Formal Semantics

Natural Language Processing
CS 4120/6120—Spring 2017
Northeastern University

David Smith
some slides from Jason Eisner, Dan Klein & Stephen Clark

Language as Structure

® So far, we've talked about structure
® VWhat structures are more probable!?

® lLanguage modeling: Good sequences of words/
characters

® Text classification: Good sequences in defined contexts
® How can we recover hidden structure!

® Tagging: hidden word classes

® Parsing: hidden word relations

What Does It All Mean?

® Studying phonology, morphology, syntax,
etc. independent of meaning is
methodologically very useful

® We can study the structure of languages we
don’t understand

® We can use HMMs and CFGs to study
protein structure and music, which don’t
bear meaning in the same way as language

What Does It All Mean?

® How would you know if a computer
“understood” the “meaning” of an (English)
utterance (even in some weak “scare-
quoted” way)?

® How would you know if a person
understood the meaning of an utterance!

What Does It All Mean?

® Paraphrase,“state in your own
words” (English to English translation)

® T[ranslation into another language
® Reading comprehension questions
® Drawing appropriate inferences

e Carrying out appropriate actions

® Open-ended dialogue (Turing test)

Programming Language
Interpreter

What is meaning of 3+5*67?
First parse it into 3+(5*6)

Programming Language
Interpreter

What is meaning of 3+5*67? /N
First parse it into 3+(5*6) /\

T
E F E
N + E

Programming Language
Interpreter

What is meaning of 3+5*67? BA*
First parse it into 3+(5*6) /\
5
Now give a meaning to
each node in the tree E
(bottom-up) E/‘F\E
N + E

Programming Language
Interpreter

What is meaning of 3+5*67? BA*
First parse it into 3+(5*6) /\
5
Now give a meaning to
each node in the tree E
(bottom-up) E/‘F\E
N + E

Programming Language
Interpreter

What is meaning of 3+5*67? BA*
First parse it into 3+(5*6) /\
5
Now give a meaning to
each node in the tree E
(bottom-up) E/‘F\E
N + E

Interpreting in an Environment

3A*
/\
5 X
E
E/‘F\E
N
N + E F E

Interpreting in an Environment

How about 3+5*x? BA*
/\
5 X
E
E/‘F\E
T
N + E F E
3 N X N

Interpreting in an Environment

How about 3+5*x? BA*

Same thing: the meaning /N

of x is found from the > b

environment (it’s 6) E
E/‘F\E

N

N + E F E
3 N X N

Interpreting in an Environment

How about 3+5*x? BA*

Same thing: the meaning /N

of x is found from the > b

environment (it's 6) E

Analogies in language? e kT

N

N + E F E
3 N X N

Compiling

T
E F E
N +

Compiling

How about 3+5*x?

T
E F E
N + E

Compiling

How about 3+5*x?
Don't know x at compile time

T
E F E
N + E

Compiling

How about 3+5*x?
Don't know x at compile time

"Meaning” at a node
IS a piece of code, not a
number

T
E F E
N + E

Compiling

How about 3+5*x?
Don't know x at compile time

"Meaning” at a node
IS a piece of code, not a
number

T
E F E
N + E

Compiling

How about 3+5*x?
Don't know x at compile time
"Meaning” at a node

IS a piece of code, not a E

number]
5* (x+1) -2 is a different expression 3 N + E
that produces equivalent code

Compiling

How about 3+5*x?
Don't know x at compile time
"Meaning” at a node

IS a piece of code, not a E

number]
5* (x+1) -2 is a different expression 3 N + E
that produces equivalent code

(can be converted to the
previous code by optimization) 5

Compiling

How about 3+5*x?
Don't know x at compile time
"Meaning” at a node

IS a piece of code, not a E

number]
5* (x+1) -2 is a different expression 3 N + E
that produces equivalent code

(can be converted to the
previous code by optimization) 5

Analogies in language?

What Counts as Understanding?
some notions

What Counts as Understanding?
some notions

ok for commands, questions (these demand response)
“Computer, warp speed 5"

“throw axe at dwarf”

“put all of my blocks in the red box”

imperative programming languages

SQL database queries and other questions

ok, but if you knew whether it was true, why did anyone
bother telling it to you?

comparable notion for understanding NP is to compute
what the NP refers to, which might be useful

What Counts as Understanding?
some notions

What Counts as Understanding?
some notions

What are exact conditions under which it would be true?
necessary + sufficient

Equivalently, derive all its consequences
what else must be true if we accept the statement?
Match statements with a “"domain theory”

Philosophers tend to use this definition

What Counts as Understanding?
some notions

What are exact conditions under which it would be true?
necessary + sufficient

Equivalently, derive all its consequences
what else must be true if we accept the statement?
Match statements with a “domain theory”

Philosophers tend to use this definition

Easy: John ate pizza. What was eaten by John?
Hard: White’s first move is P-Q4. Can Black checkmate?
Constructing a procedure to get the answer is enough

What Does It All Mean?

® Paraphrase,“state in your own words” (English to
English translation)

® T[ranslation into another language
® Reading comprehension questions
® Drawing appropriate inferences

® Carrying out appropriate actions
® Open-ended dialogue (Turing test)

® Translation to logical form that we can reason about

(First Order) Logic
Some Preliminaries

(First Order) Logic
Some Preliminaries

Three major kinds of objects

(First Order) Logic
Some Preliminaries

Three major kinds of objects

Booleans
Roughly, the semantic values of sentences

(First Order) Logic
Some Preliminaries

Three major kinds of objects

Booleans
Roughly, the semantic values of sentences

Entities
Values of NPs, e.qg., objects like this slide
Maybe also other types of entities, like times

(First Order) Logic
Some Preliminaries

Three major kinds of objects

Booleans
Roughly, the semantic values of sentences

Entities
Values of NPs, e.qg., objects like this slide
Maybe also other types of entities, like times

Functions of various types
Functions from booleans to booleans (and, or, not)

A function from entity to boolean is called a
“predicate”

Functions might return other functions!

(First Order) Logic
Some Preliminaries

Three major kinds of objects

Booleans
Roughly, the semantic values of sentences

Entities
Values of NPs, e.qg., objects like this slide
Maybe also other types of entities, like times

Functions of various types
Functions from booleans to booleans (and, or, not)

A function from entity to boolean is called a
“predicate”

Functions might return other functions!
Function might take other functions as arguments!

Logic: Lambda Terms

Lambda terms:

A way of writing "anonymous functions”
No function header or function name
But defines the key thing: behavior of the function
Just as we can talk about 3 without naming it “x”

Let =
Equivalent to int square(p) { return p*p; }
But we can talk about without naming it

Format of a lambda term:

Logic: Lambda Terms

Logic: Lambda Terms

Lambda terms:

Logic: Lambda Terms

Lambda terms:
Let =

Logic: Lambda Terms

Lambda terms:
Let =
Then

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Let = a predicate: returns true/false

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Let = a predicate: returns true/false
IS true if x is even

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Let = a predicate: returns true/false

IS true if x is even
How about ?

is true of numbers with even squares
Just apply rules to get

Logic: Lambda Terms

Lambda terms:
Let =
Then = =
Note: square(x) isn't a function! It's just the value x*Xx.
But = = =
(proving that these functions are equal — and indeed they are,
as they act the same on all arguments: what is

Let = a predicate: returns true/false

IS true if x is even
How about ?

is true of numbers with even squares
Just apply rules to get
This happens to denote the same predicate as does

Logic: Multiple Arguments

Logic: Multiple Arguments

All lambda terms have one argument

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write
Suppose IS defined as

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write
Suppose IS defined as

Claim that times(5)(6) is 30

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write
Suppose IS defined as

Claim that times(5)(6) is 30

If this function weren’t anonymous, what would we call
it?

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

Suppose we want to write
Suppose IS defined as

Claim that times(5)(6) is 30

If this function weren’t anonymous, what would we call
it?

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

If we write times(5,6), it's just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
times(5,6) = times(5)(6)
= (AX Ay x*y) (5)(6) = (Ay 5*y)(6) = 5*6 = 30

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

If we write times(5,6), it's just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]

times(5,6) = times(5)(6)
= (Ax Ay x*y) (5)(6) = (hy 5*y)(6) = 5*6 = 30

So we can always get away with 1-arg functions ...

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

If we write times(5,6), it's just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]

times(5,6) = times(5)(6)
= (Ax Ay x*y) (5)(6) = (hy 5*y)(6) = 5*6 = 30

So we can always get away with 1-arg functions ...

... which might return a function to take the next
argument. Whoa.

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

If we write times(5,6), it's just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
times(5,6) = times(5)(6)
= (AX Ay x*y) (5)(6) = (Ay 5*y)(6) = 5*6 = 30

So we can always get away with 1-arg functions ...

... which might return a function to take the next
argument. Whoa.

Remember: square can be written as ».x square(x)

Logic: Multiple Arguments

All lambda terms have one argument
But we can fake multiple arguments ...

If we write times(5,6), it's just syntactic sugar for
times(5)(6) or perhaps times(6)(5) [notation varies]
times(5,6) = times(5)(6)
= (AX Ay x*y) (5)(6) = (Ay 5*y)(6) = 5*6 = 30

So we can always get away with 1-arg functions ...

... which might return a function to take the next
argument. Whoa.

Remember: square can be written as ».x square(x)
And now times can be written as 2. x Ly times(x,y)

Grounding out

Grounding out

So what does actually mean???

Grounding out

So what does actually mean???
How do we get from to 30 ?
Whether = 30 depends on whether symbol * actually

denotes the multiplication function!

Grounding out

So what does actually mean???
How do we get from to 30 ?
Whether = 30 depends on whether symbol * actually

denotes the multiplication function!

Grounding out

So what does actually mean???
How do we get from to 30 ?
Whether = 30 depends on whether symbol * actually

denotes the multiplication function!

Well, maybe * was defined as another lambda term, so
substitute to get =

But we can't keep doing substitutions forever!
Eventually we have to ground out in a primitive term
Primitive terms are bound to object code

Grounding out

So what does actually mean???
How do we get from to 30 ?
Whether = 30 depends on whether symbol * actually

denotes the multiplication function!

Well, maybe * was defined as another lambda term, so
substitute to get =

But we can't keep doing substitutions forever!
Eventually we have to ground out in a primitive term
Primitive terms are bound to object code

Maybe *(5,6) just executes a multiplication function

Grounding out

So what does actually mean???
How do we get from to 30 ?
Whether = 30 depends on whether symbol * actually

denotes the multiplication function!

Well, maybe * was defined as another lambda term, so
substitute to get =

But we can't keep doing substitutions forever!
Eventually we have to ground out in a primitive term
Primitive terms are bound to object code

Maybe *(5,6) just executes a multiplication function
What is executed by loves(john, mary) ?

Logic: Interesting Constants

Thus, have “constants” that name some of the
entities and functions (e.g., *):

- an entity
— a predicate on entities
holds of just the red entities: red(x) is true if x is red!

— a predicate on 2 entities

Question: What does denote?
Constants used to define meanings of words

Meanings of phrases will be built from the
constants

Logic: Interesting Constants

Logic: Interesting Constants

— a predicate on 2 predicates on entities
= “most pigs are big”
Equivalently,

returns true if most of the things satisfying the first
predicate also satisfy the second predicate

Logic: Interesting Constants

— a predicate on 2 predicates on entities
= “most pigs are big”
Equivalently,

returns true if most of the things satisfying the first
predicate also satisfy the second predicate

similarly for other quantifiers
(equivalent to)

(equivalent to)

can even build complex quantifiers from English phrases:
“between 12 and 75", “a majority of”; “all but the smallest 2"

A reasonable representation?

G1lly swallowed a goldfish
First attempt:

Returns true or false. Analogous to

... or is it analogous?

A reasonable representation?

A reasonable representation?

Gilly swallowed a goldfish
First attempt:

A reasonable representation?

Gilly swallowed a goldfish
First attempt:

But we're not paying attention to a!

A reasonable representation?

Gilly swallowed a goldfish
First attempt:

But we're not paying attention to a!

goldfish isn't the name of a unique object the
way Gilly IS

A reasonable representation?

Gilly swallowed a goldfish
First attempt:

But we're not paying attention to a!

goldfish isn't the name of a unique object the
way Gilly IS

A reasonable representation?

Gilly swallowed a goldfish
First attempt:

But we're not paying attention to a!

goldfish isn't the name of a unique object the
way Gilly IS

In particular, dont want
G1lly swallowed a goldfish and Milly

swallowed a goldfish
to translate as

since probably not the same goldfish ...

Use a Quantifier

Use a Quantifier

Gilly swallowed a goldfish
First attempt:

Use a Quantifier

Gilly swallowed a goldfish
First attempt:

Better:

Use a Quantifier

Gilly swallowed a goldfish
First attempt:

Better:
Or using one of our quantifier predicates:

Equivalently:
“In the set of goldfish there exists one swallowed by Gilly”

Use a Quantifier

Gilly swallowed a goldfish
First attempt:

Better:
Or using one of our quantifier predicates:

Equivalently:
“In the set of goldfish there exists one swallowed by Gilly”

Here IS a predicate on entities

This is the same semantic type as
But goldfish is noun and red is adjective .. #@!?

Tense

Tense

Gi1lly swallowed a goldfish

Tense

Gi1lly swallowed a goldfish
Previous attempt:

Tense

Gi1lly swallowed a goldfish
Previous attempt:

Improve to use tense:

Tense

Gi1lly swallowed a goldfish
Previous attempt:

Improve to use tense:

Instead of the 2-arg predicate
try a 3-arg version where t is a time

Tense

Gi1lly swallowed a goldfish
Previous attempt:

Improve to use tense:

Instead of the 2-arg predicate
try a 3-arg version where t is a time

Now we can write:

Tense

Gi1lly swallowed a goldfish
Previous attempt:

Improve to use tense:

Instead of the 2-arg predicate
try a 3-arg version where t is a time

Now we can write:

“There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

(Simplify Notation)

Gi1lly swallowed a goldfish
Previous attempt:

Improve to use tense:

Instead of the 2-arg predicate
try a 3-arg version

Now we can write:

“There was some time in the past such that a goldfish was among the
objects swallowed by Gilly at that time”

Event Properties

Event Properties

G1lly swallowed a goldfish
Previous:

Event Properties

G1lly swallowed a goldfish
Previous:

Why stop at time? An event has other properties:

[(G1lly] swallowed [a goldfish] [on a dare]
[1n a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

Specifies who what why when ...

Event Properties

G1lly swallowed a goldfish
Previous:

Why stop at time? An event has other properties:

[(G1lly] swallowed [a goldfish] [on a dare]
[1n a telephone booth] [with 30 other
freshmen] [after many bottles of vodka had
been consumed].

Specifies who what why when ...
Replace time variable t with an event variable

As with probability notation, a comma represents
Could define as

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), ...

Does this mean what we'd expect??

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swal

owee(e)), all(booth, location(e)), ...

N
dg goldfish(g), swa

lowee(e,q)

Does this mean what we'd expect??

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), ...

g goldfish(g)\,s/wa lowee(e,g) Vb bootﬁ(g)zﬂocation(e,b)

Does this mean what we'd expect??

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), ...

g goldfish(g)\,s/wa lowee(e,g) Vb bootﬁ(g)zﬂocation(e,b)

Does this mean what we'd expect??
says that there’s only one event
with a single goldfish getting swallowed
that took place in a lot of booths ...

Quantifier Order

Groucho Marx celebrates quantifier order ambiguity:

In this country a woman gives birth every 15 min. Our
Jjob is to find that woman and stop her.

Surprisingly, both are possible in natural language!

Which is the joke meaning (where it’s always the same woman) and
why?

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth
Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swal

owee(e)), all(booth, location(e)), ...

N
dg goldfish(g), swa

lowee(e,g) Vb bootﬁ(g)zﬂocation(e,b)

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, location(e)), ...

g goldfish(g)\,s/wa lowee(e,g) Vb bootﬁ(g)zﬂocation(e,b)

Does this mean what we'd expect??

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swal

owee(e)), all(booth, location(e)), ...

~
dg goldfish(g), swa

lowee(e,g) Vb boot%):location(e,b)

Does this mean what we'd expect??

It's e Vb which means same event for every booth

Quantifier Order

Gl1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),

exists(goldfish, swal

owee(e)), all(booth, location(e)), ...

Y
g goldfish(g), swa

lowee(e,g) Vb boot%):location(e,b)

Does this mean what we'd expect??

It's e Vb which means same event for every booth

Probably false unless Gilly can be in every booth during
her swallowing of a single goldfish

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, Ab location(e,b))

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, Ab location(e,b))

Other reading (Vb Fe) involves guantifier raising:

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, Ab location(e,b))

Other reading (Vb Fe) involves guantifier raising:

all(booth, Ab [Je past(e), act(e,swallowing), swallower
(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])

Quantifier Order

Gi1lly swallowed a goldfish 1n a booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), exists(booth, location(e)), ...

Gilly swallowed a goldfish in every booth

Jde past(e), act(e,swallowing), swallower(e,Gilly),
exists(goldfish, swallowee(e)), all(booth, Ab location(e,b))

Other reading (Vb Fe) involves guantifier raising:

all(booth, Ab [3e past(e), act(e,swallowing), swallower

(e,Gilly), exists(goldfish, swallowee(e)), location(e,b)])
“for all booths b, there was such an event in b”

Intensional Arguments

Intensional Arguments

Willy wants a unicorn

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

“"Willy wants any event e’ in which Lilly gets married”

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

“"Willy wants any event e’ in which Lilly gets married”
Here the wantee is a type of event

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

“"Willy wants any event e’ in which Lilly gets married”

Here the wantee is a type of event
Sentence doesn’t claim that such an event exists

Intensional Arguments

Willy wants a unicorn

“there is a particular unicorn u that Willy wants”
In this reading, the wantee is an individual entity

“Willy wants any entity u that satisfies the unicorn predicate”
In this reading, the wantee is a type of entity
Sentence doesn’t claim that such an entity exists

Willy wants Lilly to get married

“"Willy wants any event e’ in which Lilly gets married”
Here the wantee is a type of event
Sentence doesn’t claim that such an event exists

Intensional verbs besides want: hope, doubt, believe,..

Intensional Arguments

Intensional Arguments

Willy wants a unicorn

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =

Then wants a unicorn = wants a dodo. Oops!

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =
Then wants a unicorn = wants a dodo. Oops!
So really the wantee should be criteria for unicornness (“intension”)

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =
Then wants a unicorn = wants a dodo. Oops!
So really the wantee should be criteria for unicornness (“intension”)

Traditional solution involves “possible-world semantics”

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =
Then wants a unicorn = wants a dodo. Oops!
So really the wantee should be criteria for unicornness (“intension”)

Traditional solution involves “possible-world semantics”

Can imagine other worlds where set of unicorn = set of dodos

Intensional Arguments

Willy wants a unicorn

“"Willy wants anything that satisfies the unicorn predicate”
here the wantee is a type of entity

Problem (a fine point I'll gloss over):

is defined by the actual set of unicorns (“extension”)
But this set is empty: =
Then wants a unicorn = wants a dodo. Oops!
So really the wantee should be criteria for unicornness (“intension”)

Traditional solution involves “possible-world semantics”

Can imagine other worlds where set of unicorn = set of dodos

Other worlds also useful for: You must pay the rent
You can pay the rent
If you hadn’t, you’d be homeless

Control

Control

Willy wants Lilly to get married

Control

Willy wants Lilly to get married

Jde present(e), act(e,wanting), wanter(e, Willy),
wantee(e, Af [act(f,marriage), marrier(f,Lilly)])

Control

Willy wants Lilly to get married

Jde present(e), act(e,wanting), wanter(e, Willy),
wantee(e, Af [act(f,marriage), marrier(f,Lilly)])

Control

Willy wants Lilly to get married

Jde present(e), act(e,wanting), wanter(e, Willy),
wantee(e, Af [act(f,marriage), marrier(f,Lilly)])

Willy wants to get married

Control

Willy wants Lilly to get married

Jde present(e), act(e,wanting), wanter(e, Willy),
wantee(e, Af [act(f,marriage), marrier(f,Lilly)])

Willy wants to get married

Sameas Willy wants Willy to get married

Control

Willy wants Lilly to get married

Willy wants to get married
Sameas Willy wants Willy to get married
Just as easy to representas Willy wants Lilly ..

Control

Willy wants Lilly to get married

Willy wants to get married
Sameas Willy wants Willy to get married
Just as easy to representas Willy wants Lilly ..

The only trick is to construct the representation from the
syntax. The empty subject position of “to get married” is
said to be controlled by the subject of “wants.”

Nouns and Their Modifiers

Nouns and Their Modifiers

expert

Nouns and Their Modifiers

expert
big fat expert

But: bogus expert
Wrong:
Right: ... bogus maps to new concept

Nouns and Their Modifiers

expert
big fat expert

But: bogus expert
Wrong:
Right: ... bogus maps to new concept

Baltimore expert (white-collar expert, TV expert ...)

— expert from Baltimore
Or with different intonation:

— expert on Baltimore
Can't use for this case: 1aw expert and dog catcher

dog expert and law catcher

Nouns and Their Modifiers

the goldfish that Gilly swallowed

every go.

three gol

dfish
dfish

tha:

tha

N

N

G1ll
G1ll

YV sSwa

v swall

11lowed

owed

Nouns and Their Modifiers

the goldfish that Gilly swallowed

every go.

three gol

dfish
dfish

tha:

tha

N

N

G1ll
G1ll

YV sSwa

v swall

11lowed

owed

Nouns and Their Modifiers

the goldfish that Gilly swallowed

every go.

three gol

dfish
dfish

tha:

tha

N

N

G1ll
G1ll

YV sSwa

v swall

11lowed

owed

three swallowed-by-Gilly goldfish

Nouns and Their Modifiers

the goldfish that Gilly swallowed

every go.

three gol

dfish
dfish

tha:

tha

N

N

G1ll
G1ll

v swall

v swall

owed

owed

three swallowed-by-Gilly goldfish

Or for real:

Adverbs

Adverbs

L11l1 passionately wants Billy
Wrong?: passionately(want(Lili,Billy)) = passionately(true)
Better: (passionately(want))(Lili,Billy)

Best: 3e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

Adverbs

L11l1 passionately wants Billy

Wrong?: passionately(want(Lili,Billy)) = passionately(true)
Better: (passionately(want))(Lili,Billy)

Best: 3e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

L1l1 often stalks Billy
(often(stalk))(Lili,Billy)

many(day, Ad Je present(e), act(e,stalking), stalker(e,Lili),
stalkee(e, Billy), during(e,d))

Adverbs

L11l1 passionately wants Billy

Wrong?: passionately(want(Lili,Billy)) = passionately(true)
Better: (passionately(want))(Lili,Billy)

Best: 3e present(e), act(e,wanting), wanter(e,Lili),
wantee(e, Billy), manner(e, passionate)

L1l1 often stalks Billy
(often(stalk))(Lili,Billy)

many(day, Ad e present(e), act(e,stalking), stalker(e,Lili),
stalkee(e, Billy), during(e,d))

L1l1 obviously likes Billy
(obviously(like))(Lili,Billy) — one reading
obvious(like(Lili, Billy)) — another reading

Speech Acts

Speech Acts

What is the meaning of a full sentence?
Depends on the punctuation mark at the end. ©
Billy likes Lili. >
Billy likes Lili? >

Billy, like Lili! >

Speech Acts

What is the meaning of a full sentence?
Depends on the punctuation mark at the end. ©
Billy likes Lili. >
Billy likes Lili? >

Billy, like Lili! >

Let’s try to do this a little more precisely, using event
variables etc.

Speech Acts

Speech Acts

What did Gilly swallow?

Argument is identical to the modifier “that Gilly swallowed”
Is there any common syntax?

Speech Acts

What did Gilly swallow?

ask(A\x Je past(e), act(e,swallowing),
swallower(e,Gilly), swallowee(e,x))

Argument is identical to the modifier “that Gilly swallowed”
Is there any common syntax?

Fat your fish!
command(\f act(f,eating), eater(f,Hearer), eatee(...))

Speech Acts

What did Gilly swallow?

ask(A\x Je past(e), act(e,swallowing),
swallower(e,Gilly), swallowee(e,x))

Argument is identical to the modifier “that Gilly swallowed”
Is there any common syntax?

Fat your fish!
command(\f act(f,eating), eater(f,Hearer), eatee(...))
I ate my fish.

assert(de past(e), act(e,eating), eater(f,Speaker),
eatee(...))

Compositional Semantics

We've discussed what semantic representations
should look like.

But how do we get them from sentences???

First - parse to get a syntax tree.
Second - look up the semantics for each word.

Third - build the semantics for each constituent
Work from the bottom up
The syntax tree is a “recipe” for how to do it

Compositional Semantics

/\
Sfin Punc
NP VP,
/\ /\
Det N T VI:)stem
Every nation -S
Vstem Smf
want
NP VP
George
T VPstem
to
Vstem N P

Compositional Semantics

/\
Sfin Punc
NP VP,
/\ /\
Det N T VI:)stem
Every nation -S
Vstem Smf
want
NP VP
George
T VPstem
to
Vstem N P

Compositional Semantics

assert(every(nation, Ax de present(e), START

act(e,wanting), wanter(e,x), T
wantee(e, Ae’ act(e’loving), S P
. — unc
lover(e’,G), lovee(€’, L)))) .

. yp, hsassert(s)

/\ TN
Det — N T — VPstem
Every nation -S
every nation /‘ Viem — Sinf
want
AV Ax Je present(e),v(x)(e) NP — VP,
/ George
Ay AX Ae act(e,wanting), G T — VP4
wanter(e,x), wantee(e,y) a a to

_ Vstem — NP
Ly wxone act(e,loving), |ove Laura L
lover(e,x), lovee(e,y)

Compositional Semantics

Compositional Semantics

Add a "sem” feature to each context-free rule
S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=Y]

Meaning of S depends on meaning of NPs

Compositional Semantics

Add a "sem” feature to each context-free rule
S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=Y]
Meaning of S depends on meaning of NPs
TAG version:

Compositional Semantics

Add a "sem” feature to each context-free rule
S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=Y]
Meaning of S depends on meaning of NPs
TAG version: S

N

NP VP

N

V NP
loves

Compositional Semantics

Add a "sem” feature to each context-free rule
S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=Y]

Meaning of S depends on meaning of NPs

TAG version: S S
/\ /\
NP VP NP VP
/\ /\
V NP V NP

loves kicked the bucket

Compositional Semantics

Add a "sem” feature to each context-free rule
S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=Y]

Meaning of S depends on meaning of NPs

TAG version: S S
/\ /\
NP VP NP VP
/\ /\
V NP V NP
loves kicked the bucket
Template filling: S[sem=] —

I want a flight from NP[sem=x] to NP[sem=V]

Compositional Semantics

Compositional Semantics

Instead of S — NP loves NP
S[sem=] — NP[sem=x] loves NP[sem=V]

Compositional Semantics

Instead of S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=V]
might want general rules like S — NP VvP:

V[sem=] — loves

VP[sem=] — V[sem=Vv] NP[sem=0Db]]

S[sem=] — NP[sem=] VP[sem=vp]

Compositional Semantics

Instead of S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=V]
might want general rules like S — NP VvP:

V[sem=] — loves

VP[sem=] — V[sem=v] NP[sem=0b]]

S[sem=] — NP[sem=] VP[sem=vp]

NOW George loves Laura has sem=

Compositional Semantics

Instead of S — NP loves NP

S[sem=] — NP[sem=x] loves NP[sem=V]
might want general rules like S — NP VvP:

V[sem=] — loves

VP[sem=] — V[sem=v] NP[sem=0b]]

S[sem=] — NP[sem=] VP[sem=vp]

NOW George loves Laura has sem=

In this manner we’ll sketch a version where
Still compute semantics bottom-up
Grammar is in Chomsky Normal Form
So each node has 2 children: 1 function & 1 argument
To get its semantics, apply function to argument!

Compositional Semantics

/Sm\ Punc

NP VRe
George
Vipres NP
loves Laura

Compositional Semantics

/Sm\ Punc

NP VRen
George
Vpres - NP
loves Laura

Compositional Semantics

/Sm\ Punc

NP — VRen
George
Vpres - NP
loves Laura

Compositional Semantics

/SK— Punc

NP — VRen
George
Vpres - NP
loves Laura

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR
John
Vpres — AdjP
is tall

Compositional Semantics

/SK— Punc

NP — VR

John
Vpres - Ad: P
is ta
ta

= X tall(x)

Compositional Semantics

/SK— Punc

NP — VR

John
Vpres - Ad: P
is ta
ta

= X tall(x)

Compositional Semantics

/SK— Punc

NP — VR

John
Vpres - Ad: P
is ta
ta

= X tall(x)

Compositional Semantics

/////§ml\\;:j Punc

NP — Vv
John

in

Vpres - Ad: P
iS ta

ta
= X tall(x)

)(Ax tall(x))
(A tall(x))
tall

1 >

Compositional Semantics

/SK— Punc

NP — VR
George
Vpres - NP
loves Laura

Compositional Semantics

/SK— Punc

NP — VR
George
Vpres - NP
loves Laura

Compositional Semantics

/SK— Punc

NP — VR
George
Vpres - NP
loves Laura

Shi Punc
NP VPs,,
Det N T VPstem
Every nation -S N
Vstem Sinf
want 7 N
NP VP,
George /\
T VI:)stem
to /\
Vstem N P

love Laura

Shi Punc
NP VP,
Det N VI:)stem
Every nation /\
Vstem Sinf
want 7 N
NP VP, ¢
George /\
T VI:)stem
to /\
Vstem NP

love Laura

Now let’s try a more
complex example, and
really handle tense.

Det N
Every nation

Treat —s like want " N

yet another NP VP
auxiliary George
verb T VPstem
o T
Vstem NP

love Laura

Sfin Punc
NP VPfin
Det N T VI:)stem
Every nation -S /\
Ve S . e act(e,loving), lover(e,G), lovee(e,L)
want /\ the meaning that we
NP VP, want here: how can
n °
George /'\ we arrange to get it?
T VI:)stem
to N
Vstem NP

love Laura

Shi Punc
NP VPs,,
Det N T VPstem
Every nation -S N
Vstem Sinf
want N
NP VP;.¢
George /\
T VIDstem
to /\
Vstem N P

love Laura

Shi Punc
NP VPs,,
Det N T VPstem
Every nation -S N
Vstem Sinf
want N
NP — VP,
George /\
T VIDstem
to /\
Vstem NP

love Laura

Shi Punc
NP VPfin
Det N T VPgiem
Every nation -S /\
Ve S, € act(e,loving), lover(e,G), lovee(e,L)

want what function should
G NP % apply to G to yield the
>

George desired blue result?
T VP, (thisislike division!)
to /\
Vstem NP

love Laura

Shi Punc
NP VPs,,
Det N T VPstem
Every nation -S N
Vstem Sinf
want N
NP — VP,
George /\
T VIDstem
to /\
Vstem NP

love Laura

Shi Punc
NP VPs,,
Det N T VPstem
Every nation -S N
Vstem Sinf
want N
NP — VP,
George /\
T VIDstem
to /\
Vstem NP

love Laura

Det
Every

nation

=S

VI:)stem

TN

Ve S, € act(e,loving), lover(e,G), lovee(e,L)

want 7 N
G NP — VP,
George

AX Ae act(e,loving),
lover(e,x), lovee(e,L)

AX \e act(e,loving),
7\’a = T SN VPstem (g)

to /\Iover(e,x), lovee(e,L)

Vstem N P
love Laura

Det
Every

nation

T VPstem

-S N
Ve s, . Ae act(e loving), lover(e,G), lovee(e,L)
want TN AX Ae act(e,loving),

G NP — VP, lover(e,x), lovee(e,L)
George

T . yp. MXDe act(e,loving),
\a a o /SteQ)ver(e,x), lovee(e,L)

V NP
We’ 11 Say that |;§2 La ura

“t0” 1s just a bit of syntax that

changes a VP, to a VP, ,
with the same meaning.

Det
Every

nation

=S

VPstem

TN

Ve S, € act(e,loving), lover(e,G), lovee(e,L)

G NP — VI:)inf
George

AX Ae act(e,loving),
lover(e,x), lovee(e,L)

T . yp. MxDhe act(e,loving),
\a a o /SteQ)ver(e,x), lovee(e,L)

Vstem — NP L

love Laura
Ay AX Ae act(e,loving),

lover(e,x), lovee(e,y)

Det
Every

nation

=S

VPstem

TN

Ve S, € act(e,loving), lover(e,G), lovee(e,L)

AX Ae act(e,loving),

G NP VP lover(e,x), lovee(e,L)
George
T VP AX Ae act(e,loving),
\a a o /SteQ)ver(e,x), lovee(e,L)
Vstem NP L
love Laura

Ay AX Ae act(e,loving),
lover(e,x), lovee(e,y)

Shi Punc
NP VP4, _
/\ /\ AX Ae act(e,wanting), wanter(e,x),
Det N VP, wantee(e, Ae’ act(e’loving), by analogy

Every nation i /\ lover(e’,G), lovee(e’L))
Ve S, € act(e,loving), lover(e,G), loveetg,L)

want /\ AX e act(e,loving),

G NP VPist lover(e,x), lovee(e,L)
George

AX Ae act(e,loving),

T VP
\a a o /SteQ)ver(e,x), lovee(e,L)
Vstem NP L
love Laura

Ay AX \e act(e,loving),
lover(e,x), lovee(e,y)

Shi Punc
NP VP4, _
/\ /\ AX Ae act(e,wanting), wanter(e,x),
Det N VP, wantee(e, \e’ act(e’,loving), by analogy

Every nation i /\ lover(e’,G), lovee(e’L))
Ve S, € act(e,loving), lover(e,G), loveetg,L)

want /\ AX e act(e,loving),

G NP VPist lover(e,x), lovee(e,L)
George

AX Ae act(e,loving),

T VP
\a a o /Ste@ver(e,x), lovee(e,L)
Vstem NP L
love Laura

Ay AX \e act(e,loving),
lover(e,x), lovee(e,y)

Shi Punc
NP VP4, _
/\ /\ AX Ae act(e,wanting), wanter(e,x),
Dot \ VP, walnteeegz,, é)e fCte(:(lle?\ll_l)n)g)l by analogy
Every nation -S PN over(e,i), lovee(e,
Viern — Si¢ \e act(e,loving), lover(e,G), loveete,L)
Ly Ax he act(e,wanting),want "\ AXx he act(e,loving),
wanter(e,x), wantee(e,y) G NP VP, lover(e,x), lovee(e,L)
George

AX Ae act(e,loving),

T VP
\a a o /%ver(e,x), lovee(e,L)
Vstem NP L
love Laura

Ay AX \e act(e,loving),
lover(e,x), lovee(e,y)

NP Vme

/\ /\ AX Ae act(e,wanting), wanter(e,x),

Det N VP, wantee(e, Ae’ act(e’loving),

Every nation i /\ lover(e’,G), lovee(e’L))
Vstem Sinf

want 7 N

NP VPinf

George /\

T VI:)stem

to /\
Vstem N P
love Laura

START \Xx de present(e), act(e,wanting),

T T wanter(e,x), wantee(e, \e’

Shi, Punc act(e’loving),

/\ _ lover(e’,G), lovee(e’,L))

NP VP

/\ /\ AX Ae act(e,wanting), wanter(e,x),

Det N VP, wantee(e, \e’ act(e’,loving),

Every nation i /\ lover(e’,G), lovee(e’L))
Vstem Sinf

want N

NP VP,

George /\

T VI:)stem

to /\
Vstem NP
love Laura

START \Xx de present(e), act(e,wanting),

T T wanter(e,x), wantee(e, \e’

Shi, Punc act(e’loving),
/\ _ lover(e’,G), lovee(e’L))
NP VP4, _

/\ /\ AX Ae act(e,wanting), wanter(e,x),
ot N T e)
Eve nation -S re !

i AV Ax Je v TN .

resent(e), S inf
p ()I Want /\
v(x)(e)
NP VP,
George /\
T VI:)stem
to /\

Vstem NP
love Laura

START \Xx de present(e), act(e,wanting),

T T wanter(e,x), wantee(e, \e’
St Punc act(e’,loving),

/\ _ lover(e’,G), lovee(e’L))

NP VP,

/\ /\ AX Ae act(e,wanting), wanter(e,x),

Det N T Vpstemwantee(e, ne’ act(e’loving),

- lover(e’,G), lovee(e',L))
Eve nation -S re !
i AV AX Je /\ S
inf

Vv
present(e), ~S©T
V(X)(E) Wa nt /\
/ NP VP,

George /\

Your account V is overdrawn, so your T VP.em

rental application is rejected.. to /\
* Deposit some cash X to get V(X) Verer NP

« Now show you’ve got the money: love Laura
de present(e), v(x)(e)

* Now you can withdraw X again:
\X de present(e), v(x)(e)

Sfin Punc
/\
NP VP
PN PN X

A\Xx de present(e), act(e,wanting),
wanter(e,x), wantee(e, re’
act(e’,loving),
lover(e’,G), lovee(e’L))

\e act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’loving),

Det N T — VI:)stem
- lover(e’,G), lovee(e',L))
Eve nation -S P '
i AV AXx Je y TN S
resent(e), ™ inf
p (e) want /\
v(x)(e)
NP VP,
/ George

Your account V is overdrawn, so your T VP.em
rental application is rejected.. to /\
* Deposit some cash X to get V(X) Verer NP
 Now show you’ve got the money: love Laura

de present(e), v(x)(e)
* Now you can withdraw X again:
\X de present(e), v(x)(e)

Better analogy: How would you modify the
second object on a stack (AX,\e,act...)?

START

/\

Sfin Punc

/\

VPﬂn
/\ /\‘\ \x de present(e), act(e,wanting),

Det VP, wanter(e,x), wantee(e, \e’

Every natlon -S N act(e’loving),

| 1G), | L
Voo S over(e,G), lovee(e)L))

want 7 N

NP VP,

George /\

T VI:)stem

to /\
Vstem NP
love Laura

every(nation, Ax de present(e),
act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’loving),

START lover(e’,G), lovee(e',L)))

/\

Sfin Punc

/\

VPﬂn
/\ /\‘\ \x de present(e), act(e,wanting),

Det VP, wanter(e,x), wantee(e, \e’

Every natlon -S N act(e’,loving),

| 1G), | L
Voo S over(e,G), lovee(e)L))

want 7 N

NP VP,

George /\

T VI:)stem

to /\
Vstem NP
love Laura

every(nation, Ax de present(e),

act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’loving),

START lover(e’,G), lovee(e',L)))
_ Sfin Punc
Ap every(nation, p)/\
- VPﬂn
/\ /\‘\ \x de present(e), act(e,wanting),
Det VP, wanter(e,x), wantee(e, \e’
Every natlon -S N act(e’loving),
lover(e’,G), lovee(e',L))
Vstem Sinf
want 7 N
NP VP,
George /\
T VI:)stem
to /\
Vstem NP

love Laura

every(nation, Ax de present(e),

act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’,loving),

START lover(e’,G), lovee(e’L)))
. Sfin PunC
Ap every(nation, p)/\
- VPﬂn
/\ /\‘\ \x de present(e), act(e,wanting),
Det VP, wanter(e,X), wantee(e, \e’
Every natlon -S N act(e’,loving),
_ Vv S lover(e’,G), lovee(e',L))
nation stem inf
want 7 N
NP VP,
George /\
T VI:)stem
to /\
Vstem NP

love Laura

every(nation, Ax de present(e),

act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’,loving),

START lover(e’,G), lovee(e'L)))
_ Sfin Punc
Ap every(nation, p)/\
- VPﬂn
/\ /\‘\ A\Xx Je present(e), act(e,wanting),
Det — N VP, wanter(e,X), wantee(e, \e’
Every nation -S N act(e’,loving),
_ Vv S lover(e’,G), lovee(e',L))
AN Ap nation stem inf
every(n, p) want " N
NP VI:)inf
George /\
T VI:)stem
to /\
Vstem NP

love Laura

every(nation, Ax de present(e),

act(e,wanting), wanter(e,x),
wantee(e, Ae’ act(e’,loving),

START lover(e’,G), lovee(e’,L)))
St — Punc
/\ . As assert(s)
/\)Dﬂn\
Det VPgiem
Every natlon -S TN
Vstem Sinf
want 7 N
NP VI:)inf
George
T VI:)stem
to N
Vstem NP

love Laura

In Summary: From the Words

/\
Sfin Punc
NP VP,
/\ /\
Det N T VI:)stem
Every nation -S
Vstem Smf
want
NP VP
George
T VPstem
to
Vstem N P

In Summary: From the Words

/\
Sfin Da— PUI’IC
- VPfln
/\ /\
Det — N T — VI:)stem
Every nation -S
Vstem‘_’ Sinf
want
NP — VP,
George
T — VPstem
to
Vstem — NP

love Laura

In Summary: From the Words

assert(every(nation, Ax Je present(e), START

act(e,wanting), wanter(e,x), -~
wantee ’ Jlovi

(e’, NG act(e,llovmg), S — PUNC
lover(e’,G), lovee(€’, L))))

. yp, hsassert(s)

/\ PN
Det — N T — VPstem
Every nation -S
every nation /‘ Vien — Sinf
want
AV AX Je present(e),v(x)(e) NP — VP,
/ George
Ay AX he act(e,wanting), G T — VP4
wanter(e,x), wantee(e,y) 2aa to

_ Vstem — NP
Ly wxowe act(eloving), jove Laura L
lover(e,x), lovee(e,y)

Other Fun Semantic Stuff:
A Few Much-Studied Miscellany

Temporal logic

Gi1lly had swallowed eight goldfish
before Milly reached the bowl

Billy said Jilly was pregnant

Billy said, “Jilly 1s pregnant.”
Generics

Typhoons arise 1n the Pacific

Children must be carried

Presuppositions
The king of France 1s bald.

Have you stopped beating your wife?

Pronoun-Quantifier Interaction (“bound anaphora”)

Every farmer who owns a donkey beats 1it.
If you have a dime, put 1t 1in the meter.

The woman who every Englishman loves 1s hilis mother.

I love my mother and so does Billy.

In Summary

How do we judge a good meaning
representation!?

How can we represent sentence meaning
with first-order logic!?

How can logical representations of

sentences be composed from logical forms
of words!

Next: can we train models to recover
logical forms?

Computational
Semantics

Overview

® So far:What is semantics!?
® First order logic and lambda calculus for compositional semantics
® Now: How do we infer semantics!?
® Minimalist (not in Chomskyan sense) approach
® Semantic role labeling

® Semantically informed grammar

® Combinatory categorial grammar (CCG, but cf. TAG)

® | exical semantics

® What are the ground terms!?

® And can lexical semantics help us learn better compositional
semantics?

® Excursus on Machine Translation

Semantic Role Labeling

® Characterize predicates (e.g., verbs, nouns, adjectives) as relations with roles
(slots)

[ugee She] blames [, .. the Government] [, for failing to do enough to
help] .

Holman would characterize this as blaming [, ... the poor] .

The letter quotes Black as saying that [, white and Navajo ranchers]
misrepresent their livestock losses and blame [, ., everything] [, .. ©N

coyotes] .
® We want a bit more than which NP is the subject (but not much more):

® Relations like subject are syntactic, relations like agent or experiencer are
semantic (think of passive verbs)

® Typically, SRL is performed in a pipeline on top of constituency or dependency
parsing and is much easier than parsing.

heard

SRL Example

/ fﬂf””’_ﬁ“&x
/’ f‘ff E—H"“--_
/ NP VP
/ T
-
/ NNP VED Né
// PRP
the sound of liquid slurping in a metal container as Farrell approached him
| |
Theme target Goal

from

behind

Source

PropBank Example

fall.01 sense: move downward
roles: Argl: thing falling
Arg2: extent, distance fallen
Arg3: start point
Argd: end point

Sales fell to $251.2 million from $278.7 million.
argl: Sales
rel: tell
argd: to $251.2 million
arg3: from $278.7 million

ropBank Example

rotate.2 sense: shift from one thing to another
roles: Ar causer of shift

thing being changed

old thing

new thing

—
-

> > g
g5 09 09 09
fad I —

Many of Wednesday’s winners were losers yesterday as investors
quickly took profits and rotated their buying to other issues, traders

said. (wsy_1723)
argl): investors
rel: rotated

argl: thewr buying
arg3: to other issues

PropBank Example

aim.01 sense: intend, plan
roles: Arg0: aimer, planner
Argl: plan, intent

f -

The Central Council of Church Bell Ringers aims *trace™ to

improve relations with vicars. (ws)_0089)
argl): The Central Council of Church Bell Ringers
rel: aims

argl: *trace™ to improve relations with vicars

aim.(2 sense: point (weapon) at
roles: Arg0: aimer
Argl: weapon, etc.
Arg2: target

Banks have been aiming packages at the elderly.
argl: Banks
rel: aiming
argl: packages
arg2: at the elderly

Shared Arguments

(NP-SBJ (JJ massive) (1] internal) (NN debt))
(VP (VBZ has)

(VP (VBN forced)
(S
(NP-SBJ-1 (DT the) (NN government))
(VP (TO to)
(VP (VB borrow)
(ADVP-MNR (RB massively))...

force
; g
dr gid__d.-"f EIE li --h‘-.____l_ al‘gﬂ
Y T
massive the Tl
internal T0VEIT rrent hi mow
. .
debt -w. \\riﬂm
arel a,

massively

Path Features

DT NN
He ate some pancakes

Path Description
VB|VP | PP PP argument/adjunct

'BTVP1S|NP subject
VBIVP |NP object

'BITVPTVP]S | NP subject (embedded VP)
VBTVP|ADVP adverbial adjunct

NNTNP|NP|PP prepositional complement of noun

SRL Accuracy

® Features

® Path from target to role-filler

® Filler’s syntactic type, headword, case

® Target’s identity

® Sentence voice, etc.

® | ots of other second-order features
® Gold vs. parsed source trees

® SRL is fairly easy on gold trees

® Harder on automatic parses

® Joint inference of syntax and semantics

CORE

ARGM

Fl

Acc.

Fl

92.2

80.7

89.9

71.8

CORE

ARGM

Fl

Acc.

Fl

Acc.

84.1

66.5

814

33.6

not a helpful as expected

Interaction with Empty Elements

NP VP
NN NNS

|
Housing lobbies VED N P! %

persuaded NNP
| NP VP
Con gress *|1

Lo

VB NP PP

raise DT NN to$124.875
| |

the ceiling

Empty Elements

® |n Penn Treebank, 3 kinds of empty elem.

® Null items

® Movement traces (VWH, topicalization,
relative clause and heavy NP extraposition)

® Control (raising, passives, control, shared
arguments)

® Semantic interpretation needs to reconstruct
these and resolve indices

English Example

S

NP - T
NNP VBD ADIP S-2

armers was)] S NN NP VP

| | | | T
quick *[CH*-2 vesterday *-3 TO VP
/ I
T fo VB PRT NP
I T
point RP NP SBAR
our DT NN WHNP-1] S
| | | N
the problems () NP VP
| |
PRP VBZ NP

it sees *T*-1

German Example

AP-2

._——f_fvxh-h—__ | tf’#—f—’__r—%x“‘————_h A
ADV NP ADID wird *72% PP VVPP V7
| N | will N N T
Erst ADIJA NN spiter PROAV *T7*begonnen ART NE PTKZU VVINF
not until | | later | be begun | | ‘ |
lange Zeit damit den RMV zu schaften

long time with it the RMV 1o form

Combinatory
Categorial Grammar

Combinatory Categorial Grammar (CCQG)

® Categorial grammar (CGQ) is one of the
oldest grammar formalisms

® Combinatory Categorial Grammar now well

established and computationally well
founded (Steedman, 1996, 2000)

® Account of syntax; semantics; prosody
and information structure; automatic
parsers; generation

Combinatory Categorial Grammar (CCQG)

® CCG is a lexicalized grammar

® An elementary syntactic structure — for CCG a lexical
category — is assigned to each word in a sentence

walked: S\NP “give me an NP to my left and | return a
sentence”

® A small number of rules define how categories can
combine

® Rules based on the combinators from Combinatory
Logic

CCG Lexical Categories

® Atomic categories:S,N,NP,PP,...(not many more)

o Complex categories are built recursively from atomic categories
and slashes, which indicate the directions of arguments

e Complex categories encode subcategorization information
® intransitive verb: S \NP walked
e transitive verb: (S \NP)/NP respected
e ditransitive verb: ((S \NP)/NP)/NP gave
® Complex categories can encode modification
® PP nominal: (NP \NP)/NP
e PP verbal: ((S \NP)\(S \NP))/NP

Simple CCG Derivation

interleukin — 10 inhibits production
NP (S\NP)/NP NP
>
S\NP
<
S

> forward application
< backward application

Function Application Schemata

e Forward (>) and backward (<) application:

XYY = X (>
Y X\YVY = X (<)

Classical Categorial Grammar

e ‘Classical’ Categorial Grammar only has application rules

o (lassical Categorial Grammar is context free

S

S\NP

NP (SNP)/NP NP

interleukin-10 inhibits production

Classical Categorial Grammar

e ‘Classical’ Categorial Grammar only has application rules

o (lassical Categorial Grammar is context free

S

VP

N

NP Vv NP

interleukin-10 inhibits production

Extraction from a Relative Clause

The company which Mzicrosoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP

Extraction from a Relative Clause

The company which Mzicrosoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T
S/(S\NP)

> T type-raising

Extraction from a Relative Clause

The company which Mzicrosoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T
$/(S\NP)
>B
S/NP

> T type-raising
> B forward composition

Extraction from a Relative Clause

The company which Mzicrosoft bought
NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
>T
S/(S\NP)
>B
S/NP

>

NP\ NP

Extraction from a Relative Clause

The company which Microsoft bought

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP

> >T

NP S/(S\NP)
>B

S/NP
>
NP\ NP

<

NP

Forward Composition & Type Raising

® Forward composition (>g)
X)YY)Z = X/Z (>B)
® Type raising (T)
X = T/(T\X) (>1)
X = T\ (T/X) (<)

® Extra combinatory rules increase weak
generative power to mild context-
sensitivity

Non-constituents & Coordination

Google sells but Microsoft buys shares
NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)

> T type-raising

Non-constituents & Coordination

Google sells but Microsoft buys shares
NP (S\NP)/NP cony NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)
>B >B
S/NP S/NP

> T type-raising
> B forward composition

Non-constituents & Coordination

Google sells but Microsoft buys shares
NP (S\NP)/NP cony NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)
>B >B
S/NP S/NP

S/NP

<P>

Non-constituents & Coordination

Google sells but Microsoft buys shares
NP (S\NP)/NP conj NP (S\NP)/NP NP
>T >T
S/(S\NP) S/(S\NP)
>B >B
S/NP S/NP
S/NP

S

<P>

Combinatory Categorial Grammar

® CCG is mildly context-sensitive
® Natural language is provably non-context-free

® Constructions in Dutch and Swiss German (Shieber, 1985)
require more than context-free power

® Due to crossing dependencies (which CCG can handle)

Type 0 languages

Mildly context sensitive languages =

Context sensitive languages
guag / natural languages (?)

Context free languages

Regular languages

CCG Semantics

® Categories encode argument sequences

® Parallel syntactic combinator operations
and lambda calculus semantic operations

> e S
John = NP : john PN
shares = NP : shares' NP S\NP
. e Y ae s vl s | ’ N
buys = (S\NP) /NP : Ax.Ay.buys'x John (S\NP)/NP NP
sleeps = S\NP : Ax.sleeps'x | !
Duys shares

1"1"1?” |— (S\NP)\(S\NP) . .}L_)’(-..}ﬂ‘.'l'i"f}x;f(_;’(:T)

CCG Semantics

Left arg. Right arg. Operation Result
X/Y :f Y:a Forward X :f(a)
application
Y :a X\Y :f Backward X :f(a)
application
. . Forward .
X/Y :f YIZ:g composition XIZ : Ax.f(g(x))
X:a Type raising | T/(T\X) : AMf.f(a)

etc.

CCG & TAG

Lexicon is encoded as categories or trees

Extended domain of locality: information is
localized in the lexicon and “spread out”
during derivation

Greater than context-free power;
polynomial-time parsing; O(n>) and up

Spurious ambiguity: multiple derivations for a
single derived tree

Reading

® Jurafsky & Martin, chapter |7-20

NLTK book, chapter 10

McDonald et al., Non-projective Dependency
Parsing using Spanning Tree Algorithms, EMNLP
2005. http://www.aclweb.org/anthology/H/
HOS5/HOQ5-1066.pdf

Bansal et al,, Structured Learning for

Taxonomy Induction with Belief Propagation,
ACL 2014. http://aclweb.org/anthology/P/P 14/
P14-1098.pdf

http://www.aclweb.org/anthology/H/H05/H05-1066.pdf
http://aclweb.org/anthology/P/P14/P14-1098.pdf

