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Overview

Sequence labeling task (cf. POS tagging)
Independent classifiers

HMMs

(Conditional) Maximum Entropy Markov
Models

Conditional Random Fields

Beyond Sequence Labeling



Sequence Labeling

Inputs: X = (X4, ..., X,)

Labels: y = (y;, ..., ¥,)
Typical goal: Given x, predict y

Example sequence labeling tasks
— Part-of-speech tagging
— Named-entity-recognition (NER)

» Label people, places, organizations



NER Example:

Red Sox and Their Fans Let Loose
S B

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL

victory parade into a full-scale dance party Tuesday as the
an exclamation point on the 2007 season.

BOSTON]|, Oct. 30 — Jonathan Papelbon turned Boston’s World Series

Red Sox

put

E-MAIL

[g] PRINT
l@] REPRINTS

[g SAVE



First Solution:

Maximum Entropy Classifier
« Conditional model p(y|x).

— Do not waste effort modeling p(x), since x
IS given at test time anyway.

— Allows more complicated input features,
since we do not need to model
dependencies between them.

* Feature functions f(x,y):
—f,(x,y) = { word is Boston & y=Location }
—f,(x,y) = { first letter capitalized & y=Name }
—f3(x,y) = { xis an HTML link & y=Location}



First Solution: MaxEnt Classifier
« How should we choose a classifier?

* Principle of maximum entropy

— We want a classifier that:
« Matches feature constraints from training data.
* Predictions maximize entropy.

* There is a unique, exponential family
distribution that meets these criteria.



First Solution: MaxEnt Classifier

* Problem with using a maximum entropy
classifier for sequence labeling:

* |t makes decisions at each position
iIndependently!



Second Solution: HMM

P(y.x)=] |PO, 1y, )P(x1y,)

* Defines a generative process.

« Can be viewed as a weighted finite
state machine.



Second Solution: HMM

 How can represent we multiple features
in an HMM?

— Treat them as conditionally independent
given the class label?
 The example features we talked about are not
iIndependent.
— Try to model a more complex generative
process of the input features?

* We may lose tractability (i.e. lose a dynamic
programming for exact inference).



Second Solution: HMM

 Let's use a conditional model instead.



Third Solution: MEMM

« Use a series of maximum entropy
classifiers that know the previous label.

* Define a Viterbi algorithm for inference.

Piylo=|]P, (y Ix



Third Solution: MEMM

« Use a series of maximum entropy
classifiers that know the previous label.

* Define a Viterbi algorithm for inference.

Piylo=||P, (1%

Cf. recurrent neural nets

but w/o exact Viterbi
decoding




Third Solution: MEMM

 Combines the advantages of maximum
entropy and HMM!

* But there is a problem...



Problem with MEMMs: Label Bias

* In some state space configurations,
MEMMs essentially completely ignore
the inputs.

* This is not a problem for HMMs,
because the input sequence is
generated by the model.



Fourth Solution:
Conditional Random Field

» Conditionally-trained, undirected
graphical model.

 For a standard linear-chain structure:

Piy1x) =] [¥,.y,.%)

lpk(ytayt_lax) = eXp(E )"kf(ytaytlax))
k



Fourth Solution: CRF

* Have the advantages of MEMMs, but
avoid the label bias problem.

 CRFs are globally normalized, whereas
MEMMSs are locally normalized.

* Widely used and applied. CRFs give
state-the-art results in many domains.



Fourth Solution: CRF

* Have the advantages of MEMMs, but
avoid the label bias problem.

 CRFs are globally normalized, whereas
MEMMSs are locally normalized.

* Widely used and applie .
state-the-art results in Remember, Z is the

hormalization constant.

How do we compute it?



CRF Applications

Part-of-speech tagging

Named entity recognition

Document layout (e.g. table) classification
Gene prediction

Chinese word segmentation
Morphological disambiguation

Citation parsing

Etc., etc.



NER as Sequence Tagging

The Phoenicians came from the Red Sea
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NER as Sequence Tagging
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NER as Sequence Tagging
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NER as Sequence Tagging
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NER as Sequence Tagging

Word “sea”
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NER as Sequence Tagging

Word “sea” preceded
by “the ADJ”

Word “sea”
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NER as Sequence Tagging

Hard constraint: |-L must

Word “sea” preceded follow B-L or I-L

by “the ADJ”

Word “sea”

O O O O B-L I-L

The Phoenicians came from the Red Sea

19



Overview

® What computations do we need!?
® Smoothing log-linear models

® MEMMs vs. CRFs again

® Action-based parsing and dependency
parsing



Recipe for Conditional
Training of p(y | x)

| .Gather constraints/features from training data

ajy = Elfyl= Y Fiy@j )

.I'./'..(_/./'ED

2. Initialize all parameters to zero

3 .Classify training data with current parameters; calculate

expectations L . /.
P E(_—)-f/'y- - y: y:])(—)(.!/ |’/ .-'f/';_/(-.""j- Y

4.Gradient is E:f,-_',/j —_E(f)[.,f';.(/]

5.Ta|<e a step in the direction of the gradient

6.Repeat from 3 until convergence
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expected counts before!
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| .Gather constraints/features from training data

gy = E[fn/] - Z fzg( '/J

Zj, UJED
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expected counts before!



Gradient-Based Training

® A := A+ rate * Gradient(F)

® After all training examples? (batch)

® After every example! (on-line)

® Use second derivative for faster learning?

® A big field: numerical optimization



Parsing as Structured
Prediction



Shift-reduce parsing

Stack Input remaining Action

() Book that flight  shift

(Book) that flight reduce, Verb — book, (Choice #1 of 2)
(Verb) that flight shift

(Verb that) flight reduce, Det — that
(Verb Det) flight shift

(Verb Det flight) reduce, Noun — flight
(Verb Det Noun) reduce, NOM — Noun
(Verb Det NOM) reduce, NP — Det NOM
(Verb NP) reduce, VP — Verb NP
(Verb) reduce, S — V

(S) SUCCESS!

Ambiguity may lead to the need for backtracking.
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Shift-reduce parsing

Stack Input remaining Action

() Book that flight  shift

(Book) that flight reduce, Verb — book, (Choice #1 of 2)
(Verb) that flight shift

(Verb that) flight reduce, Det — that
(Verb Det) flight shift

(Verb Det flight) reduce, Noun — flight
(Verb Det Noun) reduce, NOM — Noun
(Verb Det NOM) reduce, NP — Det NOM
(Verb NP) reduce, VP — Verb NP
(Verb) reduce, S — V

(S) SUCCESS!

Train log-linear model of

p(action | context)




Compare to an MEMM

Shift-reduce parsing
Stack Input remaining Action
() Book that flight  shift
(Book) that flight reduce, Verb — book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det — that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun — flight
(Verb Det Noun) reduce, NOM — Noun
(Verb Det NOM) reduce, NP — Det NOM
(Verb NP) reduce, VP — Verb NP
(Verb) reduce, S — V
(S) SUCCESS!

Train log-linear model of

p(action | context)




Structured Log-Linear Models
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score(out,in) = 0 - features(out, in)
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Structured Log-Linear Models

® |inear model for scoring structures

® Get a probability distribution by normalizing

* Viz. logistic regression, Markov random fields, undirected
graphical models

Usually the
bottleneck in NLP

, 1 score(out’,in)
p(OUt | ZTL) _ _escore(out,zn — E e
4 out’eGEN (in)

score(out,in) = 0 - features(out, in)
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Structured Log-Linear Models

® |inear model for scoring structures

® Get a probability distribution by normalizing

* Viz. logistic regression, Markov random fields, undirected
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Structured Log-Linear Models

® |inear model for scoring structures

® Get a probability distribution by normalizing

* Viz. logistic regression, Markov random fields, undirected
graphical models

® |nference: sampling, variational methods, dynamic
programming, local search, ...

® Training: maximum likelihood, minimum risk, etc.

Usually the

Uyt score(out,in) = 0 - features(out, in)

score(out,1m

out’eGEN (in)

1 score(out’.,in
plout | in) = —e =), el

25



Structured Log-Linear Models

With latent variables

® Several layers of linguistic structure
® Unknown correspondences
® Naturally handled by probabilistic framework

® Several inference setups, for example:

plouty | in) = Z p(outy, outs, altgnment | in)

outs,alignment

26



Structured Log-Linear Models

With latent variables

® Several layers of linguistic structure
® Unknown correspondences
® Naturally handled by probabilistic framework

® Several inference setups, for example:

plouty | in) = Z p(outy, outs, altgnment | in)

outs,alignment

Another computational
problem
26




Edge-Factored Parsers

® No global features of a parse (McDonald et al. 2005)

® Each feature is attached to some edge

o MST or CKY-like DP for fast O(n?) or O(n3) parsing

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou

27



Edge-Factored Parsers

® |s this a good edge?

Byl

jasny studeny dubnovy den a hodiny odbijely tfinactou
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Edge-Factored Parsers

® |s this a good edge?

yes, lots of positive features ...

R,

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou

“ltwas a bright cold day in April and the clocks were striking thirteen”
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® |s this a good edge?
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Edge-Factored Parsers

® |s this a good edge!

jasny € den
(“bright day”)
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30



Edge-Factored Parsers

® |s this a good edge!

jasny € den j‘lz)tgr:]y < N
(“bright day”) (“bright )
o o
o
@ O
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Edge-Factored Parsers

® |s this a good edge?

jasny € den j‘lz)tgr:]y < .
(“bright day”) (“bright )
o (@)
(@)
@ (@)

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
vV A A A N | N V C
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Edge-Factored Parsers

® |s this a good edge?

— , ™~
~ ™~
S jasny € N
jasny < den (‘bright NOUN")

o (“bright day”) 3 ‘.%
/ \ Z:A & N]

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
\% A A A N ] N \'% C

“ltwas a bright cold day in April and the clocks were striking thirteen”



Edge-Factored Parsers

® |s this a good edge!

" jasny € N

-~ ™~
jasny < den (“bright NOUN”)

(“bright day”)

°- ' - AA €N
Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
\% A A A N | N \'% C

N—

“ltwas a bright cold day in April and the clocks were striking thirteen”



Edge-Factored Parsers

® |s this a good edge!

— , ™~
jasny € N
(“bright NOUN")

°- ' - AA €N
Byl jasny studeny dubnovy den a hodiny odbijely triniactou
\% A A A N | N \'% C

& den

A < N

preceding

conjunction
\_ J

“ltwas a bright cold day in April and the clocks were striking thirteen”



Edge-Factored Parsers

® How about this competing edge!

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
vV A A A N | N V C
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Edge-Factored Parsers

® How about this competing edge!

not as good, lots of red ...

® O
%" S tte e,
\
Byl jasny studeny dubnovy den a hodiny odbijely tfinactou

vV A A A N ] N Vv C

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® How about this competing edge!
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Edge-Factored Parsers

® How about this competing edge!

jasny € hodiny

(“bright clocks™)

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
vV A A A N | N V C

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® How about this competing edge!

jasny € hodiny

(“bright clocks™)

.. undertrained ...

Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
vV A A A N | N V C

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® How about this competing edge!

ﬁsn)" < hodiny\

(“bright clocks™)

undertrained

" «‘..‘“.‘
o N

Byl jasny studeny dubnovy den a hodiny odbijely triniactou
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Edge-

Factored Parsers

® How about this competing edge!

ﬁsn)" < hodiny\

(“bright clocks™)

undertrained

. TN
jasn € hodi
(“bright clock,”
stems only)

_

= N

Byl jasny studeny dubnovy den a hodiny odbijely triniactou

\'% A A

byl jasn stud

A N ] N Vv C

dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® How about this competing edge!

jasny € hodiny jasn € hodi
(“bright clocks”) (“bright clock,”
- undertrained ... stems only)

%7 -

® O
/ \
Byl jasny studeny dubnovy den a hodiny odbijely tfinactou
vV A A A N | N V C

byl jasn stud dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® How about this competing edge!

- , . N\ 7 . e\
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Edge-Factored Parsers

® How about this competing edge!

Y , . N\ 7. e
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Edge-Factored Parsers

® How about this competing edge!

jasny € hodiny jasn € hodi
& N (“bright clock,”
stems only)

where N follows
a conjunctlon Slngu ar

< N

plural

N—

/ N

Byl jasny studeny dubnovy den a hodiny odbijely triniactou
\% A A A N ] N \'% C

byl jasn stud dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”



Edge-Factored Parsers

® Which edge is better?

® “bright day”’ or “bright clocks”?

e
@ @
./.. @ ® g .%\
Byl jasny studeny dubnovy den a hodiny odbijely tfinictou
VvV A A A N | N V C
byl jasn stud dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

® Which edge is better?

® Score of an edge e = 0 - features(e)

® Standard algos =» valid parse with max total score

e
@ @

Byl jasny studeny dubnovy den a hodiny odbijely tfinictou

VvV A A A N | N V C

byl jasn  stud dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Edge-Factored Parsers

e Which edge is better? yr current weight vector

® Score of an edge e features(e)

® Standard algos =» valid parse with max total score

e .%\.-

Byl jasn)". studeny dubnovy den a hodiny odbijely tfinictou
\% A A A N ] N \'% C
byl jasn  stud dubn den a  hodi odbi tfin

“ltwas a bright cold day in April and the clocks were striking thirteen”
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

© O

find preferred tags
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

vV n a vV n a
V|0 2 1 7|0 2 1
ni2 1 0 ni2 120
a031<ﬁ<a031
. - . (?)7
(/ — o/ L

© O O

find preferred tags
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Local tactors in a graphical model

= First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

"Unary” factor evaluates this tag
I'ts values depend on corresponding word

O

find
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Local tactors in a graphical model

= First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

"Unary” factor evaluates this tag
I'ts values depend on corresponding word

v 0.2

[ ][n]0.2

al|0

©__ O

<find preferred ta@

(could be made to depend on
entire observed sentence)

44




Local tactors in a graphical model

First, a familiar example

0 Conditional Random Field (CRF) for POS tagging
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

<

_ O |
o)
ODN O|I

W =N3>

W =N3>

o)
ODN O|S
_ O |

v|0.3 v|0.3 v|0.2
[ ] [n]0.02 [ ][=n]o [ ][n]o0.2
al0 a|0.1 all

find preferred tags
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

v an v n a v n a
vi0 2 1 vi0 2 1

ni2 10 ni2 10

van |al0 3 1 al0 3 1

v|0.3 v|0.3 v|0.2
[ ] [n]0.02 [ ][=n]o [ ][n]o0.2
al0 a|0.1 all

find preferred tags
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

van VvV n a VvV Nl a
vio 2 1 vi0 2 1

nf2 1 0 nf2 1 0

van |lal0 3 1 al0 3 1

v 0.3 v 0.3 v (0.2
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Local tactors in a graphical model

First, a familiar example
0 Conditional Random Field (CRF) for POS tagging

van v.n a Vv n a
vi0o 2 1 vio 2 1 _ i Ak A%
M B 1921 = 173+0.30.1%0.2 ...
van |al0 3 1 al0 3 1
_<v\ 1 (a)}— ] @7
J AN AN
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[][rn]0.02 []|n|o0 []|n|0.2
a0 al|0.1 alO

find preferred tags
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Graphical Models for Parsing

® First,a labeling example — @ (O—
“+ CRF for POS tagging

® Now let’s do dependency parsing!

+ O(n?) boolean variables for the possible links

. find preferred links ...
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Graphical Models for Parsing
® First,a labeling example ———(@—=0 \/E)*

“+ CRF for POS tagging L L

® Now let’s do dependency parsing!

+ O(n?) boolean variables for the possible links
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Graphical Models for Parsing
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® Now let’s do dependency parsing!
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Graphical Models for Parsing

® First,a labeling example — @ @—
“+ CRF for POS tagging

® Now let’s do dependency parsing!
+ O(n?) boolean variables for the possible links
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Graphical Models for Parsing
® First,a labeling example ———(@—=0 \/E)*

“+ CRF for POS tagging L L

® Now let’s do dependency parsing!

+ O(n?) boolean variables for the possible links .
.. with a
cycle and

multiple

. find preferred links ...

An illegal
barse...
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Local Factors for Parsing

® What factors determine parse probability?
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% Unary factors to score each link in isolation
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Local Factors for Parsing

® What factors determine parse probability?

% Unary factors to score each link in isolation

® But what if the best assignment isn’t a tree!
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Global Factors for Parsing

® What factors determine parse probability?

% Unary factors to score each link in isolation
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Global Factors for Parsing

® What factors determine parse probability?

% Unary factors to score each link in isolation
%+ Global TREE factor to require links to form a legal tree

® A hard constraint: potential is either O or |

ffffff 0
ffffft 0
ffffect

O

we're

ffgfft 1
legal!
tttttt 0
£
@\
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Global Factors for Parcing

® What factors determine parse

% Unary factors to score each link in isuiauoun

%+ Global TREE factor to require links to form adegal tree

® A hard constraint: potential is either O or | 64 entries (0/1)
FEEEEE | O
FEFFFE | O
FEEFLE | O

eereer | 1 | were
legal!
tttttt 0
£
@\

find preferred links ...
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Global Factors for Parcing

® What factors determine parse

% Unary factors to score each link in isuiauoun

%+ Global TREE factor to require links to form adegal tree

® A hard constraint: potential is either O or | 64 entries (0/1)
FEffff 0
FEEEFL 0
FEEftf 0
: feeeee | 1 | were
legal!
tttttt 0 K\

O30S N\

£ 1 n Note: traditional parsers don't loop through this table
to consider exponentially many trees one at a time.
They use combinatorial algorithms; so should wel! 55



Local Factors for Parsing

® VWhat factors determine parse probability?
%+ Unary factors to score each link in isolation
% Global TREE factor to require links to form a legal tree
® A hard constraint: potential is either 0 or |
% Second order effects: factors on 2 variables

® Grandparent—parent—child chains
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Local Factors for Parsing

® What factors determine parse probability?
% Unary factors to score each link in isolation
< Global TREE factor to require links to form a legal tree
® A hard constraint: potential is either 0 or |
% Second order effects: factors on 2 variables
® Grandparent—parent—child chains
® No crossing links
® Siblings
% Hidden morphological tags

“* Word senses and subcategorization frames

GO, AR

... £ind preferred links ...
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| Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

T wouldn't work correctly 3;
> with a “loopy" (cyclic) graph

adapted from MacKay (2003) textbook
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Great ideas in M1L.: Forward-Backward

In the CRF, message passing = forward-backward=
“sum-product algorithm”
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Great ideas in M1L.: Forward-Backward

In the CRF, message passing = forward-backward=
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Sum-Product Equations

Message from variable v to factor f

My f(2) = H

freN(w)\{f}
Message from factor f to variable v

Mfso(T) =

2

N(f)\v}

e

f(zm)

[l

v'eN(f)\{v}

mv’—>f(y)
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Great ideas in M1.: Forward-Backward

= Extend CRF to “skip chain” to capture non-local factor
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Great ideas in M1.: Forward-Backward

= Extend CRF to “skip chain” to capture non-local factor
2 More influences on belief ©

Red messages not independent?

2 Graph becomes loopy ®
Pretend they are!
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Propagating Global Factors

® | oopy belief propagation is easy for local factors

® How do combinatorial factors (like TREE)
compute the message to the link in question?

* “Does the TREE factor think the link is probably t given the
messages it receives from all the other links?”

?

Z2 0N 020N

. find preferred links ...
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Propagating Global Factors

® How does the TREE factor compute the message
to the link in question!?

+ “Does the TREE factor think the link is probably t given the
messages it receives from all the other links?”

TREE factor
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Propagating Global Factors

® How does the TREE factor compute the message
to the link in question!?

+ “Does the TREE factor think the link is probably t given the
messages it receives from all the other links?” T

Old-school parsing to the rescue!

This is the outside probability of the link in an edge-factored parser!

~.TREE factor computes all outgoing messages at once
(given all incoming messages)

Projective case: total O(n?) time by inside-outside

Non-projective: total O(n3) time by inverting Kirchhoff matrix
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Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian)
adjacency matrix of directed graph G without row
and column ris equal to the sum of scores of all
directed spanning trees of G rooted at node r.
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directed spanning trees ooted at node .
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8 Kirchoff (Laplacian) Matrix

0 -s(1,0) -s(2,0)
0 0 —-s(2,1)
0 -s5(1,2) 0

0 -s(L,n) -s2,n) -

. =s(n,0)

—s(n,l)

. =s(n,2)

0

Negate edge scores

Sum columns
(children)

Strike root row/col.
Take determinant
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8 Kirchoff (Laplacian) Matrix

0 -s(1,0)

j=1

0 -s(1,n)

—5(2,0)

0 Ysj) -s2l)
0 -s(12) Y s@2.j) -

- Y s(n,))

j=2
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~s(n,0)
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—-s(n,2)

j=n

Negate edge scores
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Strike root row/col.
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8 Kirchoff (Laplacian) Matrix

Dsj)  =s2.0)

j=1

-s(12) Y 5(2,))

j=2

-s(l,n) —-s(2,n)

—s(n,l)

—s(n,2)

D s(n,))

Jj#=n

Negate edge scores

Sum columns
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Strike root row/col.
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a Kirchoff (Laplacian) Matrix

j=1

—s(1,n)

Dsj)  =s2.0)
-s(12) Y 5(2,))

j=2

—s(2,n)

—s(n,l)

—s(n,2)

D s(n,))

Jj#=n

Negate edge scores

Sum columns
(children)

Strike root row/col.
Take determinant

N.B.: This allows multiple children of root, but see Koo et al. 2007.
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Transition-Based Parsing

® [inear time

® Online

® Train a classifier to predict next action
® Deterministic or beam-search strategies

® But...generally less accurate



Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Start state: ([],[1,...,n,{})
Final state: (S,[],A)

Shift: (S,i|B,A) = (S]i,B,A)

Reduce: (S]i,B,A) = (S,B,A)

Right-Arc: (S|i,j|B,A) = (S]i|j,B,Au{i — j})
Left-Arc:  (S|i,j|B,A) = (S,j|B,AU{i+ j})
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Arc-eager shift-reduce parsing (Nivre, 2003)

Stack Buffer Arcs

[ 1s [who, did, you, see]g {}

who did you see
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Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack Buffer Arcs

[did, you]s [see]s {who <2 did,
. SBJ
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Transition-Based Parsing

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

AN

Bl Very fast linear-time performance

[did, youls [s WS 23 (2k sentences) in 3 s

Right-arc

SBY \

aid — YOuU j

VG
>~ N N

Choose action w/best classifier score
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