triples. Pattern matching is done by searching for 

triples that include one of the nouns or verbs in the 

query. Querix does not try to resolve NL ambiguities, 

but asks the user for clarifications in a pop-up dialog 

menu window to disambiguate. Several triples can be 

retrieved for the nouns, verbs and their synonyms. 

Those that matches the query triples are selected, and 

from these, a SPARQL query is generated to be ex-

ecuted in the Jena’s SPARQL engine. 

In the middle of the formality continuum, GIN-

SENG [8] controls a user’s input via a fixed vocabu-

lary and predefined sentence structures through 

menu-based options, as such it falls into the category 

of guided input NL interfaces, similar to LingoLogic 

[91]. These systems do not try to understand NL que-

ries but they use menus to specify NL queries in 

small and specific domains. GINSENG uses a small 

static grammar that is dynamically extended with 

elements from the loaded ontologies and allows an 

easy adaptation to new ontologies, without using any 

predefined lexicon beyond the vocabulary that is de-

fined in the static sentence grammar and provided by 

the loaded ontologies. When the user enters a sen-

tence, an incremental parser relies on the grammar to 

constantly (1) propose possible continuations to the 

sentence, and (2) prevent entries that would not be 

grammatically interpretable. 

PANTO [96] is a portable NLI that takes a NL 

question as input and executes a corresponding 

SPARQL query on a given ontology model. It relies 

on the statistical Stanford parser to create a parse tree 

of the query from which triples are generated. These 

triples are mapped to the triples in the lexicon. The 

lexicon is created when a KB is loaded into the sys-

tem, by extracting all entities enhanced with Word-

Net synonyms. Following the AquaLog model, it 

uses two intermediate representations: the Query-

Triples, which rely solely on the linguistic analysis of 

the query sentence, and the Onto-Triples that match 

the query triples and are extracted using the lexicon, 

string distance metrics and WordNet. PANTO can 

handle conjunctions / disjunctions, negation, compar-

atives and superlatives (those that can be interpreted 

with Order by and Limit on datatype, superlatives 

that require the functionality count are not supported). 

Similarly, in QuestIO [88] NL queries are trans-

lated into formal queries but the system is reliant on 

the use of gazetteers initialized for the domain ontol-

ogy. In QuestIO users can enter queries of any length 

and form. QuestIO works by recognizing concepts 

inside the query through the gazetteers, without rely-

ing on other words in the query. It analyzes potential 

relations between concept pairs and ranks them ac-

cording to string similarity measures, the specifity of 

the property or distance between terms. QuestIO sup-

ports conjunction and disjunction. 

FREyA [21] is the successor to QuestIO, provid-

ing improvements with respect to a deeper under-

standing of a question’s semantic meaning, to better 

handle ambiguities when ontologies are spanning 

diverse domains. FREyA allows users to enter que-

ries in any form. Therefore, to identify the answer 

type of the question and present a concise answer to 

the user a syntactic parse tree is generated using the 

Stanford parser. In addition, FREyA assists the user 

to formulate a query through the generation of clarifi-

cation dialogs; the user’s selections are saved and 

used for training the system in order to improve its 

performance over time for all users. Similar to Aqua-

Log’s learning mechanism, FREyA uses ontology 

reasoning to learn more generic rules, which could 

then be reused for the questions with similar context 

(e.g., for the superclasses of the involved classes). 
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Given a user query, the process starts with finding 

ontology-based annotations in the query, if there are 

ambiguous annotations that cannot be solved by rea-

soning over the context of the query (e.g., “Missis-

sippi” can be a river or a state) the user is engaged in 

a dialog. The quality of the annotations depends on 

the ontology-based gazetteer OntoRoot, which is the 

component responsible for creating the annotations. 

The suggestions presented to the user in the clarifica-

tion dialogs have an initial ranking based on synonym 

detection and string similarity. Each time a sugges-

tion is selected by the user, the system learns to place 

the correct suggestions at the top for any similar 

question. These dialogs also allow translating any 

additional semantics into the relevant operations 

(such is the case with superlatives, which cannot be 

automatically understood without additional 

processing, i.e., applying a maximum or minimum 

function to a datatype property value). Triples are 

generated from the ontological mappings taking into 

account the domain and range of the properties. The 

last step is generating a SPARQL query by combin-

ing the set of triples. 

We have selected a representative selection of 

state-of-the-art NL interfaces over ontologies to un-

derstand the advances and limitations in this area. 

However, this study is not exhaustive
9, and other sim-

ilar systems to structured knowledge sources exist, 

such as ONLI [76], a QA system used as front-end to 

the RACER reasoner. ONLI transform the user NL 

queries into a nRQL query format that supports the 

<argument, predicate, argument> triple format. It 

accepts queries with quantifiers and number restric-

tions. However, from [76] it is not clear how much 

effort is needed to customize the system for different 

domains. [27] also developed a NL interface for a 

Web-based tourism platform. The system uses an 

ontology that describes the domain, the linguistic 

relationships between the domain concepts, and pa-

rameterised SQL fragments used to build the SQL 

statements representing the NL query. A lightweight 

grammar analyzes the question to combine the SQL 

statements accordingly. The system was online for 

ten days and collected 1425 queries (57.05% full in-

put queries and the rest were keywords and question 

fragments). Interestingly, this study shows that the 

complexity of the NL questions collected was rela-

tively low (syntactically simple queries combining an 

                                                           
9 See, for example, the EU funded project QALL-ME on mul-

timodal QA: http://qallme.fbk.eu/ 

average of 3.41 concepts), and they can be parsed 

with shallow grammars. 

Another approach with elaborated syntactic and 

semantic mechanisms that allows the user to input 

full NL to query KBs was developed by [34], Frank 

et al. system applies deep linguistic analysis to a 

question and transforms it into an ontology-

independent internal representation based on concep-

tual and semantic characteristics. From the linguistic 

representation, they extract the so-called proto que-

ries, which provide partial constraints for answer 

extraction from the underlying knowledge sources. 

Customization is achieved through hand-written re-

writing rules transforming FrameNet like structures 

to domain-specific structures as provided by the do-

main ontology. A prototype was implemented for two 

application domains: the Nobel prize winners and the 

language technology domains, and was tested with a 

variety of question types (wh-, yes-no, imperative, 

definition, and quantificational questions), achieving 

precision rates of 74.1%. 

To cope with the slower pace of increase in new 

knowledge in semantic repositories, in compassion 

with non-semantic Web repositories, SemanticQA 

[90] makes it possible to complete partial answers 

from a given ontology with Web documents. Seman-

ticQA assists the users in constructing an input ques-

tion as they type, by presenting valid suggestions in 

the universe of discourse of the selected ontology, 

whose content has been previously indexed with Lu-

cene. The matching of the question to the ontology is 

performed by exhaustively matching all word combi-

nations in the question to ontology entities. If a match 

is not found, WordNet is also used. Then all generat-

ed ontological triples are combined into a single 

SPARQL query. If the SPARQL query fails, indicat-

ing that some triples have no answers in the ontology, 

the system attempts to answer the query by searching 

in the snippets returned by Google. The collection of 

keywords passed to Google is gathered from the la-

bels of the ontological entities plus WordNet. The 

answers are ranked using a semantic answer score, 

based on the expected type (extracted from the ontol-

ogy) and the distance between all terms in the key-

word set. To avoid ambiguity it allows restricting the 

document search to a single domain (e.g., PubMed if 

the user is looking for bio-chemical information). A 

small scale ad-hoc test was performed with only eight 

samples of simple factoid questions using the Lehigh 

University Benchmark ontology
10  (63% precision), 

                                                           
10 http://swat.cse.lehigh.edu/projects/lubm/ 
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and six sample queries using the SwetoDblp ontology 

(83% precision) [1]. 

One can conclude that the techniques used to solve 

the lexical gap between the users and the structured 

knowledge are largely comparable across all systems: 

off-the-shelf parsers and shallow parsing are used to 

create a triple-based representation of the user query, 

while string distance metrics, WordNet, and heuris-

tics rules are used to match and rank the possible on-

tological representations. 

4.2. Limitations of domain-specific QA approaches 

on the large SW 

Most of the semantic QA systems reviewed in this 

paper are portable or agnostic to the domain of the 

ontology, even though, in practice they differ consi-

derably in the degree of domain customization they 

require. Regardless of the various fine-grained differ-

ences between them, most ontology-aware systems 

suffer from the following main limitation when ap-

plied to a Web environment: they are restricted to a 

limited set of domains. Such domain restriction may 

be identified by the use of just one, or a set of, ontol-

ogy(ies) covering one specific domain at a time, or 

the use of one large ontology which covers a limited 

set of domains. The user still needs to tell these sys-

tems which ontology is going to be used. For instance, 

in AquaLog the user can select one of the pre-loaded 

ontologies or load a new ontology into the system (to 

be queried the ontology is temporarily stored in a 

Sesame store in memory). Like in NLIDB, the key 

limitation of all the aforementioned systems is the 

one already pointed out in [45], with the exception of 

FREyA (see Section 4.3) these systems presume that 

the knowledge the system needs to answer a question 

is limited to the knowledge encoded in one, or a set 

of homogeneous ontologies at a time. Therefore, they 

are essentially designed to support QA in corporate 

databases or semantic intranets, where a shared orga-

nizational ontology (or a set of them) is typically 

used to annotate resources. In such a scenario ontolo-

gy-driven interfaces have been shown to effectively 

support the user in formulating complex queries, 

without resorting to formal query languages. Howev-

er, these systems remain brittle, and any information 

that is either outside the semantic intranet, or simply 

not integrated with the corporate ontology remains 

out of bounds. 

As a result, it is difficult to predict the feasibility 

of these models to scale up to open and heterogene-

ous environments, where an unlimited set of topics is 

covered. Nonetheless, we detail next the intrinsic 

characteristics of these systems, which in principle 

impair their suitability to scale up to the open SW in 

the large: 

Domain-specific grammar-based systems: In 

these systems grammars are used to syntactically 

analyze the structure of a NL query and interpret, if 

there are no linguistic ambiguities, how the terms in a 

query link to each other. According to [18] it is diffi-

cult to devise grammars that are sufficiently expres-

sive. Often, they are quite limited with regard to the 

syntactic structures they are able to understand or are 

domain dependent (although grammars can also be 

fully domain independent, as it is the case with Aq-

uaLog). Nevertheless, according to [60] users tend to 

use a limited language when interacting with a sys-

tem interface, so grammars do not need to be com-

plete. Systems like ORAKEL that involve the user in 

the difficult task of providing a domain-specific 

grammar are not a suitable solution in a multi-

ontology open scenario. 

Pattern-matching or bag-of-words approaches: 

These systems search for the presence of constituents 

of a given pattern in the user query. As stated in [51] 

“the more flexible and less controlled a query lan-

guage is, the more complex a system’s question ana-

lyzing component needs to be to compensate for the 

freedom of the query language”. However, naïve and 

flexible pattern-matching systems work well in 

closed scenarios, like the NLP-Reduce system, in 

which complexity is reduced to a minimum by only 

employing two basic NLP techniques: stemming and 

synonym expansion. Their best feature is that they 

are ontology independent and even ungrammatical 

and ill-formed questions can be processed. Neverthe-

less, their little semantics and lack of sense disam-

biguation mechanisms hamper their scalability to a 

large open scenario. In a non-trivial scenario, pattern-

matching or bag-of-words approaches (QACID, 

QuestIO), together with the almost unlimited freedom 

of the NL query language, result in too many possible 

interpretations of how the words relate together. Thus, 

increasing the risk of not finding correct (SPARQL) 

translations and suffering from the habitability prob-

lem [50]. As stated in an analysis of semantic search 

systems in [44]: “Naïve approaches to semantic 

search are computationally too expensive and in-

crease the number of results dramatically, systems 

thus need to find a way to reduce the search space”. 

Guided interfaces: Guided and controlled inter-

faces, like GINO, which generates a dynamic gram-

mar rule for every class, property and instance and 

presents pop-up boxes to the user to offer all the 
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possible completions to the user’s query, are not feas-

ible solutions in a large multi-ontology scenario. As 

stated in [50] when describing GINO “It is important 

to note that the vocabulary grows with every addi-

tional loaded KB, though users have signaled that 

they prefer to load only one KB at a time”. 

Disambiguation by dialogs and user interaction: 
Dialogs are a popular and convenient feature [51] to 

resolve ambiguous queries, for the cases in which the 

context and semantics of the ontology is not enough 

to choose an interpretation. However, to ask the user 

for assistance every time an ambiguity arises (Aqua-

Log, Querix) can make the system not usable in a 

multi-domain scenario where many ontologies partic-

ipate in the QA processes. In FREyA, the suggestions 

presented on the dialogs are ranked using a combina-

tion of string similarity and synonym detection with 

WordNet and Cyc11. However, as stated in [21]: “the 

task of creating and ranking the suggestions before 

showing them to the user is quite complex, and this 

complexity arises [sic] as the queried knowledge 

source grows”. 

Domain dependent lexicons and dictionaries: 
High performance can be obtained with the use of 

domain dependent dictionaries at the expense of por-

tability (as in the e-librarian system). However it is 

not feasible to manually build, or rely on the exis-

tence of domain dictionaries in an environment with a 

potentially unlimited number of domains. 

Lexicons generated on demand when a KB is 

loaded: The efficiency of automatically generating 

triple pattern lexicons when loading an ontology 

(PANTO, NLP-Reduce, QuestIO, FREyA), including 

inferred triples formed applying inference rules and 

WordNet lexically related words independently of 

their sense, decreases with the size of the ontology 

and is itself a challenging issue if multiple large-scale 

ontologies are to be queries simultaneously. In con-

trast with the structured indexes used by PANTO or 

NLP-Reduce, entity indexes can benefit from less 

challenging constraints in terms of index space, crea-

tion time and maintenance. However, ignoring the 

remaining context provided by the query terms can 

ultimately lead to an increase in query execution time 

to find the adequate mappings. 

4.3. Open QA over the Semantic Web 

Latest research on QA over the SW focuses on 

overcoming the domain-specific limitations of pre-

                                                           
11 http://sw.opencyc.org 

vious approaches. The importance of the challenge, 

for the SW and also NLP communities, to scale QA 

approaches to the open Web, i.e., Linked Data, has 

been recognized by the appearance of the first evalua-

tion challenge for QA over Linked Data in the 1st 

workshop on QA over Linked Data (QALD-1)12. 

From the QA systems analyzed in 4.1, FREyA is 

currently the only one able to query large, heteroge-

neous and noisy single sources (or ontological graph) 

covering a variety of domains, such as DBpedia [10]. 

Similarly, moving into the direction of suitable 

systems for open domain QA systems, PowerAqua 

[66] evolved from the AquaLog system presented in 

Section 4.1, which works using a single ontology, to 

the case of multiple heterogeneous ontologies. Powe-

rAqua is the first system to perform QA over struc-

tured data in an open domain scenario, allowing the 

system to benefit, on the one hand from the combined 

knowledge from the wide range of ontologies auto-

nomously created on the SW, reducing the know-

ledge acquisition bottleneck problem typical of KB 

systems, and on the other hand, to answer queries that 

can only be solved by composing information from 

multiple sources. 

PowerAqua follows a pipeline architecture, the 

query is first transformed by the linguistic component 

into a triple based intermediate format, or Query-

Triples, in the form <subject, property, object>. At 

the next step, the Query-Triples are passed on to the 

PowerMap mapping component [65], which identi-

fies potentially suitable semantic entities in various 

ontologies that are likely to describe query terms and 

answer a query. PowerMap uses both WordNet and 

the SW itself (owl:sameAs) to find synonyms, hyper-

nyms, derived words, meronyms and hyponyms. In 

the third step, the Triple Similarity Service, exploring 

the ontological relations between these entities, 

matches the Query-Triples to ontological expressions 

specific to each of the considered semantic sources, 

producing a set of Onto-Triples that jointly cover the 

user query, from which answers are derived as a list 

of entities matching the given triple patterns in each 

semantic source. Finally, because each resultant 

Onto-Triple may only lead to partial answers, they 

need to be combined into a complete answer. The 

fourth component merges and ranks the various in-

terpretations produced in different ontologies. Among 

other things, merging requires the system to identify 

entities denoting the same individual across ontolo-

gies. Once answers are merged, ranking, based on the 

                                                           
12 http://www.sc.cit-ec.uni-bielefeld.de/qald-1 
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quality of mappings and popularity of the answers, 

can also be applied to sort the answers. As shown in 

[63], merging and ranking algorithms enhance the 

quality of the results with respect to a scenario in 

which merging and ranking is not applied. 

To scale PowerAqua model to an open Web envi-

ronment, exploiting the increasingly available seman-

tic metadata in order to provide a good coverage of 

topics, PowerAqua is coupled with: a) the Watson 

SW gateway, which collects and provides fast access 

to the increasing amount of online available semantic 

data, and b) its own internal mechanism to index and 

query selected online ontological stores, as an alter-

native way to manage large repositories, like those 

offered by the Linked Data community, often not 

available in Watson due to their size and format 

(RDF dumps available as compressed files). 

4.4. Performance of ontology-based QA systems 

based on their state-of-the-art evaluations 

We examine the performance of the ontology-

based QA systems previously presented by looking at 

the evaluation results carried out in the literature. In 

contrast to the IR community, where evaluation using 

standardized techniques, such as those used for 

TREC competitions, has been common for decades, 

systematic and standard evaluation benchmarks to 

support independent datasets and comparisons be-

tween systems are not yet in place for semantic QA 

tools. Important efforts have been done recently to-

wards the establishment of common datasets, metho-

dologies and metrics to evaluate semantic technolo-

gies, e.g., the SEALS project
13 to assess and compare 

different interfaces within a user-based study in a 

controlled scenario. However, the diversity of seman-

tic technologies and the lack of uniformity in the con-

struction and exploitation of the data sources are 

some of the main reasons why there is still not a gen-

eral adoption of evaluation methods. Therefore eval-

uations are generally small scale with ad-hoc tasks 

that represent the user needs and the system functio-

nality to be evaluated [69,95]. Although the different 

evaluation set-ups and techniques undermine the val-

ue of direct comparisons, nevertheless, they are still 

useful to do an approximate assessment of the 

strength and weaknesses of the different systems. We 

hereby briefly describe the different evaluation me-

                                                           
13 Campaign 2010 results at: http://www.seals-project.eu/seals-

evaluation-campaigns/semantic-search-tools/results-2010 

thods and performance results. These are presented in 

Table 2. 

Evaluations performed in the early days of the SW 

had to cope with the sparseness and limited access to 

high quality and representative public semantic data. 

As a result, to test the AquaLog system [67] two 

(manually built) rich ontologies were used and the 

query sets were gathered from 10 users. This ap-

proach gave a good insight about the effectiveness of 

the system and the extent to which AquaLog satisfied 

user expectations about the range of queries it is able 

to answer across two different domains. In order for 

an answer to be correct, AquaLog had to correctly 

align the vocabularies of both the asking query and 

the answering ontology. The test showed a 63.5% 

success, a promising result considering that almost no 

linguistic restrictions were imposed on the questions. 

Because of the sequential nature of the AquaLog ar-

chitecture, failures were classified according to which 

component caused the system to fail. The major limi-

tations were due to lack of appropriate reasoning ser-

vices defined over the ontology (e.g., temporal rea-

soning, quantifier scoping, negations – “not”, “other 

than”, “except”), comparatives and superlatives, a 

limited linguistic coverage (e.g., queries that were too 

long and needed to be translated into more than two 

triples), and lack of semantic mechanisms to interpret 

a query given the constraints imposed by the ontolo-

gy structures (e.g., AquaLog could not properly han-

dle anaphoras
14 , compound nouns, non-atomic se-

mantic relations, or reasoning with literals). 

Alternatively, the evaluations presented in [50] for 

NLP Reduce, Querix and Ginseng were measured 

with the standard IR performance metrics: precision 

and recall. Failures are categorized according to 

whether they are due to: 1) “no semantically tractable 

queries” [85,89], i.e., questions that were not ac-

cepted by the query languages of the interfaces or 2) 

irrelevant SPARQL translations. Recall was defined 

as the number of questions from the total set that 

were correctly answered (% success), while precision 

is the number of queries that were correctly matched 

to a SPARQL query with respect to the number of 

semantically tractable questions (see Fig. 2). Thus, 

the average recall values are lower than the precision 

values, a logical consequence of the fact that recall is 

 

                                                           
14  A linguistic phenomenon in which pronouns (e.g. “she”, 

“they”), and possessive determiners (e.g. “his”, “theirs”) are used 
to implicitly denote entities mentioned in an extended discourse 
(freepatentsonline.com/6999963.html). 
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based on the number of semantically tractable ques-

tions (those that the system can transform into 

SPARQL queries, independently of whether the 

query produced is appropriate or not). For instance 

Ginseng has the highest precision but the lowest re-

call and semantic tractability due to its limited query 

language (some of the full NL test queries could not 

be entered into the system). Also, the use of compara-

                                                           
15 The akt ontology: http://kmi.open.ac.uk/projects/akt/ref-onto/ 
16 W3C, OWL Web Ontology Language Guide: 

         http://www.w3.org/TR/2003/CR-owl-guide-0030818/ 

tive and superlative adjectives in many of the ques-

tions decreased the semantic tractability rate in NLP–

Reduce, which cannot process them. To enable a 

comparison, these NLIs were benchmarked with the 

same three externally sourced test sets with which 

other NLI systems (PANTO by Wang et al. and the 

NLIDBs PRECISE by Popescu et al.) had already 

been evaluated. These three datasets are based on the 

Mooney NL Learning Data provided by Ray Mooney 

and his group from the University of Texas at Austin 

[89] and translated to OWL for the purposes of the 

evaluation in [50]. Each dataset supplies a KB and set 

Table 2 
Performance results of the ontology-based QA systems evaluated in the state of the art 

 Datasets Nº queries % Success (S) Domain independent 

AquaLog KMi semantic portal15 69 58%(S) 63.5% Yes (NL queries) 

 Wine and food16 68 69.11%(S) 

NLP Reduce Geography 887 95.34%(P)/ 

55.98%(S) 

55.3% Yes (NL and keyword 

queries) 

Restaurants 251 80.08%(P)/ 

97.10%(S) 

Jobs 620 81.14%(P)/ 

29.84%(S) 

Querix Geography (USA) 887 91.38%(P)/ 

72.52%(S) 

54.4% Yes (NL wh-queries) 

Restaurants 251 94.31%(P)/ 

59.36%(S) 

Jobs 620 80.25(P)/ 

31.45%(S) 

Ginseng Geography (USA) 887 98.86%(P)/ 

39.57%(S) 

48.6% Yes (guided interface) 

Restaurants 251 100%(P)/ 

78.09%(S) 

Jobs 620 97.77%(P)/ 

28.23%(S) 

PANTO Geography (USA) 877 out 880 88.05%(P)/ 

85.86%(R)= 

75.6%(S) 

80% Yes (NL queries) 

Restaurants 238 out of 250 90.87%(P)/ 

96.64%(R)=  

87.8%(S) 

Jobs 517 out of 641 86.12%(P)/ 

89.17%(R)= 

76.8%(S) 

ORAKEL Geography (Germany) 454 93%  Domain-dependent 

grammar (NL queries) 

QuestIO GATE ontology  22 71.88% Yes (NL queries) 

Travel guides  Not reported 

e-Librarian Computer history and 

mathematics 

229 97% Domain-dependent 

dictionary (NL queries) 

QACID Cinema 100 80% Domain-dependent 

collection NL queries  

FREyA Geography 250 92.4% Yes  
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of English questions, belonging to one of the follow-

ing domains: geography (9 classes, 28 properties and 

697 instances), jobs (8 classes, 20 properties, 4141 

instance) and restaurants (4 classes, 13 properties and 

9749 instances). 

PANTO assesses the rate of how many of the 

translated queries correctly represent the semantics of 

the original NL queries by comparing its output with 

the manually generated SPARQL queries. The me-

trics used are precision and recall, defined in [96] as 

“precision means the percentage of correctly trans-

lated queries in the queries where PANTO produced 

an output; recall refers to the percentage of queries 

where PANTO produced an output in the total testing 

query set”. Note that these definitions make the no-

tion of correctness somewhat subjective, even be-

tween apparently similar evaluations. Recall is de-

fined differently in PANTO and the approaches in 

[50]. For [50] recall is the number of questions from 

the total correctly answered, which is defined as 

a %success in AquaLog, while for PANTO is the 

number of questions from the total that produce an 

output, independently of whether the output is valid 

or not. Thus, to measure %success (how many NL 

question the system successfully transformed in 

SPARQL queries) in PANTO we need to multiply 

precision by recall and divide it by 100; the results 

are in Tabel 2. There are also some discrepancies in 

the number of queries in the Mooney datasets be-

tween [50] and [96]. 

QuestIO was tested on a locally produced ontology, 

generated from annotated postings in the GATE mail-

ing list, with 22 real user queries that could be ans-

wered in the ontology and a Travel Guides Ontology 

with an unreported number of queries, to demonstrate 

portability. The initialization time of QuestIO with 

the Travel Guides ontology (containing 3194 re-

sources in total) was reported to be 10 times longer, 

which raises some concerns in terms of scalability. A 

query is considered correctly answered if the appro-

priate SeRQL query is generated (71.8% success). 

FREyA was also evaluated using 250 questions 

from the Mooney geography dataset. Correctness is 

evaluated in terms of precision and recall, defined in 

the same way as in [50]. The ranking and learning 

mechanism was also evaluated, they report an im-

provement of 6% in the initial ranking based on 103 

questions from the Mooney dataset. Recall and preci-

sion values are very high, both reaching 92.4%. 

The system that reports the highest performance is 

the e-Librarian: in an evaluation with 229 user que-

ries 97% were correctly answered, and in nearly half 

of the questions only one answer, the best one, was 

retrieved. Two prototypes were used: a computer 

history expert system and a mathematics expert sys-

tem. The higher precision performance of e-Librarian 

with respect to a system like PANTO reflects the 

difficulty with precision performance on completely 

portable systems. 

QACID has been tested with an OWL ontology in 

the cinema domain, where 50 users were asked to 

generate 500 queries in total for the given ontologies. 

From these queries, 348 queries were automatically 

annotated by an Entity Annotator and queries with 

the same ontological concepts were grouped together, 

generating 54 clusters that were manually associated 

to SPARQL queries. The results reported in an on-

field evaluation, where 10 users were asked to formu-

late spontaneous queries about the cinema domain (a 

total of 100 queries), show an 80% of precision. 

As already mentioned, the different evaluation set-

ups and techniques undermine the validity of direct 

comparisons, even for similar evaluations, like the 

ones between PANTO and the systems in [50], be-

cause of the different sizes of the selected query sam-

ples and the different notions of evaluating correct-

ness. 

These performance evaluations share in common 

the pattern of being ad-hoc, user-driven and using 

unambiguous, relatively small and good quality se-

mantic data. Although they test the feasibility of de-

veloping portable NLIs with high retrieval perfor-

mance, these evaluations also highlight that the NLIs 

with better performance usually tend to require a de-

gree of expensive customization or training. As al-

ready pointed out in [22], to bridge the gap between 

the two extremes, domain independency and perfor-

mance, the quality of the semantic data have to be 

very high, to ensure a good lexicalization of the on-

tology and KBs and a good coverage of the vocabu-

lary. Nonetheless, as previously reported in AquaLog, 

and recently evaluated in FREyA, the inclusion of a 

learning mechanism offers a good trade-off between 

user interaction and performance, ensuring an in-

crease in performance over time by closing the lexi-

cal gap between users and ontologies, without com-

promising portability. 

 

Fig. 2. Definition of precision and recall by [50]. 
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Large ontologies pose additional challenges with 

respect to usability, as well as performance. The on-

tologies used in the previous evaluations are relative-

ly small; allowing to carry out all processing opera-

tions in memory, thus, scalability is not evaluated. 

Linked Data initiatives are producing a critical 

mass of semantic data, adding a new layer of com-

plexity in the SW scenario, from the exploitation of 

small domain specific ontologies to large generic 

open domain data sources containing noisy and in-

complete data. Thus, two main user-centric evalua-

tions have been conducted to test PowerAqua: before 

and after using Linked Data, to investigate whether it 

can be used to exploit the data offered by Linked Da-

ta. In the first evaluation [66], PowerAqua was eva-

luated with a total of 69 queries, generated by 7 users, 

that were covered by at least one ontology in the se-

mantic information space (consisting in more 

than 130 Sesame repositories, containing more than 

700 ontological documents). PowerAqua successfully 

answered 48 of these questions (69.5%). The second 

evaluation was focused on scalability and perfor-

mance when introducing into the previous evaluation 

setup one of the largest and most heterogeneous data-

sets in Linked Data, DBpedia [64]. The time needed 

to answer a query depends on two main factors: (1) 

the total number of (SPARQL-like) calls send to the 

ontologies to explore relevant connections between 

the mappings, which depends directly on the number 

of semantic sources and mappings that take part in 

the answering process, and (2) the response times to 

these calls, which depends on the complexity of the 

(SPARQL) queries and the size of the ontology. Po-

werAqua algorithms were optimized by introducing 

heuristics to balance precision and recall, thus to ana-

lyze the most likely solutions first (iteratively refin-

ing candidates only as needed). These heuristics re-

duced by 40% in average the number of queries sent 

to the ontologies, however the response times to an-

swer a query increased from 32 to 48 secs. Initial 

experiments using a different back-end for large-scale 

sources, i.e. Virtuoso instead of Sesame, reduced the 

average time to 20 secs. PowerAqua usability as a NL 

interface to semantic repositories, has also been eva-

luated following the formal benchmark proposed in 

SEALS 2010 [62], focused on the usability aspects of 

different search tools (in particular keyword-based, 

form-based and NL) within a controlled user study 

using the Mooney geography dataset. Of the systems 

tested, PowerAqua was the system with better usa-

bility results, evaluated as “good” by the users. 

4.5. The competences of ontology-based QA systems 

The main clear advantage of the use of NL query 

tools is the easy interaction for non-expert users. As 

the SW is gaining momentum, it provides the basis 

for QA applications to exploit and reuse the struc-

tured knowledge available on the SW. Beyond the 

commonalities between all forms of QA (in particular 

for the question analysis), in this section, we analyze 

the competencies of ontology-based QA with respect 

to the main traditional forms of QA. 

4.5.1. Ontology-based QA with respect to NLIDB 
Since the development of the first QA systems [3], 

there have been major improvements in the availa-

bility of lexical resources, such as WordNet; string 

distance metrics for name-matching tasks [17]; shal-

low, modular and robust NLP systems, such s GATE 

[20]; and NLP Parsers, such as the Stanford parser. In 

comparison with the latest work on NLIDB, the bene-

fits of ontology-based QA are: 

− Ontology independence: Later NLIDB systems 

[18] use intermediate representations to have a 

portable front end with general purpose gram-

mars, while the back end is dependent on a par-

ticular database. As a result, long configuration 

times are normally required to port the system to 

a new domain. Ontology-based QA systems 

have successfully solved the portability problem, 

as the knowledge encoded in the ontology, to-

gether with (often shallow) domain-independent 

syntactic parsing, are the primary sources for 

understanding the user query, without the need 

to encode specific domain-dependent rules. 

Hence, these systems are practically ontology 

independent, less costly to produce, and require 

little effort to bring in new sources (AquaLog, 

PANTO, Querix, QuestIO, FREyA). Optionally, 

on these systems manual configuration or auto-

matic learning mechanisms based on user feed-

back can optimize performance. 

− Able to handle unknown vocabulary in the 

user query: NLIDB systems, such as PRECISE 

[85], require all the tokens in a query to be dis-

tinct and questions with unknown words are not 

semantically tractable. In ontology-based QA if 

a query term is lexically dissimilar from the vo-

cabulary used by the ontology, and it does not 

appear in any manually or automatically created 

lexicon, studying the ontology “neighborhood” 

of the other terms in the query may lead to the 

value of the term or relation we are looking for. 
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In many cases this would be all the information 

needed to interpret a query. 

− Deal with ambiguities: When ontologies are di-

rectly used to give meaning to the queries ex-

pressed by the user and retrieve answers, the 

main advantage is the possibility to link words 

to obtain their meaning based on the ontological 

taxonomy and inherit relationships, and thus, to 

deal with ambiguities more efficiently. 

Summing up, the main benefits of ontology-based 

QA systems are that they make use of the semantic 

information to interpret and provide precise answers 

to questions posed in NL and are able to cope with 

ambiguities in a way that makes the system highly 

portable. 

4.5.2. Ontology-based QA with respect to QA on text 
Although most of the state-of-the-art of ontology-

based QA still presumes that the knowledge needed is 

encoded in one ontology in a closed domain scenario, 

we envision ontology-based QA to move towards an 

open SW scenario, to become complementary to free-

text open QA. While the first targets the open, struc-

tured SW to give precise answers, the second targets 

unstructured documents on the Web. Under such a 

perspective, a document search space is replaced by a 

semantic search space composed of a set of ontolo-

gies and KBs, providing a new context in which the 

results from traditional open QA can be applied. Al-

though linguistic and ambiguity problems are com-

mon in most kinds of NL understanding systems, 

building a QA system over the SW has the following 

advantages: 

− Balancing relatively easy design and accura-

cy: As seen in Section 3.2 the current state of 

the art open systems to query documents on the 

Web require sophisticated syntactic, semantic 

and contextual processing to construct an answer, 

including NE recognition [42]. These open QA 

systems classify queries using hierarchies of 

question types based on the types of answers 

sought (e.g., person, location, date, etc.) and fil-

ter small text fragments that contain strings with 

the same type as the expected answers [78,87]. 

In ontology-based QA there is no need to build 

complex hierarchies, to manually map specific 

answer types to WordNet conceptual hierarchies 

or to build heuristics to recognize named entities, 

as the semantic information needed to determine 

the type of an answer is in the publicly available 

ontology(ies). As argued in [80] a major differ-

ence between open-domain QA and ontology-

based QA is the existence of domain-dependent 

information that can be used to improve the ac-

curacy of the system. 

− Exploiting relationships for query transla-

tion: NE recognition and IE are powerful tools 

for free-text QA (Section 3.2.1), although these 

methods scale well discovering relationships be-

tween entities is a crucial problem [87]. IE me-

thods do not often capture enough semantics, 

answers hidden in a form not recognized but the 

patterns expected by the system could be easily 

disregarded, and one cannot always rely on 

WordNet coverage to determine the answer type 

or the type of the object of the verb in the ques-

tion [83]. On the contrary, QA systems over se-

mantic data can benefit from exploiting the ex-

plicit ontological relationships and the semantics 

of the ontology schema (e.g., type, subclassOf, 

domain and range), to understand and disambi-

guate a query. WordNet is only used for query 

expansion, to bridge the gap between the voca-

bulary of the user and the ontology terminology 

through lexically related words (such as syn-

onyms). 

− Handling queries in which the answer type is 

unknown: What queries, in which the type of 

the expected answer is unknown, are harder than 

other types of queries when querying free text 

[47]. However, the ontology simplifies handling 

what-is queries because the possible answer 

types are constrained by the types of the possible 

relations in the ontology. 

− Structured answers are constructed from on-

tological facts: Arbitrary query concepts are 

mapped to existing ontology entities, answers 

are then obtained by extracting the list of seman-

tic entities that comply with the facts, or fulfill 

the ontological triples or SPARQL queries. The 

approach to answer extraction in text-based QA 

requires first identifying entities matching the 

expected answer in text, e.g., using the WordNet 

mapping approach. Second, the answers within 

these relevant passages are selected using a set 

of proximity-based heuristics, whose weights are 

set by a machine-learning algorithm [83]. Al-

though IR methods scale well, valid answers in 

documents that do not follow the syntactic pat-

terns expected by the QA system can be easily 

disregarded. 

− Combining multiple pieces of information: 
Ontological semantic systems can exploit the 
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power of ontologies as a model of knowledge to 

give precise, focused answers, where multiple 

pieces of information (that may come from dif-

ferent sources) can be inferred and combined to-

gether. In contrast, QA systems over free text 

cannot do so, as they retrieve pre-written para-

graphs of text or answer strings (typically NPs 

or named entities) extracted verbatim from rele-

vant text [83]. 

4.5.3. Ontology-based QA with respect to proprietary 
QA 

It is costly to produce the large amounts of domain 

background knowledge, which are required by the 

proprietary open domain approaches described in 

Section 3.3. Although based on semantics, these sys-

tems do not reuse or take fully advantage of the freely 

available structured information on the SW. This is a 

key difference as they impose an internal structure on 

their knowledge and claim ownership of a trusted and 

curated homogeneous KB, rather than supporting the 

user in exploring the increasing number of distributed 

knowledge sources available on the Web. 

4.6. Open research issues on open QA on the SW 

Evaluations in [64] considered the results encour-

aging and promising, if one considers the openness of 

the scenario, and probe, to some extend, the feasibil-

ity and potential of the approach. Nonetheless, sever-

al issues remain open to any approach that wishes to 

benefit from exploiting the vast amount of emerging 

open Web data to elicit the most accurate answer to a 

user query: 

− Heterogeneity and openness: the high ambiguity 

in the sources means that it is not always possi-

ble to have enough context to focus on precision 

when, because of heterogeneity, there are many 

alternative translations and interpretations to a 

query. For example, the main issue for Power- 

Aqua is to keep real time performance in a sce-

nario of perpetual change and growth, in particu-

lar when both very large heterogeneous sources 

from the Linked Data cloud, or thousands of 

small RDF sources from crawled data from 

Watson are added [62]. 

− Dealing with scalability as well as knowledge 

incompleteness: filtering and ranking techniques 

are required to scale to large amounts of data. 

There are often a huge number (from hundreds 

to thousands in many cases) of potential onto-

logical hits with different meanings (domains), 

across and within the same dataset, that can syn-

tactically map the terms in a user query. It is un-

feasible to explore all possible solutions to ob-

tain semantically sound mappings, however, fil-

tering and domain-coverage heuristics to shift 

focus onto precision require making certain as-

sumptions about quality of sources. If filtering 

heuristics are too strict, recall is affected in a 

noisy environment, where sources contain re-

dundant and duplicated terms and incomplete in-

formation, either because not all ontological 

elements are populated at the level of instances 

or because of a lack of schema information (no 

domain and range for properties, or type for 

classes, difficult to parse literals, etc.). 

− Sparseness: the potential is overshadowed by the 

sparseness and incompleteness of the SW when 

compared to the Web [84]. During the search 

process, it may happen that a) there are no avail-

able ontologies that cover the query, or b) there 

are ontologies that cover the domain of the 

query but only contain parts of the answer. 

5. Related work on open user-friendly querying 

interfaces for the SW 

In the previous sections, we have seen that QA 

systems have proven to be ontology independent or 

easily adaptable to new domains, while keeping their 

efficiency and retrieval performance even when shal-

low NLP techniques are used. By opening up to the 

SW scenario, these systems can reach their full po-

tential and enhance or complement traditional forms 

of QA. In this section we broaden our scope and look 

at user-friendly semantic search systems and Linked 

Data querying interfaces, in search for models, 

beyond NL QA systems, that can in principle scale 

enough to open up, and even integrate, heterogeneous 

data sources on the Web of Data. 

Many approaches exist to translate user queries in-

to formal queries. Semantic search, a broader area 

than semantic QA, faces similar challenges to those 

tackled by QA systems when dealing with heteroge-

neous data sources on the SW. Here, we look at the 

solutions proposed in the literature for semantic 

search and how they address semantic heterogeneity 

from early information systems to the latest ap-

proaches to searching the SW. We further discuss 

how all QA approaches presented till now and the 

SW user-friendly querying models presented in this 

section are compared according to the criteria pre-

sented in Section 2, and how both research directions 
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can converge into large scale open ontology-based 

QA for the SW, to solve the bottlenecks and limita-

tions of both. 

5.1. Early global-view information systems 

The idea of presenting a conceptually unified view of 

the information space to the user, the “world-view”, 

has been studied in [58]. In early global information 

systems with well-defined boundaries, the solutions 

for interfacing and integrating heterogeneous know-

ledge sources, in order to answer queries that the 

original sources alone were unable to handle, are 

based on two approaches [80]: either all the informa-

tion from multiple sources is extracted to create a 

unified database, or the set of databases can be seen 

as a federated database system with a common API, 

as in [5]. However, this type of centralized solution 

that forces users and systems to subscribe to a single 

ontology or shared model are not transferable to the 

open-world scenario, where the distributed sources 

are constantly growing and changing. The manual 

effort needed to maintain any kind of centralized, 

global shared approach for semantic mapping is not 

only very costly, in terms of maintaining the mapping 

rules in a highly dynamic environment [72], but it 

also has the added difficulty of “negotiating” a shared 

model, or API, that suits the needs of all the parties 

involved [11]. 

Lessons and remaining open issues: Interestingly, 

the problems faced by these early information sys-

tems are still present nowadays. Linked Data assumes 

re-use of identifiers and the explicit specification of 

strong inter-dataset linkage in an open distributed 

fashion, without forcing users to commit to an ontol-

ogy. However, on the SW the heterogeneity problem 

can hardly be addressed only by the specification of 

mapping rules. As stated in [84], “although RDF 

theoretically offers excellent prospects for automatic 

data integration assuming re-use of identifiers and 

strong inter-dataset linkage, such an assumption cur-

rently only weakly holds”. Therefore, open semantic 

applications need to handle heterogeneity and map-

pings on the fly, in the context of a specific task. 

5.2. Evolution of semantic search on the Web of data 

Aiming to overcome the limitations of keyword-

based search, semantic search has been present in the 

IR field since the eighties [19], through the use of 

domain knowledge and linguistic approaches (thesau-

rus and taxonomies) to expand user queries. Ontolo-

gies were soon envisaged as key elements to 

represent and share knowledge [36] and enable a 

move beyond the capabilities of current search tech-

nologies [37]. As stated by [30] “the most common 

way in which semantic search has been addressed is 

through the development of search engines that ex-

ecute a user query in the KB, and return tuples of 

ontology values which satisfy the user request”. 

A wide-ranging example is TAP [39], one of the 

first keyword-based semantic search systems, which 

presented a view of the search space where docu-

ments and concepts are seen as nodes in a semantic 

network. In TAP the first step is to map the search 

term to one or more nodes of the SW. A term is 

searched by using its rdfs:label, or one of the other 

properties indexed by the search interface. In ambi-

guous cases it chooses a search term based on the 

popularity of the term (frequency of occurrence in a 

text corpus), the user profile, the search context, or by 

letting the user pick the right denotation. The nodes 

that express the selected denotation of the search term 

provide a starting point to collect and cluster all 

triples in their vicinity (the intuition being that prox-

imity in the graph reflects mutual relevance between 

nodes). 

In 2004 the annual SW Challenge was launched, 

whose first winner was CS Aktive Space [86]. This 

application gathers and combines a wide range of 

heterogeneous and distributed Computer Science 

resources to build an interactive portal. The top two 

ranked entries of the 2005 challenge, Flink [73] and 

Museum Finland [48], are similar to CS Aktive Space 

as they combine heterogeneous and distributed re-

sources to derive and visualize social networks and to 

expose cultural information gathered from several 

museums respectively. However, there is no semantic 

heterogeneity and “openness” in them: these tools 

simply extract information, scraped from various 

relevant sites, to populate a single, pre-defined ontol-

ogy. A partial exception is Flink, which makes use of 

some existing semantic data, by aggregating online 

FOAF files. 

Later semantic systems adopted interesting 

approaches to query interpretation, where keyword 

queries are mapped and translated into a ranked list 

of formal queries. These include SemSearch [57], 

XXPloreKnow! [92] and QUICK [100]. For instance, 

SemSearch supports the search for semantic relations 

between two terms in a given semantic source, e.g., 

the query ‘news:PhD students’ results in all instances 

of the class news that are related to PhD students. 

SemSearch and XXPloreKnow! construct several 

formal queries for each semantic relation or combina-

tion of keywords’ matches, where ranking is used to 
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identify the most relevant meanings of keywords, and 

to limit the number of different combinations. To go 

beyond the expressivity of keywords and translate a 

keyword query into a set of semantic queries that are 

most likely to ones intended by the user, QUICK 

computes all possible semantic queries among the 

keywords for the user to select one. With each selec-

tion the space of semantic interpretations is reduced, 

and the query is incrementally constructed by the user. 

The approach in [29] combines standard Web 

search queries with ontological search queries. It as-

sumes that Web pages are enriched with annotations 

that have unique identifiers and are relative to an un-

derlying ontology. Web queries are then interpreted 

based on the underlying ontology, allowing the for-

mulation of precise complex ontological conjunctive 

queries as SW search queries. Then these complex 

ontology queries are translated into sequences of 

standard Web queries answered by standard Web 

search. Basically, they introduce an offline ontologi-

cal inference step to compute the completion of all 

semantic annotations, augmented with axioms de-

duced from the annotations and the background on-

tologies, as well as an online step that converts the 

formal conjunctive ontological queries into semantic 

restrictions before sending them to the search engine. 

Different to previous approaches, restricted by a 

domain ontology, the system presented in [31] ex-

ploits the combination of information spaces pro-

vided by the SW and by the (non-semantic) Web, 

supporting: (i) semantic QA over ontologies and (ii) 

semantic search over non-semantic documents. First, 

answers to a NL query are retrieved using the Powe-

rAqua system [66]. Second, based on the list of onto-

logical entities obtained as a response to the user’s 

query and used for query expansion, the semantic 

search over documents is accomplished by extending 

the system presented in [13] for annotating docu-

ments. The output of the system consists of a set of 

ontology elements that answer the user’s question 

and a complementary ranked list of relevant docu-

ments. The system was evaluated reusing the queries 

and judgments from the TREC-9 and TREC 2001. 

However, at that time, only 20% of queries were par-

tially covered by ontologies in the SW. For those 

queries, where semantic information was available, it 

led to important improvements over the keyword-

based baseline approach, degrading gracefully when 

no ontology satisfied the query. 

Lessons and remaining open issues: As argued in 

[81], the major challenge faced by early semantic 

applications was the lack of online semantic informa-

tion. Therefore, in order to demonstrate their methods, 

they had to produce their own semantic metadata. As 

a result, the focus of these tools is on a single, well-

defined domain, and they do not scale to open envi-

ronments. The latest semantic applications, set out to 

integrate distributed and heterogeneous resources, 

even though these resources end up centralized in a 

semantic repository aligned under a single ontology. 

Therefore, these approaches follow the paradigm of 

smart KB-centered applications, rather than truly 

exploring the dynamic heterogeneous nature of the 

SW [81]. Furthermore, as discussed in [29], pressing 

research issues on approaches to semantic search on 

the Web are on the one hand, the ability to translate 

NL queries into formal ontological queries (the topic 

of this survey), and on the other hand, how to auto-

matically add semantic annotations to Web content, 

or alternatively, extract knowledge from Web content 

without any domain restriction [31]. 

5.3. Large scale semantic search and Linked Data 

interfaces 

New technologies have been developed to manipu-

late large sets of semantic metadata available online. 

Search engines for the SW collect and index large 

amounts of semantic data to provide an efficient 

keyword-based access point and gateway for other 

applications to access and exploit the growing SW. 

Falcons [14] allows concept (classes and properties) 

and object (instance) search. The system recommends 

ontologies on the basis of a combination of the TF-

IDF technique and popularity for concept search, or 

the type of objects the user is likely to be interested in 

for object search. Falcons indexes 7 million of well-

formed RDF documents and 4,400 ontologies [14]. 

Swoogle [26] indexes over 10,000 ontologies, 

Swoogle claims to adopt a Web view on the SW by 

using a modified version of the PageRank popularity 

algorithm, and by and large ignoring the semantic 

particularities of the data that it indexes. Later search 

engines such as Sindice [82] index large amounts of 

semantic data, over 10 billion pieces of RDF, but it 

only provides a look-up service that allows applica-

tions and users to locate semantic documents. Watson 

[23] collects the available semantic content from the 

Web, indexing over 8,300 ontologies, and also offers 

an API to query and discover semantic associations in 

ontologies at run time, e.g., searching for relation-

ships in specific ontological entities. Indeed out of 

these four ontology search engines, only Watson al-

lows the user to exploit the reasoning capabilities of 

the semantic data, without the need to process these 

documents locally. The other engines support key-
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word search but fail to exploit the semantic nature of 

the content they store and therefore, are still rather 

limited in their ability to support systems which aim 

to exploit online ontologies in a dynamic way [24]. 

Other notable exceptions to this limited-domain 

approach include search applications demonstrated in 

the Semantic Web Challenge competitions, and more 

recently the Billion Triples Challenge (btc)17, aimed 

at stimulating the creation of novel demonstrators 

that have the capability to scale and deal with hetero-

geneous data crawled from the Web. Examples in-

clude SearchWebDB [97], the second prize-winner of 

the btc in 2008, which offers a keyword-based inter-

face to integrated data sources available in the btc 

datasets. However, as keywords express the user 

needs imprecisely, the user needs to be asked to se-

lect among all possible interpretations. In this system 

the mappings between any pairs of data sources at the 

schema or data levels are computed a priori and 

stored in several indexes: the keyword index, the 

structure index and the mapping index. The disadvan-

tage being that, in a highly dynamic environment, 

static mappings and complex structural indexes are 

difficult to maintain, and the data quickly becomes 

outdated. 

The eRDF infrastructure [38] explores the Web of 

Data by querying distributed datasets in live 

SPARQL endpoints. The potential of the infrastruc-

ture was shown through a prototype Web application. 

Given a keyword, it retrieves the first result in Sin-

dice to launch a set of SPARQL queries in all 

SPARQL end points, by applying an evolutionary 

anytime query algorithm, based on substitutions of 

possible candidate variables for these SPARQL que-

ries. As such, it retrieves all entities related to the 

original entity (because they have the same type or a 

shared relationships to the same entity, for example 

Wendy Hall and Tim Berners Lee both hold a profes-

sorship at the university of Southampton). 

Faceted views have been widely adopted for many 

RDF datasets, including large Linked Data datasets 

such as DBPedia, by using the Neofonie
18  search 

technology. Faceted views, over domain-dependent 

data or homogenous sources, improve usability and 

expressivity over lookups and keyword searches, 

although, the user can only navigate through the rela-

tions explicitly represented in the dataset. Faceted 

views are also available over large-scale Linked Data 

in Virtuoso [28], however scalability is a major con-

                                                           
17 http://challenge.semanticweb.org/ 
18 http://www.neofonie.de/index.jsp 

cern, given that faceted interfaces become difficult to 

use as the number of possible choices grows. The 

ranking of predicates to identify important facets is 

obtained from text and entity frequency, while se-

mantics associated with the links is not explored. 

Mash-ups [93] are able to aggregate data coming 

from heterogeneous repositories and semantic search 

engines, such as Sindice, however these systems do 

not differentiate among different interpretations of 

the query terms, and disambiguation has to be done 

manually by the user. 

Lessons and remaining open issues: these sys-

tems have the capability to deal with the heterogene-

ous data crawled from the Web. However, they have 

limited reasoning capabilities: mappings are either 

found and stored a priori (SearchWebdB), or disam-

biguation between different interpretations is not per-

formed (eRDF). The scale and diversity of the data 

put forward many challenges, imposing a trade-off 

between the complexity of the querying and reason-

ing process and the amount of data that can be used. 

Expressivity is also limited compared to the one ob-

tained by using query languages, which hinders the 

widespread exploitation of the data Web for non-

expert users. Finally, in both facets and mash-ups, the 

burden to formulate queries is shifted from the sys-

tem to the user. Furthermore, they do not perform a 

semantic fusion or ranking of answers across sources. 

6. QA on the SW: Achievements and research 

gaps 

An overview of related work shows a wide range 

of approaches that have attempted to support end 

users in querying and exploring the publicly available 

SW information. It is not our intention to exhaustive-

ly cover all existing approaches, but to look at the 

state of the art and applications to figure out the ca-

pabilities of the different approaches, considering 

each of the querying dimensions presented in Sec-

tion 2 (sources, scope, search environment and input), 

to identify promising directions towards overcoming 

their limitations and filling the research gaps. 

6.1. Sources for QA and their effect on scalability 

We have shown through this paper that ontologies 

are a powerful source to provide semantics and back-

ground knowledge about a wide range of domains, 

providing a new important context for QA systems. 
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− Traditionally, the major drawbacks of intelligent 

NLIDB systems are that to perform both com-

plex semantic interpretations and achieve high 

performance, these systems tend to use compu-

tationally intensive algorithms for NLP and pre-

suppose large amounts of domain dependent 

background knowledge and hand-crafted custo-

mizations, thus being not easily adaptable or 

portable to new domains. 

− Open QA systems over free text require compli-

cated designs and extensive implementation ef-

forts, due to the high linguistic variability and 

ambiguity they have to deal with to extract an-

swers from very large open-ended collections of 

unstructured text. The pitfalls of these systems 

arise when a correct answer is unlikely to be 

available in one document but must be assem-

bled by aggregating answers from multiple ones. 

− Ontology-specific QA systems, although ontol-

ogy-independent, are still limited by the single 

ontology assumption and they have not been 

evaluated with large-scale datasets. 

− Proprietary QA systems, although they scale to 

open and large scenarios in a potentially unli-

mited number of domains, cannot be considered 

as interfaces to the SW, as they use their own 

encoding of the sources. Nonetheless, they are a 

good example of open systems that integrate 

structured and non-structured sources, although, 

currently they are limited to Wikipedia (Power-

set, TrueKnowledge) or a set of annotated doc-

uments linked to the KB (START). 

− Although not all keyword-based and semantic 

search interfaces (including facets) scale to mul-

tiple sources in the SW, we are starting to see 

more and more applications that can scale, by 

accessing search engines (e.g., mash-ups), large 

collections of datasets (i.e., provided by the bil-

lion triple challenge), SPARQL endpoints, or 

various distributed online repositories (previous-

ly indexed). We have also seen an example of 

semantic search approaches [29] that can re-

trieve accurate results on the Web. However, 

this approach is limited by the single-ontology 

assumption and it is based on the assumption 

that documents in the Web are annotated. In [29] 

conjunctive semantic search queries are not for-

mulated yet in NL and logical queries need to be 

created according to the underlying ontology, 

thus making the approach inaccessible for the 

typical Web user. DBpedia has also been used as 

a source for a query completion component in 

normal Web queries on the mainstream Yahoo 

search engine [71]. However, the current im-

plementation is based on a large but single data-

set and the results of a large-scale evaluation 

suggested that the most common queries were 

not specific enough to be answered by factual 

data. Thus, factual information may only address 

a relatively small portion of the user information 

needs. 

− Open Semantic QA approaches, as seen in [31] 

based on a NL interface to SW repositories and 

a scalable IR system to annotate and rank the 

documents in the search space, can in principle 

scale to the Web and to multiple repositories in 

the SW in a potentially wide number of domains. 

However, semantic indexes need to be created 

offline for both ontologies and documents. Al-

though, also coupled with Watson, its perfor-

mance with the search engine has not been for-

mally evaluated. 

Notwithstanding, we believe that open semantic on-

tology-based QA systems can potentially fill the gap 

between closed domain QA over structured sources 

(NLIDB) and domain independent QA over free text 

(Web), as an attempt to solve some of the limitations 

of these two different research areas (see Table 3). 

Ontology-based QA systems are able to handle a 

much more expressive and structured search space. 

Semantic QA systems have proven to be ontology 

independent (Section 4.1) and even able to perform 

QA in open domain environments by assembling and 

aggregating answers from multiple sources (Sec-

tion 4.3). Finally, the integration of semantic and 

non-semantic data is an important challenge for fu-

ture work on ontology-based QA. Current implemen-

tations, in particular those based on a limited number 

of sources, still suffer from the knowledge incom-

pleteness and sparseness problems. 

6.2. Scope and tendencies towards open QA 

approaches 

One main dimension over which these approaches 

can be classified is their scope. On a first level we 

can distinguish the closed domain approaches, 

whose scope is limited to one (or a set of) a-priori 

selected domain(s) at a time. As we have seen, ontol-

ogy-based QA systems, which give meaning to the 

queries expressed by a user with respect to the do-

main of the underlying ontology, although portable, 

their scope is limited to the amount of knowledge 

encoded in one ontology (they are brittle). As such, 

they are closer to NLIDB, focused on the exploita-
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tions of unambiguous structured data in closed-

domain scenarios to retrieve precise answers to ques-

tions, than to QA over a document collection or free 

text. While these approaches have proved to work 

well when a pre-defined domain ontology is used to 

provide an homogenous encoding of the data, none of 

them can handle complex questions by combining 

domain specific information typically expressed in 

different heterogeneous sources. 

On a second level, and enhancing the scope em-

braced by closed domain models, we can distinguish 

those approaches restricted to their own semantic 

resources. While successful NL search interfaces to 

structured knowledge in an open domain scenario 

exist (popular examples are Powerset or TrueKnow-

ledge), they are restricted to the use of their own 

semi-automatically built and comprehensive factual 

knowledge bases. This is the most expensive scenario 

as they are typically based on data that are by and 

large manually coded and homogeneous.  

On a third level, we can highlight the latest open 

semantic search approaches. These systems are not 

limited by closed-domain scenarios, neither by their 

own resources, but provide a much wider scope, at-

tempting to cover and reuse the majority of publicly 

available semantic knowledge. We have seen exam-

ples of these different approaches: a) using Linked 

Data sources, i.e., DBpedia, for a query completion 

component on the Yahoo search engine, b) keyword-

based query interfaces to data sources available in the 

billion triple challenge datasets and live SPARQL 

endpoints, c) mash-ups able to aggregate heterogene-

ous data obtained from the search engine Sindice 

from a given keyword, d) Open Linked Data facets, 

which allow the user to filter objects according to 

properties or range of values, and e) NL QA system 

over multiple heterogeneous semantic repositories, 

including large Linked Data sources (i.e. DBpedia) 

and (with some decrease in performance) the search 

engine Watson. 

We can see that there is a continuous tendency to 

move towards applications that take advantage of the 

vast amount of heterogeneous semantic data and get 

free of the burden of engineering their own semantic 

data. Hence, as predicted by [81], we are heading into 

a new generation of semantic systems [24], able to 

explore the SW as a whole and handle the scalability, 

heterogeneity and openness issues posed by this new 

challenging environment. 

As such, the next key step towards the realization 

of QA on the SW is to move beyond domain specific 

semantic QA to robust open domain semantic QA 

over structured and distributed semantic data. In this 

direction the PowerAqua system provides a single 

NL access approach for all the diverse online re-

sources, stored in multiple collections, opening the 

possibility of searching and combining answers from 

all the resources together. Nonetheless, as seen in 

[63], it is often the case that queries can only be 

solved by composing information derived from mul-

tiple and autonomous information sources, hence, 

portability alone is not enough and openness is re-

quired. QA systems able to draw precise, focused 

answers by locating and integrating information, 

which can be distributed across heterogeneous and 

distributed semantic sources, are required to go 

beyond the state of the art in interfaces to query the 

SW. 

Table 3 
Querying approaches classified according to their intrinsic problems and search criteria 

Criteria Input Scope Search environment (research issues) Sources 

 Expres-
sivity 

Reasoning 
services 

Porta-
bility 

Open Do-
main 

Hetero-
geneity 

Ranking Disam-
biguat. 

Fusion Sources 
on-the-fly 

Scale 
SW 

Scale 
Web 

NLIDB √ √ Ø Ø Ø Ø √ Ø Ø Ø Ø 

QA-Text/ 
Web 

√ Ø √ √ √ √ √ Ø √ Ø √ 

Ontology-
QA 

√ √ √ Ø Ø +/- √ Ø Ø +/- Ø 

Proprietary 
QA 

√ √ √ √ Ø √ √ Ø Ø Ø +/- 

Keyword-
search 

+/- Ø √ √ √ √ +/- Ø √ √ +/- 

Mash-ups Ø Ø √ √ √ +/- Ø √ √ √ Ø 
Facets  √ Ø √ √ √ √ Ø Ø Ø √ Ø 
Semantic 
open QA 

√ Ø √ √ √ √ √ √ +/- √ +/- 
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6.3. Traditional intrinsic problems derived from the 

search environment 

A new layer of complexity arises when moving 

from a classic KB system to an open and dynamic 

search environment. If an application wishes to use 

data from multiple sources the integration effort is 

non-trivial. 

While the latest open Linked Data and semantic 

search applications shown in Section 5.3 present a 

much wider scope, scaling to the large amounts of 

available semantic data, they perform a shallow ex-

ploitation of this information: 1) they do not perform 

semantic disambiguation, but need users to select 

among possible query interpretations, 2) they do not 

generally provide knowledge fusion and ranking me-

chanisms to improve the accuracy of the information 

retrieved, and 3) they do not discover mappings be-

tween data sources on the fly, but need to pre-

compute them beforehand. 

Automatic disambiguation (point 1) can only be 

performed if the user query is expressive enough to 

grasp the conceptualizations and content meanings 

involved in the query. In other words, the context of 

the query is used to choose the correct interpretation. 

If the query is not expressive enough, the only alter-

native is to call the user to disambiguate, or to rank 

the different meanings based on the popularity of the 

answers. 

Although ontology-based QA can use the context 

of the query to disambiguate the user query, it still 

faces difficulties to scale up to large-scale and hete-

rogeneous environments. The complexity arises be-

cause of its “openness”, as argued in [80], QA sys-

tems in restricted domains can attack the answer-

retrieval problem by means of an internal unambi-

guous knowledge representation, however, in open-

domain scenarios, or when using open-domain ontol-

ogies, as is the case of DBpedia or WordNet that map 

words to concepts, systems face the problem of poly-

semous words, which are usually unambiguous in 

restricted domains. At the same time, open-domain 

QA can benefit from the size of the corpus: as the 

size increases it becomes more likely that the answer 

to a specific question can be found without requiring 

a complex language model. As such, in a large-scale 

open scenario the complexity of the tools will be a 

function of their ability to make sense of the hetero-

geneity of the data to perform a deep exploitation 

beyond simple lookup and mash-up services. Moreo-

ver, ranking techniques are crucial to scale to large-

scale sources or multiple sources. 

With regards to fusion (point 2) only mash-ups and 

open ontology-based QA systems aggregate answers 

across sources. However, so far, mash-ups do not 

attempt to disambiguate between the different inter-

pretations of a user keyword. 

With regards to on the fly mappings (point 2), 

most SW systems analyzed here perform mappings 

on the fly given a user task, and some of them are 

able to select the relevant sources on the fly. There 

are three different mechanisms which are employed: 

(1) through search engines (mash-ups, semantic 

search, open ontology-based QA); (2) by accessing 

various distributed online SPARQL end-points pro-

viding full text search capabilities (semantic search, 

facets); (3) by indexing multiple online repositories 

(open ontology-based QA, semantic search). State of 

the art open ontology-based QA and semantic search 

systems perform better by indexing multiple online 

repositories for its own purposes. When a search en-

gine such as Watson, which provides enough functio-

nality (API) to query and perform a deep analysis of 

the sources, is used the performance is just acceptable 

from a research point of view demo [62]. More work 

is needed to achieve real time performance –beyond 

prototypes, for ontology-based QA to directly catch 

and query the relevant sources from a search engine 

that crawls and indexes the semantic sources. 

In Table 3 we compare how the different ap-

proaches to query the SW, tackle these traditional 

intrinsic problems derived from the openness of the 

search environment (automatic disambiguation of 

user needs, ranking, portability, heterogeneity and 

fusion across sources). 

6.4. Input and higher expressivity 

Finally, the expressivity of the user query is de-

fined by the input the system is able to understand. 

As shown in Table 3, keyword-based systems lack 

the expressivity to precisely describe the user’s intent, 

as a result ranking can at best put the query intentions 

of the majority on top. Most approaches look at ex-

pressivity at the level of relationships (factoids), 

however, different systems provide different support 

for complex queries, from including reasoning ser-

vices to understand comparisons, quantifications and 

negations, to the most complex systems (out of the 

scope of this review) that go beyond factoids and are 

able to understand anaphora resolution and dialogs 

[4]. Ontologies are a powerful tool to provide seman-

tics, and in particular, they can be used to move 

beyond single facts to enable answers built from mul-

tiple sources. However, regarding the input, ontolo-
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gies have limited capability to reason about temporal 

and spatial queries and do not typically store time 

dependent information. Hence, there is a serious re-

search challenge in determining how to handle tem-

poral data and causality across ontologies. In a search 

system for the open SW we cannot expect complex 

reasoning over very expressive ontologies, because 

this requires detailed knowledge of ontology structure. 

Complex ontology-dependent reasoning is substituted 

by the ability to deal with and find connections across 

large amounts of heterogeneous data. 

7. Directions ahead 

Despite all efforts semantic search still suffers 

from the knowledge incompleteness problem, togeth-

er with the cost of building and maintaining rich se-

mantic sources and the lack of ranking algorithms to 

cope with large-scale information sources [30]. Due 

to all this, semantic search cannot yet compete with 

major search engines, like Google, Yahoo or Micro-

soft Bing19. 

Nonetheless, through efforts such as the Linked 

Open Data initiative, the Web of Data is becoming a 

reality, growing and covering a broader range of top-

ics, and it is likely that soon we will have so much 

data that the core issues would not be only related to 

sparseness and brittleness, as to scalability and ro-

bustness. Novel approaches that can help the typical 

Web user to access the open, distributed, heterogene-

ous character of the SW and Linked Data are needed 

to support an effective use of this resource.  

Scalability is a major open issue and study pre-

sented in [56] about the potential size of the SW re-

veals that the SW mirrors the growth of the Web in 

its early stages. Therefore, semantic systems should 

be able to support large-scale data sources both in 

terms of ontology size and the number of them (as of 

September 2011 the Linked Data Cloud contained 

more than 19 billion triples).  

While semantic search technologies have been 

proven to work well in specific domains still have to 

confront many challenges to scale up to the Web in 

its entirety. The latest approaches to exploit the mas-

sive amount of distributed SW data represent a consi-

derable advance with respect to previous systems, 

which restrict their scope to a fraction of the publicly 

available SW content or rely on their own semantic 

                                                           
19 Google: http://www.google.com, Yahoo! Search: 

         http://www.yahoo.com, Bing: http://www.bing.com 

resources. These approaches are ultimately directed 

by the potential capabilities of the SW to provide 

accurate responses to NL user queries, but are NL 

QA approaches fit for the SW? 

In this scenario, QA over semantic data distributed 

across multiple sources has been introduced as a new 

paradigm, which integrates ideas of traditional QA 

research into scalable SW tools. In our view, there is 

great potential for open QA approaches in the SW. 

As shown in Table 3 semantic open QA has tackled 

more problems than other methods for many of the 

analyzed criteria. In an attempt to overcome the limi-

tations of search approaches, that restrict their scope 

to homogenous or domain-specific content, or per-

form a shallow exploitation of it, current QA systems 

have developed syntactic, semantic and contextual 

information processing mechanisms that allow a deep 

exploitation of the semantic information space.  

As such, we believe that open semantic QA is a 

promising research area that goes beyond the state of 

the art in user-friendly interfaces to support users in 

querying and exploring the heterogeneous SW con-

tent. In particular: 

− To bridge the gap between the end-user and the 

real SW by providing a NL QA interface that 

can scale up to the Web of Data. 

− To take advantage of the structured information 

distributed on the SW to retrieve aggregate an-

swers to factual queries that extend beyond the 

coverage of single datasets and are built across 

multiple ontological statements obtained from 

different sources. Consequently, smoothing the 

habitability and brittleness problems intrinsic to 

closed domain KB systems. 

The ultimate goal for a NL QA system in the SW is 

to answers queries by locating and combining infor-

mation, which can be massively distributed across 

heterogeneous semantic resources, without imposing 

any pre-selection or pre-construction of semantic 

knowledge, but rather locating and exploring the in-

creasing number of multiple, heterogeneous sources 

currently available on the Web.  

Performance and scalability issues still remain 

open. Balancing the complexity of the querying 

process in an open-domain scenario (i.e., the ability 

to handle complex questions requiring making deduc-

tions on open-domain knowledge, capture the inter-

pretation of domain-specific adjectives, e.g., “big”, 

“small”, and in consequence superlatives, e.g., “larg-

est”, “smallest” [16], or combining domain specific 

information typically expressed in different sources) 
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and the amount of semantic data is still an open prob-

lem. The major challenge is, in our opinion, the com-

bination of scale with the considerably heterogeneity 

and noise intrinsic to the SW. Moreover, information 

on the SW originates from a large variety of sources 

and exhibits differences in granularity and quality, 

and therefore, as the data is not centrally managed or 

produced in a controlled environment, quality and 

trust become an issue. Publishing errors and inconsis-

tencies arise naturally in an open environment like 

the Web [84]. Thus, imperfections (gaps in coverage, 

redundant data with multiple identifiers for the same 

resource, conflicting data, undefined classes, proper-

ties without a formal schema description, invalid da-

tatypes, etc.) can be seen as an inherent property of 

the Web of Data. As such, the strength of the SW will 

be more a by-product of its size than its absolute 

quality. 

Thus, in factual QA systems over distributed se-

mantic data the lack of very complex reasoning is 

substituted by the ability to deal and find connections 

in large amounts of heterogeneous data and to pro-

vide coherent answers within a specific context or 

task. As a consequence, exploiting the SW is by and 

large about discovering interesting connections be-

tween items. We believe that in those large scale se-

mantic systems, intelligence becomes a side effect of 

a system’s ability to operate with large amounts of 

data from heterogeneous sources in a meaningful way 

rather than being primarily defined by their reasoning 

ability to carry out complex tasks. In any case this is 

unlikely to provide a major limitation given that, 

most of the large datasets published in Linked Data 

are light-weight.  

Furthermore, besides scaling up to the SW in its 

entirety to reach the full potential of the SW, we still 

have to bridge the gap between the semantic data and 

unstructured textual information available on the 

Web. We believe, that as the number of annotated 

sites increases, the answers to a question extracted in 

the form of lists of entities from the SW, can be used 

as a valuable resource for discovering Web content 

that is related to the answers given as ontological 

entities. Ultimately, complementing the structured 

answers from the SW with Web pages will enhance 

the expressivity and performance of traditional search 

engines with semantic information. 
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