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Sentiment

Maybe not so good if 
found in a camera review



Sentiment



Advertising

• Search engines sell customer clicks from

• Sponsored search

• Content match

• Just retrieve ads topically like other docs?

• Ads are very short and targeted

• Build specialized classifiers



Advertising



Advertising
Example of 

semantic clustering to 
mitigate sparse term 

matches.
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Person Classification

I don’t have a Scientific 
American article coming out.



Classification

• Mapping from inputs to a finite output space

• Contrast: regression and ranking

• Usually evaluated by accuracy

• Evaluated precision and recall if classes are very 
asymmetric in numbers or costliness (e.g., spam)

• Example: Naive Bayes

• Simple, effective, similar to BM25

• Lots more: see book for SVM, nearest-neighbor



Axioms of Probability

�
i Fi = �• Define event space

• Probability function, s.t.

• Disjoint events sum

• All events sum to one

• Show that:

P : F � [0, 1]

A ⌅B = ⇥ � P (A ⇤B) = P (A) + P (B)

P (�) = 1

P (Ā) = 1� P (A)



Conditional Probability

P (A | B) =
P (A,B)
P (B)

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A1, A2, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1, A2)
· · · P (An | A1, . . . , An�1)Chain rule

A

BA
�B



Independence

P (A,B) = P (A)P (B)
�

P (A | B) = P (A) ⇥ P (B | A) = P (B)

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.
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there ' s some movies i enjoy even though i know i probably shouldn '
t and have a difficult time trying to explain why i did . " lucky
numbers " is a perfect example of this because it ' s such a blatant
rip - off of " fargo " and every movie based on an elmore leonard
novel and yet it somehow still works for me . i know i ' m in the
minority here but let me explain . the film takes place in harrisburg
, pa in 1988 during an unseasonably warm winter . ...
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Setting up a Classifier

• What we want:

p(☺ | w1, w2, ..., wn) > p(☹ | w1, w2, ..., wn) ?

• What we know how to build:

• A language model for each class

• p(w1, w2, ..., wn | ☺)

• p(w1, w2, ..., wn | ☹)



Bayes’ Theorem

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A | B) =
P (B | A)P (A)

P (B)

By the definition of conditional probability:

we can show:

Seemingly trivial result from 1763; 
interesting consequences...



A “Bayesian” Classifier

Prior
Likelihood

max
R�{⇤̈,⌅̈}

p(R | w1, w2, . . . , wn) = max
R�{⇤̈,⌅̈}

p(R)p(w1, w2, . . . , wn | R)

Posterior

p(R | w1, w2, . . . , wn) =
p(R)p(w1, w2, . . . , wn | R)

p(w1, w2, . . . , wn)



Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!



NB on Movie Reviews

>>> classifier.show_most_informative_features(5)

classifier.show_most_informative_features(5)
Most Informative Features
   contains(outstanding) = True              pos : neg    =     14.1 : 1.0
         contains(mulan) = True              pos : neg    =      8.3 : 1.0
        contains(seagal) = True              neg : pos    =      7.8 : 1.0
   contains(wonderfully) = True              pos : neg    =      6.6 : 1.0
         contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative

• For each review, find higher posterior

• Which word probability ratios are highest?



What’s Wrong With 
NB?

• What happens for word dependencies are 
strong?

• What happens when some words occur 
only once?

• What happens when the classifier sees a 
new word?



ML for Naive Bayes
• Recall: p(+ | Damon movie)

           = p(Damon | +) p(movie | +) p(+)

• If corpus of positive reviews has 1000 
words, and “Damon” occurs 50 times,

pML(Damon | +) = ?

• If pos. corpus has “Affleck” 0 times,

p(+ | Affleck Damon movie) = ?



Will the Sun Rise Tomorrow?



Will the Sun Rise Tomorrow?
Laplace’s Rule of Succession:
On day n+1, we’ve observed that 
the sun has risen s times before.

pLap(Sn+1 = 1 | S1 + · · · + Sn = s) =
s + 1
n + 2

What’s the probability on day 0?
On day 1?
On day 106?
Start with prior assumption of equal rise/not-rise 
probabilities; update after every observation.
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Clustering

• Unsupervised structure discovery

• Exploratory data analysis

• Clustering for word senses

• Clustering for retrieval effectiveness

• Some have also proposed clustering for 
efficiency



A Concordance for “party”

§ thing. She was talking at a party thrown at Daphne's restaurant in 
§ have turned it into the hot dinner-party topic. The comedy is the
§ selection for the World Cup party, which will be announced on May 1 
§ in the 1983 general election for a party which, when it could not bear to 
§ to attack the Scottish National Party, who look set to seize Perth and 
§ that had been passed to a second party who made a financial decision
§ the by-pass there will be a street party. "Then," he says, "we are going  
§ number-crunchers within the Labour party, there now seems little doubt
§ political tradition and the same party. They are both relatively Anglophilic 
§ he told Tony Blair's modernised party they must not retreat into "warm  
§ "Oh no, I'm just here for the party," they said. "I think it's terrible  
§ A future obliges each party to the contract to fulfil it by
§ be signed by or on behalf of each party to the contract." Mr David N

http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3771338/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3771338/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4720961/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4720961/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/8577598/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/8577598/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9304413/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9304413/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4924950/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4924950/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2168669/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2168669/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3360748/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/3360748/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4339985/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/4339985/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9759381/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/9759381/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1348310/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1348310/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2213866/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2213866/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1300851/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1300851/5
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What Good are Word Senses?

§ John threw a “rain forest” party last 
December.  His living room was full of plants 
and his box was playing Brazilian music …



What Good are Word Senses?

§Replace word w with sense s 
§Splits w into senses: distinguishes this token of w 
from tokens with sense t

§Groups w with other words: groups this token of 
w with tokens of x that also have sense s
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http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
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http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/1831967/5
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
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http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
http://vlc2k.polyu.edu.hk/scripts/cgi-bin/ShowContext.exe/TimesMar95.txt/2703142/4
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What Good are Word Senses?

§ Semantics / Text understanding
§ Axioms about TRANSFER apply to (some tokens of) throw

§ Axioms about BUILDING apply to (some tokens of) bank

§ Machine translation
§ Info retrieval / Question answering / Text categ.

§ Query or pattern might not match document exactly

§ Backoff for just about anything
§ what word comes next?  (speech recognition, language ID, …)

§ trigrams are sparse but tri-meanings might not be

§ bilexical PCFGs: p(S[devour] à NP[lion] VP[devour] | S[devour])

§ approximate by p(S[EAT] à NP[lion] VP[EAT] | S[EAT])

§ Speaker’s real intention is senses; words are a noisy channel
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Cues to Word Sense

§Adjacent words (or their senses)

§Grammatically related words (subject, object, …)

§Other nearby words
§Topic of document
§Sense of other tokens of the word in the same 
document
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dimensional space
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Bottom-Up Clustering 

§Start with one cluster per point
§Repeatedly merge 2 closest clusters

§ Single-link: dist(A,B) = min dist(a,b) for a∈A, b∈B

§ Complete-link: dist(A,B) = max dist(a,b) for a∈A, b∈B

§Produces a dendrogram
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§ Average-link: dist(A,B) = mean dist(a,b) for a∈A, b∈B

§ Centroid-link: dist(A,B) = dist(mean(A),mean(B))

§Stop when clusters are “big enough”
§ e.g., provide adequate support for backoff (on a development corpus)

§Some flexibility in defining dist(a,b)
§ Might not be Euclidean distance; e.g., use vector angle

§Start with one cluster per point
§Repeatedly merge 2 closest clusters
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EM Clustering (for k clusters)

§ EM algorithm
§ Viterbi version – called “k-means clustering”
§ Full EM version – called “Gaussian mixtures”

§ Expectation step: Use current parameters (and observations) to 
reconstruct hidden structure

§ Maximization step: Use that hidden structure (and observations) to 
reestimate parameters

§ Parameters: k points representing cluster centers
§ Hidden structure: for each data point (word type), 

which center generated it?



Cluster Hypothesis

• Keith van Rijsbergen: “Closely associated 
documents tend to be relevant to the same 
requests.”



Cluster Hypothesis

Precision in of the 5 nearest 
neighbors of relevant documents



But Does It Help Retrieval?

• Cluster retrieval

• Smoothing with hard 
clusters

• Smoothing with soft 
clusters

• Last two more effective 
(cf. topic models)


