Log-Linear Models with Structured Outputs

Natural Language Processing CS 6120—Spring 2014 Northeastern University

David Smith (some slides from Andrew McCallum)

Overview

- Sequence labeling task (cf. POS tagging)
- Independent classifiers
- HMMs
- (Conditional) Maximum Entropy Markov Models
- Conditional Random Fields
- Beyond Sequence Labeling

Sequence Labeling

- Inputs: $x = (x_1, ..., x_n)$
- Labels: $y = (y_1, ..., y_n)$
- Typical goal: Given x, predict y
- Example sequence labeling tasks
	- Part-of-speech tagging
	- Named-entity-recognition (NER)
		- Label people, places, organizations

NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL Published: October 31, 2007

BOSTON, Oct. 30 $-$ Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the Red Sox put an exclamation point on the 2007 season.

First Solution: Maximum Entropy Classifier

- Conditional model $p(y|x)$.
	- $-$ Do not waste effort modeling $p(x)$, since x is given at test time anyway.
	- Allows more complicated input features, since we do not need to model dependencies between them.
- Feature functions $f(x,y)$:
	- $-f_1(x,y) = \{$ word is Boston & y=Location } $-f₂(x,y) = {$ first letter capitalized & y=Name } $-f_3(x,y) = \{ x \text{ is an HTML link } \& \text{ y=Location} \}$

First Solution: MaxEnt Classifier

- How should we choose a classifier?
- Principle of maximum entropy
	- We want a classifier that:
		- Matches feature constraints from training data.
		- Predictions maximize entropy.
- There is a unique, exponential family distribution that meets these criteria.

First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!

Second Solution: HMM

$$
P(\mathbf{y}, \mathbf{x}) = \prod_{t} P(y_t | y_{t-1}) P(x | y_t)
$$

- Defines a generative process.
- Can be viewed as a weighted finite state machine.

Second Solution: HMM

- How can represent we multiple features in an HMM?
	- Treat them as conditionally independent given the class label?
		- The example features we talked about are not independent.
	- Try to model a more complex generative process of the input features?
		- We may lose tractability (i.e. lose a dynamic programming for exact inference).

Second Solution: HMM

• Let's use a conditional model instead.

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$
P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} P_{y_{t-1}}(y_t \mid \mathbf{x})
$$

Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem…

Problem with MEMMs: Label Bias

• In some state space configurations, MEMMs essentially completely ignore the inputs.

• This is not a problem for HMMs, because the input sequence is generated by the model. t_{t} is the symbol output label. We present the model, describe two training procedures and

maximum entropy framework. Previously published exper-

imental results show MEMMs increasing recall and dou-

bling precision relative to HMMs in a FAQ segmentation

MEMMs and other non-generative finite-state models

based on next-state classifiers, such as discriminative

Markov models (Bottou, 1991), share a weakness we call

here the *label bias problem*: the transitions leaving a given

state compete only against each other, rather than against

all other transitions in the model. In probabilistic terms,

transition scores are the conditional probabilities of pos-

sible next states given the current state and the observa-

tion sequence. This per-state normalization of transition

scores implies a "conservation of score mass" (Bottou,

1991) whereby all the mass that arrives at a state must be

distributed among the possible successor states. An obser-

 α affect which destination states get the mass, but the mass, bu

Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

$$
P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} \Psi_{k}(y_{t}, y_{t-1}, \mathbf{x})
$$

$$
\Psi_{k}(y_{t}, y_{t-1}, \mathbf{x}) = \exp\left(\sum_{k} \lambda_{k} f(y_{t}, y_{t-1}, \mathbf{x})\right)
$$

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applied. CRFs give state-the-art results in many domains.

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applie state-the-art results in $n = R$ emember, \overline{Z} is the

normalization constant. How do we compute it?

CRF Applications

- Part-of-speech tagging
- Named entity recognition
- Document layout (e.g. table) classification
- Gene prediction
- Chinese word segmentation
- Morphological disambiguation
- **Citation parsing**
- Etc., etc.

The Phoenicians came from the Red Sea

 \bigcirc $B - E$ \bigcap **B-L** -l-L \bigcap \bigcap from the Red Phoenicians came The Sea

from the Red Phoenicians The Sea came

 \bigcirc $B - E$ \bigcap $B-L$ -l-L \bigcap \bigcap from the Red Phoenicians came The Sea

The Phoenicians came from the Red Sea

The Phoenicians came from the Red Sea

 \bigcirc $B - E$ \bigcap $B-L$ -l-L \bigcap \bigcap from the Red Phoenicians came The Sea

The Phoenicians came from the Red Sea

Overview

- What computations do we need?
- Smoothing log-linear models
- MEMMs vs. CRFs again
	- Action-based parsing and dependency parsing

Recipe for a Condition MaxEnt Classifier Recipe for a Conditional Recipe for a Conditional Recipe for Conditional Training of p(y | x)

1.Gather constraints/features from training data 1. Gather constraints from training data: .Gather constraints/features from

2.Initialize $\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_i, y_i \in D} f_i$ 3. Classify training $\sum_{k=1}^{J^{n}J} \sum_{i=1}^{J^{n}J} \sum_{p_{\alpha}(y'|x_{i})} f_{i\alpha}(x_{i}, y')$ alculate expectations 4.Gradient is 5. Take a step in the direction of the gradient 6. Repeat from 3 until convergence \mathcal{L} . Initialize \mathcal{L}^{a} α_{iy} \mathcal{L}^{a} ω_j , ω_j assify trainiı $\mathbf{5.5}$ Cradient is \tilde{E} $\omega_{\text{U}yy}$ $\omega_{\text{U}yy}$ 43 $\alpha_{iy} = E[j_{iy}] = \sum_{z} I_{iy}(x_j, y_j)$ \overline{C} interval parameters to \overline{C} **3. Classify training** $E_{\Theta}[f_{iy}] = \sum_{\alpha} \sum_{\beta} p_{\Theta}(y'|x_i) f_{iy}(x_i, y')$ are dectations. 4. Gradient is $\overline{\mathcal{L}}$ $\overline{\$ $\overline{\mathbf{r}}$ $\mathcal{L}_{\Theta}[J_{iy}] = \sum_{\mathcal{L}} P_{\Theta}[y | x_j] J_{iy}(x_j, y)]$ ations E_0 radient is $|E|$. $\frac{1}{2}$. The $\frac{1}{2}$ step in the direction of the gradient Re a step in the an eccion of the 8°

43

Recipe for a Condition MaxEnt Classifier Recipe for a Conditional Recipe for a Conditional Recipe for Conditional Training of p(y | x)

1.Gather constraints/features from training data 1. Gather constraints from training data: .Gather constraints/features from

2.Initialize $\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_i, y_i \in D} f_i$ 3. Classify training $\sum_{k=1}^{J^{n}J} \sum_{i=1}^{J^{n}J} \sum_{p_{\alpha}(y'|x_{i})} f_{i\alpha}(x_{i}, y')$ alculate expectations 4.Gradient is 5. Take a step in the direction of the gradient 6. Repeat from 3 until convergence \mathcal{L} . Initialize \mathcal{L}^{a} α_{iy} \mathcal{L}^{a} ω_j , ω_j assify trainiı $\mathbf{5.5}$ Cradient is \tilde{E} $\omega_{\text{U}i}$ $\omega_{\text{U}i}$ Where have we seen 43 43 $\alpha_{iy} = E[j_{iy}] = \sum_{z} I_{iy}(x_j, y_j)$ \overline{C} interval parameters to \overline{C} **3. Classify training** $E_{\Theta}[f_{iy}] = \sum_{\alpha} \sum_{\beta} p_{\Theta}(y'|x_i) f_{iy}(x_i, y')$ are dectations. 4. Gradient is $\int u \, dy$ of $\int u \, dy$. lake a step in the direction of the $\overline{\mathbf{r}}$ $\mathcal{L}_{\Theta}[J_{iy}] = \sum_{\mathcal{L}} P_{\Theta}[y | x_j] J_{iy}(x_j, y)]$ ations E_0 radient is $|E|$. $\frac{1}{2}$. The direction of the gradient Re a step in the an eccion of the expected counts before?

 6311

Recipe for a Condition MaxEnt Classifier Recipe for a Conditional Recipe for a Conditional Recipe for Conditional Training of p(y | x)

1.Gather constraints/features from training data 1. Gather constraints from training data: .Gather constraints/features from

2.Initialize $\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_i, y_i \in D} f_i$ 3. Classify training $\sum_{k=1}^{J^{n}J} \sum_{i=1}^{J^{n}J} \sum_{p_{\alpha}(y'|x_{i})} f_{i\alpha}(x_{i}, y')$ alculate expectations 4.Gradient is 5. Take a step in the direction of the gradient 6. Repeat from 3 until convergence \mathcal{L} . Initialize \mathcal{L}^{a} α_{iy} \mathcal{L}^{a} ω_j , ω_j assify trainiı $\mathbf{5.5}$ Cradient is \tilde{E} $\omega_{\text{U}i}$ $\omega_{\text{U}i}$ Where have we seen 43 43 $\alpha_{iy} = E[j_{iy}] = \sum_{z} I_{iy}(x_j, y_j)$ \overline{C} interval parameters to \overline{C} **3. Classify training** $E_{\Theta}[f_{iy}] = \sum_{\alpha} \sum_{\beta} p_{\Theta}(y'|x_i) f_{iy}(x_i, y')$ are dectations. 4. Gradient is $\int u \, dy$ of $\int u \, dy$. lake a step in the direction of the $\overline{\mathbf{r}}$ $\mathcal{L}_{\Theta}[J_{iy}] = \sum_{\mathcal{L}} P_{\Theta}[y | x_j] J_{iy}(x_j, y)]$ ations E_0 radient is $|E|$. $\frac{1}{2}$. The direction of the gradient Re a step in the an eccion of the expected counts before? *EM!*

 6311
Gradient-Based Training

- $\lambda := \lambda$ + rate * Gradient(F)
- After all training examples? (batch)
- After every example? (on-line)
- Use second derivative for faster learning?
- A big field: numerical optimization

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly
- If we have a feature that only appears in spam training, not ham training, it will get weight ∞ to maximize p (spam | feature) at 1.
- These behaviors
	- Overfit the training data
	- Will probably do poorly on test data

Solutions to Overfitting

- Throw out rare features.
	- Require every feature to occur $>$ 4 times, and $>$ 0 times with ling, and > 0 times with spam.
- Only keep, e.g., 1000 features.
	- Add one at a time, always greedily picking the one that most improves performance on held-out data.
- Smooth the observed feature counts.
- Smooth the weights by using a prior.
	- max $p(\lambda|data) = max p(\lambda, data) = p(\lambda)p(data|\lambda)$
	- decree $p(\lambda)$ to be high when most weights close to 0

Smoothing with Priors

- What if we had a prior expectation that parameter values wouldn't be very large?
- We could then balance evidence suggesting large (or infinite) parameters against our prior expectation.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite)
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:

 $\log P(y, \lambda | x) = \log P(\lambda) + \log P(y | x, \lambda)$

Posterior Prior Likelihood

Smoothing: Priors

- Gaussian, or quadratic, priors:
	- limitarition: parameters shouldn't be large.
	- Formalization: prior expectation that each parameter will be distributed according to a gaussian with mean μ and variance σ^2 .

$$
P(\lambda_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\lambda_i - \mu_i)^2}{2\sigma_i^2}\right)
$$

- Penalizes parameters for drifting to far from their mean prior value (usually $\mu=0$).
- \blacksquare 2 σ^2 =1 works surprisingly well.

Parsing as Structured Prediction

Shift-reduce parsing

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

and a

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

Ambiguity may lead to the need for backtracking.

Train log-linear model of p(action | context)

Compare to an MEMM

Shift-reduce parsing

Ambiguity may lead to the need for backtracking

Train log-linear model of p(action | context)

• Linear model for scoring structures

 $score(out, in) = \theta \cdot features(out, in)$

- Linear model for scoring structures
- Get a probability distribution by normalizing

$$
score(out, in) = \theta \cdot \mathbf{features}(out, in)
$$

$$
p(out \mid in) = \frac{1}{Z} e^{score(out, in)} \quad Z = \sum_{out' \in GEN(in)} e^{score(out', in)}
$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
	- ✤ Viz. logistic regression, Markov random fields, undirected graphical models

$$
score(out, in) = \theta \cdot features(out, in)
$$

$$
p(out \mid in) = \frac{1}{Z}e^{score(out, in)} \quad Z = \sum_{out' \in GEN(in)} e^{score(out', in)}
$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
	- ✤ Viz. logistic regression, Markov random fields, undirected graphical models

$$
\underbrace{\text{Dsually the } \sum \text{score}(out, in) = \theta \cdot \text{features}(out, in)}_{\text{D(t)} = \text{p}(out \mid in) = \frac{1}{Z} e^{score(out, in)} Z = \sum_{out' \in GEN(in)} e^{score(out', in)}
$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
	- ✤ Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...

$$
\underbrace{\underbrace{\text{Usually the } \hspace{-5pt}}_{\text{bottlenek in NLP}}\sum \limits_{NLP} \text{score}(out,in) = \theta \cdot \text{features}(out,in)}_{\text{fout } in \text{ } in \text{ } \text{}}\\ \underbrace{P(out \mid in)}_{Z} = \sum \limits_{out' \in GEN(in)} e^{score(out',in)}_{\text{}}\\
$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
	- ✤ Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...
- Training: maximum likelihood, minimum risk, etc.

29 $p(out \mid in) = \frac{1}{Z}$ $\frac{1}{Z}e^{score(out,in)}$ Usually the $\text{score}(out, in) = \theta \cdot \text{features}(out, in)$ bottleneck in NLP $Z = \sum$ out ^{\in}*GEN* (in) $e^{score(out',in)}$

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

 $p(out_1 \mid in) = \sum p(out_1, out_2, alignment \mid in)$ *out*2*,alignment*

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

$$
p(out_1 | in) = \sum_{out_2, alignment} p(out_1, out_2, alignment | in)
$$

Another computational problem

- No global features of a parse (McDonald et al. 2005)
- Each feature is attached to some edge
- MST or CKY-like DP for fast $O(n^2)$ or $O(n^3)$ parsing

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• Is this a good edge?

• How about this competing edge?

- Which edge is better?
	- "bright day" or "bright clocks"?

- Which edge is better?
- Score of an edge $e = \theta \cdot$ **features**(e)
- Standard algos \rightarrow valid parse with max total score

- Which edge is better? our current weight vector
- Score of an edge $e = \theta$ **features**(e)
- Standard algos \rightarrow valid parse with max total score

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

First, a familiar example □ Conditional Random Field (CRF) for POS tagging

Possible tagging (i.e., assignment to remaining variables)

First, a familiar example □ Conditional Random Field (CRF) for POS tagging

> Possible tagging (i.e., assignment to remaining variables) Another possible tagging

First, a familiar example □ Conditional Random Field (CRF) for POS tagging

> Possible tagging (i.e., assignment to remaining variables) Another possible tagging

First, a familiar example

First, a familiar example

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

First, a familiar example

□ Conditional Random Field (CRF) for POS tagging

"Unary" factor evaluates this tag

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

- **First, a familiar example**
	- □ Conditional Random Field (CRF) for POS tagging

First, a familiar example

First, a familiar example

First, a familiar example

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- ✤ O(n2) boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $\cdot \cdot$ O(n²) boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

- First, a labeling example
	- CRF for POS tagging
- Now let's do dependency parsing!
	- $O(n^2)$ boolean variables for the possible links

• What factors determine parse probability?

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
- But what if the best assignment isn't a tree?

• What factors determine parse probability?

✤ Unary factors to score each link in isolation

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree
		- ^A*hard constraint*: potential is either 0 or 1

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree
		- ^A*hard constraint*: potential is either 0 or 1

59

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree
		- ^A*hard constraint*: potential is either 0 or 1
	- ✤ Second order effects: factors on 2 variables
		- Grandparent–parent–child chains

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree
		- ^A*hard constraint*: potential is either 0 or 1
	- ✤ Second order effects: factors on 2 variables
		- Grandparent–parent–child chains

- What factors determine parse probability?
	- ✤ Unary factors to score each link in isolation
	- ✤ Global TREE factor to *require* links to form a legal tree
		- ^A*hard constraint*: potential is either 0 or 1
	- ✤ Second order effects: factors on 2 variables
		- Grandparent–parent–child chains
		- No crossing links
		- **Siblings**
	- ✤ Hidden morphological tags
	- ✤ Word senses and subcategorization frames

Great Ideas in ML: Message Passing

Great Ideas in ML: Message Passing *Count the soldiers*

Great Ideas in ML: Message Passing *Count the soldiers*

you

you

adapted from MacKay (2003) textbook

you

Great Ideas in ML: Message Passing *Count the soldiers*

Great Ideas in ML: Message Passing *Count the soldiers*

adapted from MacKay (2003) textbook

adapted from MacKay (2003) textbook

adapted from MacKay (2003) textbook

… … v 0.3 \overline{V} $\overline{\mathbf{n}}$ \overline{a} **α** ² **β** belief message d^{a 4} 2 message Y^{12} 11 $A^{11}7$ \blacksquare In the CRF, message passing = forward-backward= "sum-product algorithm" 3 $\frac{1}{2}$ | 1 a 6 $v \mid n$ v 0 2 n | 2 $a \mid 0 \mid 3$ Γ v 0 2 1 $n + 2$ 1 0 $\overline{3}$

 $n \mid 0$

a \vert 0.1

Sum-Product Equations

■ Message from variable *v* to factor *f*

$$
m_{v \to f}(x) = \prod_{f' \in N(v) \setminus \{f\}} m_{f' \to v}(x)
$$

■ Message from factor *f* to variable *v*

Recipe for a Condition MaxEnt Classifier Recipe for a Conditional Recipe for a Conditional Recipe for Conditional Training of p(y | x)

1.Gather constraints/features from training data 1. Gather constraints from training data: .Gather constraints/features from

2.Initialize $\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_i, y_i \in D} f_i$ 3. Classify training $\sum_{k=1}^{J^{n}J} \sum_{i=1}^{J^{n}J} \sum_{p_{\alpha}(y'|x_{i})} f_{i\alpha}(x_{i}, y')$ alculate expectations 4.Gradient is 5. Take a step in the direction of the gradient 6. Repeat from 3 until convergence \mathcal{L} . Initialize \mathcal{L}^{a} α_{iy} \mathcal{L}^{a} ω_j , ω_j assify trainiı $\mathbf{5.5}$ Cradient is \tilde{E} $\omega_{\text{U}yy}$ $\omega_{\text{U}yy}$ 43 $\alpha_{iy} = E[j_{iy}] = \sum_{z} I_{iy}(x_j, y_j)$ \overline{C} interval parameters to \overline{C} **3. Classify training** $E_{\Theta}[f_{iy}] = \sum_{\alpha} \sum_{\beta} p_{\Theta}(y'|x_i) f_{iy}(x_i, y')$ are dectations. 4. Gradient is $\overline{\mathcal{L}}$ $\overline{\$ $\overline{\mathbf{r}}$ $\mathcal{L}_{\Theta}[J_{iy}] = \sum_{\mathcal{L}} P_{\Theta}[y | x_j] J_{iy}(x_j, y)]$ ations E_0 radient is $|E|$. $\frac{1}{2}$. The $\frac{1}{2}$ step in the direction of the gradient Re a step in the an eccion of the 8°

43

propagation

belief propagation

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
	- ✤ "Does the TREE factor think the link is probably **t** given the messages it receives from *all* the other links?"

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
	- ✤ "Does the TREE factor think the link is probably **t** given the messages it receives from *all* the other links?"

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE) compute the message to the link in question?
	- ✤ "Does the TREE factor think the link is probably **t** given the messages it receives from *all* the other links?"

- How does the TREE factor compute the message to the link in question?
	- ✤ "Does the TREE factor think the link is probably **t** given the messages it receives from *all* the other links?"

- How does the TREE factor compute the message to the link in question?
	- ✤ "Does the TREE factor think the link is probably **t** given the messages it receives from *all* the other links?"

Old-school parsing to the rescue!

link in an edge-factored parser This is the **outside probability** of the link in an edge-factored parser!

∴TREE factor computes all outgoing messages at once (given all incoming messages)

Projective case: total $O(n^3)$ time by inside-outside

… find preferred links … Non-projective: total $O(n^3)$ time by inverting Kirchhoff matrix

Graph Theory to the Rescue!

Tutte's **Matrix-Tree Theorem** (1948) The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph *G* without row and column *r* is equal to the **sum of scores of all directed spanning trees** of *G* rooted at node *r*.

Graph Theory to the Rescue!

Tutte's **Matrix-Tree Theorem** (1948) The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph *G* without row and column *r* is equal to the **sum of scores of all** directed spanning trees σ **Prooted at node r.**

Exactly the *Z* we need!

Graph Theory to the Rescue!

O(n3) time!

Tutter Schlich Schlife Theorem (1948) The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph *G* without row and column *r* is equal to the **sum of scores of all** directed spanning trees σ **Prooted** at node *r*.

Exactly the *Z* we need!

$$
\begin{bmatrix}\n0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\
0 & 0 & -s(2,1) & \cdots & -s(n,1) \\
0 & -s(1,2) & 0 & \cdots & -s(n,2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -s(1,n) & -s(2,n) & \cdots & 0\n\end{bmatrix}
$$

- lNegate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

$$
\begin{bmatrix}\n0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\
0 & 0 & -s(2,1) & \cdots & -s(n,1) \\
0 & -s(1,2) & 0 & \cdots & -s(n,2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -s(1,n) & -s(2,n) & \cdots & 0\n\end{bmatrix}
$$

- lNegate edge scores
- **Sum columns** (children)
- Strike root row/col.
- Take determinant

'

'

'

'

'

'

'

'

$$
\begin{bmatrix}\n0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\
0 & \sum_{j\neq 1} s(1,j) & -s(2,1) & \cdots & -s(n,1) \\
0 & -s(1,2) & \sum_{j\neq 2} s(2,j) & \cdots & -s(n,2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -s(1,n) & -s(2,n) & \cdots & \sum_{j\neq n} s(n,j)\n\end{bmatrix}
$$

- lNegate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

- **In Negate edge scores Sum columns** (children) **Strike root row/col.**
	- Take determinant

- lNegate edge scores **Sum columns** (children) **Strike root row/col.**
- **Take determinant**

N.B.: This allows multiple children of root, but see Koo et al. 2007.

- Linear time
- Online
- Train a classifier to predict next action
- Deterministic or beam-search strategies
- But... generally less accurate

Arc-Eager Shift-Reduce Parsing [Nivre 2003] Arc-eager shift-reduce parsing (Nivre, 2003)

Start state: ([]*,* [1*,..., n*]*, { }*) **Final state:** (*S,* []*,A*)

Bare-Bones Dependency Parsing 20(30)

Arc-eager shift-reduce parsing (Nivre, 2003)

Shift

Arc-eager shift-reduce parsing (Nivre, 2003)

Shift

Arc-eager shift-reduce parsing (Nivre, 2003)

SBJ

VG **OBJ SB** did who you see

Transition-Based Parsing Parsing Methods and the set of th

Arc-eager shift-reduce parsing (Nivre, 2003)

Reduce

Arc-eager shift-reduce parsing (Nivre, 2003)

SBJ

VG **OBJ SB** did who you see

