CS6200
Information Retrieval

David Smith
College of Computer and Information Science

Northeastern University

Indexing Process

8 Document data store

- Text Acquisition Index Creation ‘ —
<

E-mail, Web pages,
News articles, Memos, Letters

Index

Text Transformation

Processing Text

* Converting documents to index terms
e Why?

— Matching the exact string of characters typed by
the user is too restrictive

* j.e., it doesn’t work very well in terms of effectiveness
— Not all words are of equal value in a search

— Sometimes not clear where words begin and end
* Not even clear what a word is in some languages

— e.g., Chinese, Korean

Text Statistics

* Huge variety of words used in text but

 Many statistical characteristics of word
occurrences are predictable
— e.g., distribution of word counts

* Retrieval models and ranking algorithms
depend heavily on statistical properties of

words

— e.g., important words occur often in documents
but are not high frequency in collection

Zipf’'s Law

* Distribution of word frequencies is very skewed

— a few words occur very often, many words hardly ever
occur

— e.g., two most common words (“the”, “of”) make up
about 10% of all word occurrences in text documents

e Zipf's “law” (more generally, a “power law”):
— observation that rank (r) of a word times its frequency
(f) is approximately a constant (k)
* assuming words are ranked in order of decreasing frequency

—i.e., rf=kor r.P,=c, where P, is probability of word
occurrence and ¢ = 0.1 for English

Zipf’'s Law

0.1
0.09
0.08
0.07

0.06

Probability o5
(of occurrence)

0.04
0.03
0.02
0.01
0 —
0 10 20 30 40 50 60 70 80 90 100
Rank

(by decreasing frequency)

News Collection (AP89) Statistics

Total documents 84,678
Total word occurrences 39,749,179
Vocabulary size 198,763
Words occurring > 1000 times 4,169
Words occurring once 70,064
Word Freq. r Pr(%) r.Pr
assistant 5,095 1,021 .013 0.13
sewers 100 17,110 2.56x10-4 0.04

toothbrush 10 51,555 2.56x10-5 0.01
hazmat 1 166,945 2.56x10-6 0.04

Top 50 Words from AP89

Word Freq. r Pp(%) r.P.| Word Freq r P.(%) rP,
the 2,420,778 1 6.49 0.065| has 136,007 26 037 0.095
of 1,045,733 2 2.80 0.056| are 130,322 27 0.35 0.094
to 968,882 3 2.60 0.078| not 127,493 28 0.34 0.096
a 892,429 4 239 0.096| who 116364 29 0.31 0.090
and 865,644 S 232 0.120] they 111,024 30 0.30 0.089
in 847825 6 227 0.140] its 111,021 31 0.30 0.092
said 504,593 7 1.35 0.095| had 103,943 32 0.28 0.089
for 363,865 8 098 0.078| will 102,949 33 0.28 0.091
that 347072 9 093 0.084| would 995503 34 0.27 0.091
was 293,027 10 0.79 0.079| about 92983 35 0.25 0.087
on 291,947 11 0.78 0.086] i 92,005 36 0.25 0.089
he 250,919 12 0.67 0.081| been 88,786 37 0.24 0.088
is 245843 13 0.65 0.086| this 87,286 38 0.23 0.089
with 223,846 14 0.60 0.084| their 84,638 39 0.23 0.089
at 210,064 15 056 0.085| new 83,449 40 0.22 0.090
by 209,586 16 0.56 0.090| or 81,796 41 0.22 0.090
it 195,621 17 0.52 0.089| which 80,385 42 0.22 0.091
from 189,451 18 0.51 0.091| we 80,245 43 0.22 0.093
as 181,714 19 0.49 0.093| more 76,388 44 021 0.090
be 157,300 20 0.42 0.084| after 75,165 45 020 0.091
were 153913 21 0.41 0.087| us 72,045 46 0.19 0.089
an 152,576 22 041 0.090| percent 71,956 47 0.19 0.091
have 149,749 23 040 0.092] up 71,082 48 0.19 0.092
his 142,285 24 0.38 0.092| one 70,266 49 0.19 0.092
bur 140,880 25 038 0.094] people 68988 S0 0.19 0.093

Zipf's Law for AP89

' Zipt

AP89 +

0.1
0.01 —
0.001 —

0.0001 -

1e-005 -

1e-006 —

1e-007

1e-008

L L " M L ' | " " ' | L L P | L L P | L M L
1 10 100 1000 10000 100000 1e+006
Rank

Log-log plot: Note problems at high and low frequencies

Zipf’'s Law

 What is the proportion of words with a given
frequency?
— Word that occurs n times has rank r.= k/n

— Number of words with frequency n is
*r.—r,,, = k/in-kf(n+1) = k/n(n+ 1)

— Proportion found by dividing by total number of
words = highest rank = k

— So, proportion with frequency nis 1/n(n+1)

Zipf’'s Law

e Exam o le word Rank Word Frequency
1000 concern 5,100

frequency ranking 1001 spoke 5,100
1002 summit 5,100

1003 bring 5,099

1004 star 5,099

1005 immediate 5,099

1006 chemical 5,099

1007 african 5,098

e To compute number of words with frequency 5,099
— rank of “chemical” minus the rank of “summit”
— 1006 - 1002 =4

Example

Number of Predicted Actual Actual

Occurrences Proportion Proportion — Number of
(n) (1/n(n+1)) Words
1 .500 402 204,357
2 167 132 67,082
3 083 .069 35,083
4 .050 .046 23,271
5 033 032 16,332
6 .024 .024 12,421
7 018 019 9,766
8 014 016 8,200
9 011 014 6,907
10 .009 012 5,893

* Proportions of words occurring n times in
336,310 TREC documents

e Vocabulary size is 508,209

Vocabulary Growth

* As corpus grows, so does vocabulary size

— Fewer new words when corpus is already large
* Observed relationship (Heaps’ Law):
v =k.n®

where v is vocabulary size (number of unique words),
n is the number of words in corpus,

k, 8 are parameters that vary for each corpus
(typical values given are 10 < k<100 and 6 = 0.5)

200000

180000

160000

140000

120000

100000

80000

Words in Vocabulary

60000

40000

20000

AP89 Examp

le

AP89 —
Heaps 62.95, 0.455 -——-—-

5e+006

1e+007

1.5e+007 2e+007 2.5e+007
Words in Collection

3e+007 3.5e+007 4e+007

Heaps’ Law Predictions

 Predictions for TREC collections are accurate
for large numbers of words

—e.g., first 10,879,522 words of the AP89 collection
scanned

— prediction is 100,151 unique words
— actual number is 100,024

* Predictions for small numbers of words (i.e.
< 1000) are much worse

4. 5e+007

4e+007

3.5e+007

3e+007

2.5e+007

2e+007

Words in Vocabulary

1.5e+007

1e+007

5e+006

GOV2 (W

eb) Example

GOV2 —
Heaps 7.34, 0.648 -

0 5e+009

1e+010 1.5e+010
Words in Collection

2e+010 2.5e+010

Web Example

 Heaps’ Law works with very large corpora
— new words occurring even after seeing 30 million!

— parameter values different than typical TREC
values

* New words come from a variety of sources

* spelling errors, invented words (e.g. product, company
names), code, other languages, email addresses, etc.

* Search engines must deal with these large and
growing vocabularies

Estimating Result Set Size

tropical fish aquarium

Web results page 1 of 3,880,000 results

* How many pages contain all of the query terms?
* For the query “a b c”:

fabczN 'fa/N fb/N 'fc/Nz(fa 'fb fc)/NZ

* Assuming that terms occur independently
* f.nc is the estimated size of the result set

* f, f,, f.are the number of documents that terms a, b, and ¢
occurin

e Nisthe number of documents in the collection

GOV2 Example

Document Estimated
Word(s) Frequency Frequency
tropical 120,990
fish 1,131,855
aquarium 26,480
breeding 81,885
tropical fish 18,472 5,433
tropical aquarium 1,921 127
tropical breeding 5,510 393
fish aquarium 9,722 1,189
fish breeding 36,427 3,677
aquarium breeding 1,848 86
tropical fish aquarium 1,529 6
tropical fish breeding 3,629 18

Collection size (N) is 25,205,179

Result Set Size Estimation

e Poor estimates because words are not
independent

* Better estimates possible if co-occurrence
information available

Planbnc)=P(anb): P(c|(a nb))

f tropicalnfishnaquarium = f tropicalnaquarium f ﬁshnaquarium/ f aquarium

=1921-9722/26480 = 705

f tropicalnfishnbreeding = f tropicalnbreeding f ﬁshnbreeeding/ f breeding
=5510 - 36427/81885 = 2451

Result Set Estimation

* Even better estimates using initial result set
— Estimate is simply C/s
* where s is the proportion of the total documents that

have been ranked, and Cis the number of documents
found that contain all the query words

— E.g., “tropical fish aquarium” in GOV2

* after processing 3,000 out of the 26,480 documents
that contain “aquarium”, C = 258

ftropica/nﬁshnaquarium = 258/(3000_26480) = 2'277
* After processing 20% of the documents,
=1,778 (1,529 is real value)

f tropicalnfishnaquarium

Estimating Collection Size

* Important issue for Web search engines
e Simple technique: use independence model

— Given two words a and b that are independent
fab/sza/N .fb/N
N = (fa 'fb)/fab

—e.g., for GOV?2
f/incoln = 771'326 ftropica/ = 120'990 f/inco/n N tropical = 3'018
N =(120990 - 771326)/3018 = 30,922,045
(actual number is 25,205,179)

Tokenizing

 Forming words from sequence of characters

e Surprisingly complex in English, can be harder
in other languages

e Early IR systems:

— any sequence of alphanumeric characters of
length 3 or more

— terminated by a space or other special character

— upper-case changed to lower-case

Tokenizing

* Example:

— “Bigcorp's 2007 bi-annual report showed profits
rose 10%.” becomes

— “bigcorp 2007 annual report showed profits rose”
* Too simple for search applications or even
large-scale experiments
* Why? Too much information lost

— Small decisions in tokenizing can have major
impact on effectiveness of some queries

Tokenizing Problems

* Small words can be important in some queries,
usually in combinations

* Xp, ma, pm, ben e king, el paso, master p, gm, j lo, world
war |

* Both hyphenated and non-hyphenated forms of
many words are common
— Sometimes hyphen is not needed
e e-bay, wal-mart, active-x, cd-rom, t-shirts

— At other times, hyphens should be considered either
as part of the word or a word separator

* winston-salem, mazda rx-7, e-cards, pre-diabetes, t-mobile,
spanish-speaking

Tokenizing Problems

* Special characters are an important part of tags,
URLs, code in documents

e Capitalized words can have different meaning
from lower case words
— Bush, Apple

* Apostrophes can be a part of a word, a part of a
possessive, or just a mistake

— rosie o'donnell, can't, don't, 80's, 1890's, men's straw
hats, master's degree, england's ten largest cities,
shriner's

Tokenizing Problems

* Numbers can be important, including decimals
— nokia 3250, top 10 courses, united 93, quicktime
6.5 pro, 92.3 the beat, 288358
* Periods can occur in numbers, abbreviations,
URLs, ends of sentences, and other situations

— |.B.M., Ph.D., cs.umass.edu, F.E.A.R.

* Note: tokenizing steps for queries must be
identical to steps for documents

Tokenizing Process

irst step is to use parser to identify appropriate
narts of document to tokenize

Defer complex decisions to other components

— word is any sequence of alphanumeric characters,
terminated by a space or special character, with
everything converted to lower-case

— everything indexed

— example: 92.3 - 92 3 but search finds documents
with 92 and 3 adjacent

— incorporate some rules to reduce dependence on
query transformation components

Tokenizing Process

* Not that different than simple tokenizing
process used in past

* Examples of rules used with TREC
— Apostrophes in words ighored
e o’connor - oconnor bob’s - bobs

— Periods in abbreviations ignored
¢ .B.M. > ibm Ph.D. > phd

Stopping

Function words (determiners, prepositions)
have little meaning on their own

High occurrence frequencies

Treated as stopwords (i.e. removed)

— reduce index space, improve response time,
improve effectiveness

Can be important in combinations
—e.g., “to be or not to be”

Stopping

e Stopword list can be created from high-
frequency words or based on a standard list

 Lists are customized for applications, domains,
and even parts of documents

—e.g., “click” is a good stopword for anchor text

e Best policy is to index all words in documents,
make decisions about which words to use at
guery time

Stemming

Many morphological variations of words
— inflectional (plurals, tenses)
— derivational (making verbs nouns etc.)

In most cases, these have the same or very
similar meanings (but cf. “building”)

Stemmers attempt to reduce morphological
variations of words to a common stem

— morphology: many-many; stemming: many-one
— usually involves removing suffixes

Can be done at indexing time or as part of query
processing (like stopwords)

Stemming

* Generally a small but significant effectiveness
Improvement

— can be crucial for some languages

—e.g., 5-10% improvement for English, up to 50% in
Arabic

kitab a book

kitabi my book

alkitab the book
kitabuki your book (f)
kitabuka your book (m)
kitabuhu his book

kataba to write
maktaba library, bookstore

maktab office

Words with the Arabic root ktb

Stemming

* Two basic types
— Dictionary-based: uses lists of related words
— Algorithmic: uses program to determine related
words
e Algorithmic stemmers

— suffix-s: remove ‘s’ endings assuming plural
e e.g., cats - cat, lakes - lake, wiis = wii
* Many false negatives: supplies - supplie
* Some false positives: ups = up

Porter Stemmer

Algorithmic stemmer used in IR experiments
since the 70s

Consists of a series of rules designed to the
longest possible suffix at each step

Effective in TREC
Produces stems not words

Makes a number of errors and difficult to
modify

Porter Stemmer

e Example step (1 of 5)

Step la:

Replace sses by ss (e.g., stresses — stress).

Delete s if the preceding word part contains a vowel not immediately
before the s (e.g., gaps — gap but gas — gas).

Replace zed or ies by 1 if preceded by more than one letter, otherwise
by ie (e.g., ties — tie, cries — cri).

If suffix is us or ss do nothing (e.g., stress — stress).
Step 1b:

- Replace eed, eedly by ee if it is in the part of the word after the
first non-vowel following a vowel (e.g., agreed — agree, feed — feed).

- Delete ed, edly, ing, ingly if the preceding word part contains a
vowel, and then if the word ends in at, bl, or iz add e (e.g., fished —
fish, pirating — pirate), or if the word ends with a double letter that
is not ll, ss or zz, remove the last letter (e.g., falling— fall, dripping
— drip), or if the word is short, add e (e.g., hoping — hope).

- Whew!

Porter Stemmer

False positives False negatives
organization/organ european/europe
generalization/generic cylinder/cylindrical
numerical /numerous matrices/matrix
policy /police urgency /urgent
university /universe create/creation
addition /additive analysis/analyses
negligible /negligent useful /usefully
execute/executive noise /noisy

past /paste decompose/decomposition
ignore/ignorant sparse/sparsity
special /specialized resolve /resolution
head /heading triangle/triangular

e Porter2 stemmer addresses some of these issues
* Approach has been used with other languages

Krovetz Stemmer

Hybrid algorithmic-dictionary
— Word checked in dictionary

* If present, either left alone or replaced with “exception”

* If not present, word is checked for suffixes that could be
removed

e After removal, dictionary is checked again
Produces words not stems
Comparable effectiveness

Lower false positive rate, somewhat higher false
negative

Stemmer Comparison

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural
chemicals, report predictions for market share of such chemicals, or report market statistics for
agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share,
stimulate demand, price cut, volume of sales.

Porter stemmer:

document describ market strategi carri compani agricultur chemic report predict market share chemic
report market statist agrochem pesticid herbicid fungicid insecticid fertil predict sale market share
stimul demand price cut volum sale

Krovetz stemmer:

document describe marketing strategy carry company agriculture chemical report prediction market
share chemical report market statistic agrochemic pesticide herbicide fungicide insecticide fertilizer
predict sale stimulate demand price cut volume sale

Phrases

* Many queries are 2-3 word phrases

* Phrases are

— More precise than single words

e e.g.,, documents containing “black sea” vs. two words
“black” and “sea”

— Less ambiguous
* e.g., “big apple” vs. “apple”

e Can be difficult for ranking

* e.g., Given query “fishing supplies”, how do we score
documents with

— exact phrase many times, exact phrase just once, individual
words in same sentence, same paragraph, whole document,
variations on words?

Phrases

* Text processing issue —how are phrases
recognized?
* Three possible approaches:
— ldentify syntactic phrases using a part-of-speech
(POS) tagger
— Use word n-grams

— Store word positions in indexes and use proximity
operators in queries

POS Tagging

* POS taggers use statistical models of text to
predict syntactic tags of words

— Example tags:

NN (singular noun), NNS (plural noun), VB (verb), VBD
(verb, past tense), VBN (verb, past participle), IN
(preposition), JJ (adjective), CC (conjunction, e.g.,
“and”, “or”), PRP (pronoun), and MD (modal auxiliary,

1/

e.g., “can”, “will”).
* Phrases can then be defined as simple noun
groups, for example

Pos Tagging Example

Original text:
Document will describe marketing strategies carried out by U.S. companies for their agricultural
chemicals, report predictions for market share of such chemicals, or report market statistics for

agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share,
stimulate demand, price cut, volume of sales.

Brill tagger:

Document/NN will/MD describe/VB marketing/NN strategies/NNS carried/VBD out/IN by/IN U.S./NNP
companies/NNS for/IN their/PRP agricultural/lJ chemicals/NNS ,/, report/NN predictions/NNS for/IN
market/NN share/NN of/IN such/JJ chemicals/NNS ,/, or/CC report/NN market/NN statistics/NNS for/IN
agrochemicals/NNS ,/, pesticide/NN ,/, herbicide/NN ,/, fungicide/NN ,/, insecticide/NN ,/, fertilizer/NN
./, predicted/VBN sales/NNS ,/, market/NN share/NN ,/, stimulate/VB demand/NN ,/, price/NN cut/NN
./, volume/NN of/IN sales/NNS ./.

Example Noun Phrases

TREC data Patent data

Frequency Phrase Frequency Phrase

65824 united states 75362 present invention
61327 article type 191625 u.s. pat

33864 los angeles 147352 preferred embodiment
18062 hong kong 95097 carbon atoms

17788 north korea 87903 group consisting
17308 new york 81809 room temperature
15513 san diego 78458 seq id

15009 orange county 75850 brief description
12869 prime minister 66407 prior art

12799 first time 59828 perspective view
12067 soviet union 58724 first embodiment
10811 russian federation 56715 reaction mixture
9912 united nations 54619 detailed description
8127 southern california 54117 ethyl acetate

7640 south korea 52195 example 1

7620 end recording 52003 block diagram

7524 european union 46299 second embodiment
7436 south africa 41694 accompanying drawings
7362 san francisco 40554 output signal

7086 news conference 37911 first end

6792 city council 35827 second end

6348 middle east 34881 appended claims
6157 peace process 33947 distal end

5955 human rights 32338 cross-sectional view
5837 white house 30193 outer surface

Word N-Grams

 POS tagging can be slow for large collections

* Simpler definition — phrase is any sequence of n
words — known as n-grams

— bigram: 2 word sequence, trigram: 3 word sequence,
unigram: single words

— N-grams also used at character level for applications
such as OCR

* N-grams typically formed from overlapping
sequences of words

— i.e. move n-word “window” one word at a time in
document

N-Grams

* Frequent n-grams are more likely to be
meaningful phrases
* N-grams form a Zipf distribution

— Better fit than words alone

* Could index all n-grams up to specified length
— Much faster than POS tagging

— Uses a lot of storage

e e.g., document containing 1,000 words would contain
3,990 instances of word n-grams of length2<n<5

Google N-Grams

* Web search engines index n-grams
* Google sample (frequency > 40):

Number of tokens: 1,024,908,267,229
Number of sentences: 95,119,665,584
Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

 Most frequent trigram in English is “all rights
reserved”

— In Chinese, “limited liability corporation”

Document Structure and Markup

* Some parts of documents are more important
than others

 Document parser recognizes structure using
markup, such as HTML tags

— Headers, anchor text, bolded text all likely to be
Important

— Metadata can also be important
— Links used for link analysis

Example Web Page

Tropical fish

From Wikipedia, the free encyclopedia

Tropical fish include fish found in tropical environments around the world, including
both freshwater and salt water species. Fishkeepers often use the term tropical fish to
refer only those requiring fresh water, with saltwater tropical fish referred to as marine

Lish.

Tropical fish are popular aquarium fish , due to their often bright coloration. In
freshwater fish, this coloration typically derives from iridescence, while salt water fish

are generally pigmented.

Example Web Page

<html>

<head>

<meta name="keywords" content="Tropical fish, Airstone, Albinism, Algae eater,
Aquarium, Aquarium fish feeder, Aquarium furniture, Aquascaping, Bath treatment
(fishkeeping),Berlin Method, Biotope" />

<title>Tropical fish - Wikipedia, the free encyclopedia</title>
</head>
<body>

<hl class="firstHeading">Tropical fish</h1>

<p>Tropical fish include fish found in tropical environments around the world,
including both freshwater and salt water species. Fishkeepers often use the term
<i>tropical fish</i> to refer only those requiring fresh water, with saltwater tropical fish
referred to as <i><a href="/wiki/List of marine aquarium fish species" title="List of
marine aquarium fish species">marine fish</i>.</p>

<p>Tropical fish are popular aquarium
fish , due to their often bright coloration. In freshwater fish, this coloration typically
derives from iridescence, while salt
water fish are generally pigmented.</p>

</body></html>

Link Analysis

* Links are a key component of the Web

* Important for navigation, but also for search

— e.g., Example
website

— “Example website” is the anchor text
— “http://example.com” is the destination link
— both are used by search engines

Exercise: Link Analysis

Assumption 1: A link on the web is a quality
signal — the author of the link thinks that the
linked-to page is high-quality.

Assumption 2: The anchor text describes the
content of the linked-to page.

Is assumption 1 true in general?
Is assumption 2 true in general?

Anchor Text

* Used as a description of the content of the
destination page
— i.e., collection of anchor text in all links pointing to
a page used as an additional text field

* Anchor text tends to be short, descriptive, and
similar to query text

* Retrieval experiments have shown that anchor
text has significant impact on effectiveness for
some types of queries

— i.e., more than PageRank

PageRank

Billions of web pages, some more informative
than others

Links can be viewed as information about the
popularity (authority?) of a web page
— can be used by ranking algorithm

Inlink count could be used as simple measure

Link analysis algorithms like PageRank provide
more reliable ratings

— less susceptible to link spam

Random Surfer Model

* Browse the Web using the following algorithm:

— Choose a random number r between O and 1
—Ifr<A:

 Gotoarandom page

—Ifr=2A:

* Click a link at random on the current page

— Start again
 PageRank of a page is the probability that the
“random surfer” will be looking at that page

— links from popular pages will increase PageRank of
pages they point to

Dangling Links

« Random jump prevents getting stuck on
pages that
— do not have links

— contains only links that no longer point to
other pages

— have links forming a loop
* Links that point to the first two types of
pages are called dangling links

— may also be links to pages that have not yet
been crawled

PageRank

A B

T

C

* PageRank (PR) of page C = PR(A)/2 + PR(B)/1
* More generally,

PR(W) = Z PR(v)

L
VEDBy, v

— where B, is the set of pages that pointtou, and L, is
the number of outgoing links from page v (not
counting duplicate links)

PageRank

* Don’t know PageRank values at start

* Assume equal values (1/3 in this case), then
iterate:

— first iteration: PR(C) =0.33/2 + 0.33 = 0.5, PR(A) =
0.33, and PR(B) =0.17

— second: PR(C) =0.33/2 +0.17 =0.33, PR(A) = 0.5,
PR(B) = 0.17
— third: PR(C) = 0.42, PR(A) = 0.33, PR(B) = 0.25
* Converges to PR(C) =0.4, PR(A) = 0.4, and PR(B) =
0.2

PageRank

* Taking random page jump into account, 1/3
chance of going to any page whenr<A

* PR(C)=AN/3+(1-A):-(PR(A)/2 + PR(B)/1)
* More generally,

PR(v)
L,

PR(1) = %+ (1—2). Z

VEB,,

— where N is the number of pages, A typically 0.15

1: procedure PAGERANK(G)

2 > (G is the web graph, consisting of vertices (pages) and edges (links).
3 (P,L) — G > Split graph into pages and links
4 I — a vector of length |P)| > The current PageRank estimate
5: R «— a vector of length |P| > The resulting better PageRank estimate
6 for all entries I, € I do

7 I; — 1/|P| > Start with each page being equally likely
8 end for

9: while R has not converged do
10: for all entries R; € R do
11: R; — \/|P| > Each page has a \/|P| chance of random selection
12: end for
13: for all pages p € P do
14: () — the set of pages such that (p,q) € L and ¢ € P

15: if |Q| > 0 then

16: for all pages g € Q do

17: R, — R,+(1—-MNI,/|Q > Probability I, of being at

page p

18: end for

19: else
20: for all pages ¢ € P do
21: R, — Ry+ (1—-MN)I,/|P|
22: end for
23: end if
24: I —R > Update our current PageRank estimate
25: end for
26: end while
27: return R

28: end procedure

A PageRank Implementation

Preliminaries:

— 1) Extract links from the source text. You'll also want to extract the
URL from each document in a separate file. Now you have all the links
(source-destination pairs) and all the source documents

— 2) Remove all links from the list that do not connect two documents in
the corpus. The easiest way to do this is to sort all links by
destination, then compare that against the corpus URLs list (also
sorted)

— 3) Create a new file | that contains a (url, pagerank) pair for each URL
in the corpus. The initial PageRank value is 1/#D (#D = number of urls)

At this point there are two interesting files:
— [L] links (trimmed to contain only corpus links, sorted by source URL)

— [I] URL/PageRank pairs, initialized to a constant

A PageRank Implementation

* Preliminaries - Link Extraction from .corpus file using Galago
DocumentSplit -> IndexReaderSplitParser -> TagTokenizer
split = new DocumentSplit (filename, filetype, new byte[0], new byte[0])
index = new IndexReaderSplitParser (split)
tokenizer = new.TagTokenizer ()
tokenizer.setProcessor (NullProcessor (Document.class))
doc = index.nextDocument ()
tokenizer.process (doc)

— doc.identifier contains the file’s name

— doc.tags now contains all tags

ow_ 7

— Links can be extracted by finding all tags with name “a

— Links should be processed so that they can be compared with some
file name in the corpus

A PageRank Implementation

Ilteration:
* Steps:

1.

N

O 0o

2
3
4.
5

Make a new output file, R.

Read L and | in parallel (since they're all sorted by URL).

IF'OIr< each unique source URL, determine whether it has any outgoing
inks:

If not, add its current PageRank value to the sum: T (terminals).

If it does have outgoing links, write ﬁsource url, dest_url, Ip/}Ql),
where Ip is the current PageRank value, |QJ is the number o
outgomtg links, and dest_url is a link destination.

Do this for all outgoing links. Write this to R.

Sort R by destination URL.

Scan R and | at the same time. The new value of Rp is:

(1 - lambda) / #D (a fraction of the sum of all pages)

plus: lambda * sum(T) / #D (the total effect from terminal pages),
plus: lambda * all incoming mass from step 5. ()

Check for convergence
Write new Rp values to a new | file.

A PageRank Implementation

Convergence check

— Stopping criteria for this types of PR algorithm typically is of the form
| |[new - old| | < tau where new and old are the new and old PageRank
vectors, respectively.

— Tau is set depending on how much precision you need. Reasonable
values include 0.1 or 0.01. If you want really fast, but inaccurate
convergence, then you can use something like tau=1.

— The setting of tau also depends on N (= number of documents in the
collection), since | |new-old| | (for a fixed numerical precision)
increases as N increases, so you can alternatively formulate your
convergence criteria as | [new—old|| / N < tau.

— Either the L1 or L2 norm can be used.

Link Quality

* Link quality is affected by spam and other
factors
— e.g., link farms to increase PageRank

— trackback links in blogs can create loops

— links from comments section of popular blogs

* Blog services modify comment links to contain
rel=nofollow attribute

e e.g., “Come visit my <a rel=nofollow href="http://
www.page.com'">web page.”

Trackback Links

