A Brief Review

CS6200 Information Retrieval

Indexing Process

Query Process

Information needs

Retrieval Model Overview

- Older models
 - Boolean retrieval
 - Vector Space model
- Probabilistic Models
 - BM25
 - Language models
- Combining evidence
 - Inference networks
 - Learning to Rank
 - Term dependence and other feature-based models

IR as Classification

Bayes Classifier

- Bayes Decision Rule
 - A document D is relevant if P(R|D) > P(NR|D)
- Estimating probabilities
 - use Bayes Rule

 $P(R|D) = \frac{P(D|R)P(R)}{P(D)}$ - classify a document as relevant if

$$\frac{P(D|R)}{P(D|NR)} > \frac{P(NR)}{P(R)}$$
 This is likelihood ratio

Estimating P(D|R)

• Assume independence

 $P(D|R) = \prod_{i=1}^{t} P(d_i|R)$

- Binary independence model
 - document represented by a vector of binary features indicating term occurrence (or non-occurrence)
 - p_i is probability that term i occurs (i.e., has value 1) in relevant document, s_i is probability of occurrence in non-relevant document

Binary Independence Model

$$\frac{P(D|R)}{P(D|NR)} = \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$$

 $= \prod_{i:d_i=1} \frac{p_i}{s_i} \cdot \left(\prod_{i:d_i=1} \frac{1-s_i}{1-p_i} \cdot \prod_{i:d_i=1} \frac{1-p_i}{1-s_i}\right) \cdot \prod_{i:d_i=0} \frac{1-p_i}{1-s_i}$

$$= \prod_{i:d_i=1} \frac{p_i(1-s_i)}{s_i(1-p_i)} \cdot \prod_i \frac{1-p_i}{1-s_i}$$

Binary Independence Model

• Scoring function is

$$\sum_{i:d_i=1} \log \frac{p_i(1-s_i)}{s_i(1-p_i)}$$

- Query provides information about relevant documents
- If we assume p_i constant, s_i approximated by entire collection, get *idf*-like weight

$$\log \frac{0.5(1 - \frac{n_i}{N})}{\frac{n_i}{N}(1 - 0.5)} = \log \frac{N - n_i}{n_i}$$

Contingency Table

	Relevant	Non-relevant	Total
$d_i = 1$	r_i	$n_i - r_i$	n_i
$d_i = 0$	$R - r_i$	$N - n_i - R + r_i$	$N - r_i$
Total	R	N-R	N

$$p_i = (r_i + 0.5)/(R + 1)$$
$$s_i = (n_i - r_i + 0.5)/(N - R + 1)$$

Gives scoring function:

$$\sum_{i:d_i=q_i=1} \log \frac{(r_i+0.5)/(R-r_i+0.5)}{(n_i-r_i+0.5)/(N-n_i-R+r_i+0.5)}$$

BM25

- Popular and effective ranking algorithm based on binary independence model
 - adds document and query term weights

$$\sum_{i \in Q} \log \frac{(r_i + 0.5)/(R - r_i + 0.5)}{(n_i - r_i + 0.5)/(N - n_i - R + r_i + 0.5)} \cdot \frac{(k_1 + 1)f_i}{K + f_i} \cdot \frac{(k_2 + 1)qf_i}{k_2 + qf_i}$$

 – k₁, k₂ and K are parameters whose values are set empirically

$$- K = k_1((1-b) + b \cdot \frac{dl}{avdl}) dl$$
 is doc length

- Typical IKEC value for κ_1 is 1.2, k_2 varies from 0 to 1000, b = 0.75

Language Model

- Language model
 - Probability distribution over strings of text
- Unigram language model
 - generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them
- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words

Language Model

- A *topic* in a document or query can be represented as a language model
 - i.e., words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model
- *Multinomial* distribution over words
 - text is modeled as a finite sequence of words, where there are t possible words at each point in the sequence
 - commonly used, but not only possibility
 - doesn't model burstiness

LMs for Retrieval

- 3 possibilities:
 - probability of generating the query text from a document language model
 - probability of generating the document text from a query language model
 - comparing the language models representing the query and document topics
- Models of topical relevance

Query-Likelihood Model

- Rank documents by the probability that the query could be generated by the document model (i.e. same topic)
- Given query, start with P(D|Q)
- Using Bayes' Rule

 $p(D|Q) \stackrel{rank}{=} P(Q|D)P(D)$

• Assuming prior is uniform, unigram model

$$P(Q|D) = \prod_{i=1}^{n} P(q_i|D)$$

Estimating Probabilities

Obvious estimate for unigram probabilities is

$$P(q_i|D) = \frac{f_{q_i,D}}{|D|}$$

- Maximum likelihood estimate
 - makes the observed value of $f_{q;D}$ most likely
- If query words are missing from document, score will be zero
 - Missing 1 out of 4 query words same as missing 3 out of 4

Smoothing

- Document texts are a sample from the language model
 - Missing words should not have zero probability of occurring
- Smoothing is a technique for estimating probabilities for missing (or unseen) words
 - lower (or *discount*) the probability estimates for words that are seen in the document text
 - assign that "left-over" probability to the estimates for the words that are not seen in the text
 - What does this do to the likelihood of the document?

Estimating Probabilities

- Estimate for unseen words is $\alpha_D P(q_i | C)$
 - $-P(q_i|C)$ is the probability for query word *i* in the *collection* language model for collection *C* (background probability)
 - $-\alpha_D$ is a parameter
- Estimate for words that occur is

$$(1 - \alpha_D) P(q_i | D) + \alpha_D P(q_i | C)$$

• Different forms of estimation come from different α_D

Effectiveness Measures

A is set of relevant documents, B is set of retrieved documents

	Relevant	Non-Relevant
Retrieved	$A \cap B$	$\overline{A} \cap B$
Not Retrieved	$A \cap \overline{B}$	$\overline{A} \cap \overline{B}$

$$\begin{aligned} Recall &= \frac{|A \cap B|}{|A|} \\ Precision &= \frac{|A \cap B|}{|B|} \end{aligned}$$

Averaging

- Mean Average Precision (MAP)
 - summarize rankings from multiple queries by averaging average precision
 - most commonly used measure in research papers
 - assumes user is interested in finding many relevant documents for each query
 - requires many relevance judgments in text collection
- Recall-precision graphs are also useful summaries

MAP

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Focusing on Top Documents

- Precision at Rank R
 - R typically 5, 10, 20
 - easy to compute, average, understand
 - not sensitive to rank positions less than R
- Reciprocal Rank
 - reciprocal of the rank at which the first relevant document is retrieved
 - Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks over a set of queries
 - very sensitive to rank position

Discounted Cumulative Gain

- Popular measure for evaluating web search and related tasks
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

• Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

• What we want:

$$p(\bigcirc | w_1, w_2, ..., w_n) > p(\bigcirc | w_1, w_2, ..., w_n) ?$$

• What we want:

$$p(\bigcirc | w_1, w_2, ..., w_n) > p(\heartsuit | w_1, w_2, ..., w_n) ?$$

• What we know how to build:

• What we want:

$$p(\bigcirc | w_1, w_2, ..., w_n) > p(\bigcirc | w_1, w_2, ..., w_n) ?$$

- What we know how to build:
 - A language model for each class

• What we want:

 $p(\bigcirc | w_1, w_2, ..., w_n) > p(\heartsuit | w_1, w_2, ..., w_n) ?$

- What we know how to build:
 - A language model for each class

•
$$p(w_1, w_2, ..., w_n | \bigcirc)$$

• What we want:

 $p(\bigcirc | w_1, w_2, ..., w_n) > p(\heartsuit | w_1, w_2, ..., w_n) ?$

- What we know how to build:
 - A language model for each class
 - $p(w_1, w_2, ..., w_n | \bigcirc)$
 - $p(w_1, w_2, ..., w_n | \otimes)$

Bayes' Theorem

By the definition of conditional probability: $P(A, B) = P(B)P(A \mid B) = P(A)P(B \mid A)$

we can show:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Seemingly trivial result from 1763; interesting consequences...

A "Bayesian" Classifier

$$p(R \mid w_1, w_2, \dots, w_n) = \frac{p(R)p(w_1, w_2, \dots, w_n \mid R)}{p(w_1, w_2, \dots, w_n)}$$

Naive Bayes Classifier

NB on Movie Reviews

- Train models for positive, negative
- For each review, find higher posterior
- Which word probability ratios are highest?

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5))		
Most Informative Features			
contains(outstanding) = True	pos : neg	=	14.1 : 1.0
contains(mulan) = True	pos : neg	=	8.3 : 1.0
contains(seagal) = True	neg : pos	=	7.8 : 1.0
contains(wonderfully) = True	pos : neg	=	6.6 : 1.0
contains(damon) = True	pos : neg	=	6.1 : 1.0

Current Research Issues

Understanding queries

-NLP and queries, question answering, "semantic search", query reformulation representations, query sessions, diversity, mapping queries to structure, rare queries, query similarity, query suggestion, genre classification

- Retrieval models
 - –Learning to rank, Markov Random Field model, variations of language models, filtering models

Current Research Issues

- Evaluation
 - New metrics for new tasks (e.g., diversity, sessions), crowdsourcing, simulation, games
- New applications
 - Entity search, social search, personal search, multimedia search, aggregated search, opinion retrieval
- New architectures

-Real-time search, mobile search, MapReduce

Careers and Study in IR

- Here: ML, NLP, data mining, independent study
- Graduate degrees: many possibilities, here, UMass Amherst, CMU, UIUC
- Careers:
 - –Industry: Google, Microsoft, Yahoo, Amazon, Ebay, LinkedIn, Facebook, Twitter, etc. (all levels from B.S. to Ph.D.)
 - -Academic: More in ML, "information" schools, Europe