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Introduction

» Document similarity — common task in:
» Information Retrieval (IR)
» Natural Language Processing (NLP)
» Machine Translation (MT)




Introduction

» Document similarity — how do we do it?
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Modeling Text with Topics

Latent Dirichlet Allocation (Blei, Ng, Jordan 2003)
= Let the text talk about T topics

= Each topic is a probability dist’ n over all words
= For D documents each with Np words:




Top Words by Topic

Topics —
1 2
DISEASE WATER
BACTERIA FISH
DISEASES SEA
GERMS SWIM
FEVER SWIMMING
CAUSE POOL
CAUSED LIKE
SPREAD SHELL
VIRUSES SHARK
INFECTION TANK
VIRUS SHELLS
MICROORGANISMS SHARKS
PERSON DIVING
INFECTIOUS DOLPHINS
COMMON SWAM
CAUSING LONG
SMALLPOX SEAL
BODY DIVE
INFECTIONS DOLPHIN
CERTAIN UNDERWATER

Griffiths et al.

3 4
MIND STORY
WORLD STORIES
DREAM TELL
DREAMS CHARACTER
THOUGHT CHARACTERS
IMAGINATION  AUTHOR
MOMENT READ
THOUGHTS TOLD
OWN SETTING
REAL TALES
LIFE PLOT
IMAGINE TELLING
SENSE SHORT
CONSCIOUSNESS FICTION
STRANGE ACTION
FEELING TRUE
WHOLE EVENTS
BEING TELLS
MIGHT TALE
HOPE NOVEL

5 6 / 8
FIELD SCIENCE BALL JOB
MAGNETIC STUDY GAME WORK
MAGNET  SCIENTISTS TEAM JOBS
WIRE SCIENTIFIC FOOTBALL CAREER
NEEDLE KNOWLEDGE BASEBALL EXPERIENCE
CURRENT WORK PLAYERS EMPLOYMENT
COIL RESEARCH PLAY OPPORTUNITIES
POLES CHEMISTRY FIELD WORKING
IRON TECHNOLOGY PLAYER TRAINING
COMPASS MANY  BASKETBALL SKILLS
LINES MATHEMATICS COACH CAREERS
CORE BIOLOGY PLAYED POSITIONS
ELECTRIC FIELD PLAYING FIND
DIRECTION  PHYSICS HIT POSITION
FORCE LABORATORY TENNIS FIELD
MAGNETS STUDIES TEAMS  OCCUPATIONS
BE WORLD GAMES REQUIRE
MAGNETISM SCIENTIST SPORTS  OPPORTUNITY
POLE STUDYING BAT EARN
INDUCED SCIENCES TERRY ABLE



Top Words by Topic

Topics —
1 2 3 4 5 6 / 8
DISEASE WATER MIND STORY FIELD SCIENCE BALL JOB
BACTERIA FISH WORLD STORIES  MAGNETIC STUDY GAME WORK
DISEASES SEA DREAM TELL MAGNET  SCIENTISTS TEAM JOBS
GERMS SWIM DREAMS CHARACTER WIRE SCIENTIFIC FOOTBALL CAREER
FEVER SWIMMING THOUGHT CHARACTERS NEEDLE KNOWLEDGE BASEBALL EXPERIENCE
CAUSE POOL IMAGINATION  AUTHOR CURRENT WORK PLAYERS EMPLOYMENT
CAUSED LIKE MOMENT READ COIL RESEARCH PLAY  OPPORTUNITIES
SPREAD SHELL THOUGHTS TOLD POLES CHEMISTRY FIELD WORKING
VIRUSES SHARK OWN SETTING IRON  TECHNOLOGY PLAYER TRAINING
INFECTION TANK REAL TALES COMPASS MANY  BASKETBALL  SKILLS
VIRUS SHELLS LIFE PLOT LINES MATHEMATICS COACH CAREERS
MICROORGANISMS  SHARKS IMAGINE TELLING CORE BIOLOGY PLAYED POSITIONS
PERSON DIVING SENSE SHORT ELECTRIC FIELD PLAYING FIND
INFECTIOUS DOLPHINS CONSCIOUSNESS FICTION DIRECTION  PHYSICS HIT PQSIT[ON
COMMON SWAM STRANGE ACTION FORCE LABORATORY TENNIS FIELD
CAUSING LONG FEELING TRUE MAGNETS  STUDIES TEAMS  OCCUPATIONS
SMALLPOX SEAL WHOLE EVENTS BE WORLD GAMES REQUIRE
BODY DIVE BEING TELLS MAGNETISM SCIENTIST SPORTS  OPPORTUNITY
INFECTIONS DOLPHIN MIGHT TALE POLE STUDYING BAT EARN
CERTAIN UNDERWATER HOPE NOVEL INDUCED SCIENCES TERRY ABLE

Griffiths et al.



Today’s topic

Latent Semantic Indexing

" Term-document matrices are very large
" But the number of topics that people talk
about is small (in some sense)
Money, movies, politics, homework, ...
" Can we represent the term-document

space by a lower dimensional latent
space?



Linear Algebra
Background



Eigenvalues & Eigenvectors

= Eigenvectors (for a square mxm matrix S)

Sv = Av Example
o e | D00

(right) eigenvector eigenvalue 4 0)\2

veR™#0 A€ER

= How many eigenvalues are there at most?
Sv=Av < (S—-A)v=0

only has a non-zero solution if |S — A\I| =0

This is a mth order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.




Matrix-vector multiplication

30 0 O]

s—lo 20 ol haseigenvalues 30, 20, 1 with
corresponding eigenvectors

0 0 1
l 0 0
v, =10 v, = |1 v, =10
0 0 l

On each eigenvector, S acts as a multiple of the identity

matrix: but as a different multiple on each.

2
4
6

) can be viewed as a combination of
X=2V;+4v,+ 6V,

Any vector (say x=
the eigenvectors:




Matrix-vector multiplication

* Thus a matrix-vector multiplication such as Sx (S, x as

in the previous slide) can be rewritten in terms of the
eigenvalues/vectors:

Sx=82v, +4v, +6v,)
Sx=28v, +45v, +6Sv,=2Av, + 44 v, + 6A,V,
Sx =60v, + 80v, + 6v,

= Even though x is an arbitrary vector, the action of S
on x is determined by the eigenvalues/vectors.



Matrix-vector multiplication

= Suggestion: the effect of “small” eigenvalues is small.

" |f we ignored the smallest eigenvalue (1), then
instead of

(60) we would get /()
80 80
\ 6 0

* These vectors are similar (in cosine similarity, etc.)



Eigenvalues & Eigenvectors

For symmetric matrices, eigenvectors for distinct
eigenvalues are orthogonal

SVio =AiayViny, and A = A, = v, *v, =0
All eigenvalues of a real symmetric matrix are real.

for complex A, if ‘S—)LI =0and S=S"'=1EN

All eigenvalues of acpositive semidefinitéymatrix
are non-negati

VweER" W Sw=0, thenif Sv=Av=A1=>0




Example

= Let
Q=

= Then

— NI

S—-Al

N

'Real, symmetric.

2-A 1

=

1 2-A

1S—Al|=(2-1)>=1=0.

" The eigenvalues are 1 and 3 (nonnegative, real).

= The eigenvectors are orthoganal (and real):

|

1
-1

I

1
1

|

Plug in these values
and solve for
eigenvectors.




Eigen/diagonal Decomposition

LetS € R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective”
matrix)

diagonal

Theorem: Exists an eigen élecomp05| on

S =UAU!

= (cf. matrix diagonalization theorem)
Columns of U are the eigenvectors of S

Diagonal elements of A are eigenvalues of S
A =diag(A1,. .., Am), Ai > Aig1

Unique
for
distinct
eigen-
values




Diagonal decomposition: why/how

Let U have the eigenvectors as columns: U =
Then, SU can be written

SU

S| vi .. v, |=| Av, .. Av =] v, ..V

n

Thus SU=UA, or U 'SU=A
And S=UAU"'.




Diagonal decomposition - example

Recall S = ? A =LA, =3.

1
2 -

The eigenvectors 1 and 1 form U = b
1 1 -

12 -1/2 ] Recal
1/2 172 2o =l

. -1
Inverting, we have U =

11

1
Then, S=UAU 1 =
= -1 10

oll 1/2 -1/2
3 [ 172 172




Example continued

Let’s divide U (and multiply U-7) by\ﬁ

Then, $=

/42 142 [ 1
1/J2 1/42 || O
0 A

Why? Stay tuned ...

W O

W 1/v2 =1/42
| VN2 12
(Q'=QT)



Symmetric Eigen Decomposition

" [fS e R™*™is a symmetric matrix:

* Theorem: There exists a (unique) eigen
decomposition S =0QAQ"
= where Q is orthogonal:
» Ql=Q7
* Columns of Q are normalized eigenvectors
= Columns are orthogonal.

" (everything is real)



Exercise

= Examine the symmetric eigen decomposition, if any,
for each of the following matrices:

0 17 [0 17 [1 2] [2 2
-1 0 |1 0] |-2 3] |2 4




Time out!

| came to this class to learn about text retrieval and
mining, not to have my linear algebra past dredged
up again ...

= Butif you want to dredge, Strang’s Applied Mathematics is
a good place to start.

What do these matrices have to do with text?

Recall M x N term-document matrices ...

But everything so far needs square matrices — so ...



Similarity = Clustering

We can compute the similarity between two
document vector representations x; and x; by xx;'

Let X =[x, ... X,]

Then XX"is a matrix of similarities
XX" is symmetric

So XX"=QAQ'

So we can decompose this similarity space into a set
of orthonormal basis vectors (given in Q) scaled by
the eigenvalues in A

= This leads to PCA (Principal Components Analysis)



Singular Value Decomposition

For an M x N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)

foll :
as follows AUV

A RN
MxM || MxN Vis NxN

(Not proven here.)



Singular Value Decomposition

A=UXV"'
AN BN
MxM || MxN Vis NxN

= AAT = QAQT
= AAT = (UzVT)(UZVT)T = (UZVT)(VIUT) = Uz2UT

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

Eigenvalues A, ... A, of AATare the eigenvalues of A’A.

0. =7

2= diag(al...(fr)<ﬁ Singular values




Singular Value Decomposition

= [llustration of SVD dimensions and sparseness
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SVD example
| 1 -1
Let A= 0 1
1 O

Thus M=3, N=2. Its SVD is

0 2/J6 1/3 Lo | 5 oA
1/2 =1/46  1/-3 0 3 ”ﬁ l/j_
1/42 1/J6  —1/43 0 o |LHYE THNE

Typically, the singular values arranged in decreasing order.



Low-rank Approximation

= SVD can be used to compute optimal low-rank
approximations.

= Approximation problem: Find A, of rank k such that

A = m . H A — XH
k 11 F <—— Frobenius norm
Xrank(X)=k
|A]| 7 EJ § E ai;]” .

=1 =1

A, and X are both mxn matrices.
Typically, want k << r.



Low-rank Approximation

= Solution via SVD
A, =U diag(o,,...,0,,0,..,0) V'

%(—/
set smallest r-k
singular values to zero

* * * ¥ * . »~ L J * * * * »~
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Kk i v o -,
~
k T
Ak = O.uv. . column notation: sum

=1 Ut of rank 1 matrices



Reduced SVD

= |f we retain only k singular values, and set the rest to
0, then we don’t need the matrix parts in color

* Then X is kxk, U is Mixk, V' is kxN, and A, is MIxN
= This is referred to as the reduced SVD

" |tis the convenient (space-saving) and usual form for
computational applications

" |t’s what Matlab gives you

" ~ ~ ~ ~ ~ 7
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* ok ¥ k| = | x % - xR K kK]
* K kK Kk
- T -

*
¥
¥
1 7 .
YK '
A U




Approximation error

* How good (bad) is this approximation?

" |t's the best possible, measured by the Frobenius
norm of the error:

min [A-X], =[A-A], =0

Xrank(X)=k

where the o; are ordered such that o, = 0,, ;.
Suggests why Frobenius error drops as k increases.



SVD Low-rank approximation

* Whereas the term-doc matrix A may have M=50000,
N=10 million (and rank close to 50000)

= We can construct an approximation A,,,with rank
100.

= Of all rank 100 matrices, it would have the lowest
Frobenius error.

= Great ... but why would we??
= Answer: Latent Semantic Indexing

C. Eckart, G. Young, The approximation of a matrix by another of lower rank.
Psychometrika, 1, 211-218, 1936.



Latent Semantic
Indexing via the SVD



What it is

" From term-doc matrix A, we compute the
approximation A,

* There is a row for each term and a column
for each docin A,

" Thus docs live in a space of k<<r dimensions
" These dimensions are not the original axes

= But why?



Vector Space Model: Pros

= Automatic selection of index terms

= Partial matching of queries and documents (dealing
with the case where no document contains all search terms)

= Ranking according to similarity score (dealing with large
result sets)

= Term weighting schemes (improves retrieval performance)

= Various extensions
* Document clustering
= Relevance feedback (modifying query vector)

= Geometric foundation



Problems with Lexical Semantics

ot
= Ambiguity and association in natural language

= Polysemy: Words often have a multitude of
meanings and different types of usage (more
severe in very heterogeneous collections).

= The vector space model is unable to discriminate
between different meanings of the same word.



Problems with Lexical Semantics

" Synonymy: Different terms may have an
identical or a similar meaning (weaker:
words indicating the same topic).

" No associations between words are
made in the vector space representation.

—

Simtrue (d7 Q> > COS(L(CL q—)))



Polysemy and Context

" Document similarity on single word level: polysemy
and context ¢

ring
jupiter
_~—"| space
meaning 1 voyager

saturn

meaning 2 car

~— company
contribution to similarity, if dodge
used in 15t meaning, but not ford

if in 2nd




Latent Semantic Indexing (LSI)

" Perform a low-rank approximation of document-
term matrix (typical rank 100-300)

* General idea

= Map documents (and terms) to a low-dimensional
representation.

= Design a mapping such that the low-dimensional space
reflects semantic associations (latent semantic space).

"= Compute document similarity based on the inner product
in this latent semantic space



Goals of LSI

= LSI takes documents that are semantically similar (=
talk about the same topics), but are not similar in the
vector space (because they use different words) and
re-represents them in a reduced vector space in
which they have higher similarity.

= Similar terms map to similar location in low
dimensional space

= Noise reduction by dimension reduction



Latent Semantic Analysis

= Latent semantic space: illustrating example

O Doc1

Laptop |:|
Portable [] Computer []

O Doc3

-
Q
I
| =
O
o

Display []

LSI Dimension 2

O Doc 2

LS| Dimension 1

courtesy of Susan Dumais



Performing the maps

= Each row and column of A gets mapped into the k-
dimensional LS| space, by the SVD.

= Claim —this is not only the mapping with the best
(Frobenius error) approximation to A, but in fact

improves retrieval.
= A query g is also mapped into this space, by

4y = qTUkZIZI

= Query NOT a sparse vector.



LSA Example

* Asimple example term-document matrix (binary)

C di do d3 dy dy dg
ship 1 0 1 0 O O
boat |0 1 0 0 O O
ocean |1 1 0 O 0 O
wood [1 O O 1 1 O
tree o 0 0 1 o0 1




LSA Example

= Example of C = U2VT: The matrix U

U 1 2 3 4 5
ship | —0.44 —0.30 057 058 0.25
boat | —0.13 —0.33 —059 000 0.73
ocean | —0.48 —0.51 -037 0.00 —0.61
wood | —0.70 035 0.15 —058 0.16
tree | —026 0.65 —041 058 —0.09



LSA Example

= Example of C = U2VT: The matrix 2

)X

1

2

3

4

5

cr B W N =

2.16
0.00
0.00
0.00
0.00

0.00
1.59
0.00
0.00
0.00

0.00
0.00
1.28
0.00
0.00

0.00
0.00
0.00
1.00
0.00

0.00
0.00
0.00
0.00
0.39



LSA Example

= Example of C = UZV": The matrix V'

v’ d1 d> ds dy ds ds
1 -0.75 -028 -0.20 -0.45 -0.33 -0.12
2 —-0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.28 —0.75 0.45 —-0.20 0.12 -0.33
4 0.00 0.00 0.58 0.00 —-0.58 0.58
5 —0.53 0.29 0.63 0.19 0.41 —-0.22

45



LSA Example: Reducing the dimension

U 1 2 3 4 5
ship —0.44 —-0.30 0.00 0.00 0.00
boat | —0.13 —-0.33 0.00 0.00 0.00
ocean | —0.48 —-0.51 0.00 0.00 0.00
wood | —0.70 0.35 0.00 0.00 0.00
tree —0.26 0.65 0.00 0.00 0.00

25 |1 2 3 4 5

1 216 0.00 0.00 0.00 0.00

2 0.00 1.59 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 o0.00

4 0.00 0.00 0.00 0.00 o0.00

5 0.00 0.00 0.00 0.00 o0.00

v’ d1 do d3 ds ds de
1 —-0.7 -0.28 -0.20 -0.45 -0.33 -0.12
2 —0.29 -0.53 -0.19 0.63 0.22 0.41
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

46



Original matrix C vs. reduced C, = U2,V'

C d d» di3 ds ds dg
ship 1 0 1 0 0 O
boat 0 1 0 0 0 O
ocean | 1 1 0 0 0 O
wood | 1 O O 1 1 0
tree O 0 O 1 O 1
G dy do ds3 da ds dg
ship 0.85 0.52 0.28 0.13 0.21 —-0.08
boat | 0.36 0.36 0.16 -0.20 -0.02 -0.18
ocean | 1.01 0.72 0.36 —0.04 0.16 -0.21
wood | 0.97 0.12 0.20 1.03 0.62 0.41
tree 0.12 —-0.39 —-0.08 0.90 0.41 0.49

47



Why the reduced dimension matrix is
better

= Similarity of d2 and d3 in the original space: 0.

= Similarity of d2 and d3 in the reduced space: 0.52 *
0.28+0.36*%0.16 +0.72 % 0.36 + 0.12 * 0.20 + -0.39
* -0.08 = 0.52

= Typically, LSA increases recall and hurts precision



Empirical evidence

= Experiments on TREC 1/2/3 — Dumais

" Lanczos SVD code (available on netlib) due to
Berry used in these experiments

= Running times of ~ one day on tens of thousands
of docs [still an obstacle to use!]

" Dimensions — various values 250-350 reported.
Reducing k improves recall.

" (Under 200 reported unsatisfactory)

= Generally expect recall to improve — what about
precision?



Empirical evidence

" Precision at or above median TREC precision

"= Top scorer on almost 20% of TREC topics

= Slightly better on average than straight vector

spaces
= Effect of dimensionality:

Dimensions |Precision
250 0.367
300 0.371
346 0.374




Failure modes

"= Negated phrases

= TREC topics sometimes negate certain query/
terms phrases — precludes simple automatic
conversion of topics to latent semantic space.

" Boolean queries

= As usual, freetext/vector space syntax of LSl
qgueries precludes (say) “Find any doc having to do
with the following 5 companies”

= See Dumais for more.



But why is this clustering?

= We've talked about docs, queries, retrieval
and precision here.

= What does this have to do with clustering?

" |[ntuition: Dimension reduction through LSI
brings together “related” axes in the vector
space.



Intuition from block matrices

N documents

Block 1 What’ s the rank of this matrix?

Block 2 0°s

terms

Block k

= Homogeneous non-zero blocks.



Intuition from block matrices

N documents

Block 1

Block 2

terms

0's

Block k

Vocabulary partitioned into k topics (clusters);
each doc discusses only one topic.



Intuition from block matrices

terms

N documents

Block 1

What' s the best rank-k
approximation to this matrix?

Block 2 0's

Block k

= Nnon-zero entries.




Intuition from block matrices

Likely there’s a good rank-k
approximation to this matrix.

wiper

tire Block 1

Vo6

Few nonzero entries
Block 2

Few nonzero entries

Block k

o

car

automobile] 0 1




Simplistic picture

Topic 1

Topic 2

Topic 3



Some wild extrapolation

" The “dimensionality” of a corpus is the
number of distinct topics represented in it.

= More mathematical wild extrapolation:

" if A has a rank k approximation of low
Frobenius error, then there are no more
than k distinct topics in the corpus.



LS| has many other applications

" |n many settings in pattern recognition and retrieval,
we have a feature-object matrix.
" For text, the terms are features and the docs are objects.
" Could be opinions and users ...
= This matrix may be redundant in dimensionality.
= Can work with low-rank approximation.

" |If entries are missing (e.g., users’ opinions), can recover if
dimensionality is low.

= Powerful general analytical technique

" Close, principled analog to clustering methods.



EFFICIENT SEARCH FOR
CONTINUOUS REPRESENTATIONS



Document Similarity

» Metric Space
» Distance metrics:

» Jaccard, Euclidean, Cosine, Dice, Product, etc.

» Probability Simplex
» Information-theoretic measurements:

» Kullback-Liebler(KL) & Jensen-Shannon(JS)
divergence

» Hellinger (He) distance

» Large Collections?
» All-pairs comparison is practically infeasible
» For N documents - (V712 )

lea =~ = Ac—\ ~ 8 s o Acl nlp\’--lmnml-‘- N I_AN

61



Document Similarity in Large
Collections

» Metric Space

» Frame document similarity as an nearest-neighbor (NN)
search problem

» Commonly used approximate NN search approaches:
» Locality Sensitive Hashing (LSH)
» kd-trees

® ®
® l. o o
.. © © (®)

q bins

Locality Sensitive Hashing

kd-trees



Document Similarity in Large
Collections

» Metric Space

» Approximate NN search approaches are designed to handle
distance metrics

» Could be directly applied to measure Euclidean,
Cosine, etc.

» But what about probability distributions?

63



Document Similarity in Large
Collections
» Probability Simplex

» Information-theoretic measurements
» NN search techniques cannot be applied directly

Topic 1 ' Topic 2

Probability Simplex

64



Transforming Divergences

» Common similarity metric in the vector space model is Euclidean distance:

» Compute Hellinger using Euclidean by first computing \/p(.l”ll) and \/Q(
xdi)

» Discard computing the square root of the Euclidean distance

» How about Jensen-Shannon?



Transforming Divergences

» Jensen-Shannon

SS(wq)=1/2 KL(pp+q/2 )+1/2 KL(q.pt+q/2)

» Approximate with Hellinger? He(p.q)=

» Theoretical bounds do exist [Guha et. al ‘06]:

1/2 He(p,q)</5(w,q)<2In2 He(p,q)

» How tight are these bounds in practice?



Transforming Divergences

» How tight are these bounds in practice?
» Experimental Setup

4

Synthetic dataset of 100 points drawn from a Dirichlet
distribution

Allows us to simulate collection of documents
represented as multinomial distributions

Vary the dimensionality (D) of the multinomial

Different hyperparameter (@) values to vary the
distribution sparsity

Compute Hellinger distance and Jensen-Shannon
divergence across all pairs of points



Retrieving Related Patents

» Rank Aggregation
» Xue and Croft

» Standalone LDA representation (kd-trees)

» Using CombSUM/CombMNZ approach

Method type MAP P@10 R@10

Xue and Croft 0.204 0.416 0.138
Jensen-Shannon (all pairs) 0.172 0.343 0.111
Hellinger (all-pairs) 0.178 0.345 0.112
Hellinger LSH R=0.4 0.056 0.161 0.051
Hellinger LSH R=0.6 0.091 0.248 0.078
Hellinger LSH R=0.8 0.161 0.344 0.111
Hellinger kd-trees 0.159 0.345 0.112
CombMNZ 0.232 0.442 0.145




Resources

= Manning et al., /IR, ch. 18

= Scott Deerwester, Susan Dumais, George
Furnas, Thomas Landauer, Richard Harshman.
1990. Indexing by latent semantic analysis.
JASIS 41(6):391—407.



