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Overview

• Sequence labeling task (cf. POS tagging)	


• Independent classifiers	


• HMMs	


• (Conditional) Maximum Entropy Markov 
Models	


• Conditional Random Fields	


• Beyond Sequence Labeling



Sequence Labeling

• Inputs: x = (x1, …, xn)

• Labels: y = (y1, …, yn)

• Typical goal: Given x, predict y

• Example sequence labeling tasks

– Part-of-speech tagging

– Named-entity-recognition (NER)

• Label people, places, organizations



NER Example:



First Solution:

Maximum Entropy Classifier
• Conditional model p(y|x).

– Do not waste effort modeling p(x), since x

is given at test time anyway.

– Allows more complicated input features,

since we do not need to model

dependencies between them.

• Feature functions f(x,y):

– f1(x,y) = { word is Boston & y=Location }

– f2(x,y) = { first letter capitalized & y=Name }

– f3(x,y) = { x is an HTML link & y=Location}



First Solution: MaxEnt Classifier

• How should we choose a classifier?

• Principle of maximum entropy

– We want a classifier that:

• Matches feature constraints from training data.

• Predictions maximize entropy.

• There is a unique, exponential family

distribution that meets these criteria.



First Solution: MaxEnt Classifier

• Problem with using a maximum entropy

classifier for sequence labeling:

• It makes decisions at each position

independently!



Second Solution: HMM

• Defines a generative process.

• Can be viewed as a weighted finite

state machine.! 

P(y,x) = P(yt | yt"1)P(x | yt )
t

#



Second Solution: HMM

• How can represent we multiple features

in an HMM?

– Treat them as conditionally independent

given the class label?

• The example features we talked about are not

independent.

– Try to model a more complex generative

process of the input features?

• We may lose tractability (i.e. lose a dynamic

programming for exact inference).



Second Solution: HMM

• Let’s use a conditional model instead.



Third Solution: MEMM

• Use a series of maximum entropy

classifiers that know the previous label.

• Define a Viterbi algorithm for inference.

! 

P(y | x) = Pyt"1 (yt | x)
t

#



Third Solution: MEMM

• Combines the advantages of maximum

entropy and HMM!

• But there is a problem…



Problem with MEMMs: Label Bias

• In some state space configurations,

MEMMs essentially completely ignore

the inputs.

• Example (ON BOARD).

• This is not a problem for HMMs,

because the input sequence is

generated by the model.

maximum entropy framework. Previously published exper-
imental results show MEMMs increasing recall and dou-
bling precision relative to HMMs in a FAQ segmentation
task.

MEMMs and other non-generative finite-state models
based on next-state classifiers, such as discriminative
Markov models (Bottou, 1991), share a weakness we call
here the label bias problem: the transitions leaving a given
state compete only against each other, rather than against
all other transitions in the model. In probabilistic terms,
transition scores are the conditional probabilities of pos-
sible next states given the current state and the observa-
tion sequence. This per-state normalization of transition
scores implies a “conservation of score mass” (Bottou,
1991) whereby all the mass that arrives at a state must be
distributed among the possible successor states. An obser-
vation can affect which destination states get the mass, but
not how much total mass to pass on. This causes a bias to-
ward states with fewer outgoing transitions. In the extreme
case, a state with a single outgoing transition effectively
ignores the observation. In those cases, unlike in HMMs,
Viterbi decoding cannot downgrade a branch based on ob-
servations after the branch point, and models with state-
transition structures that have sparsely connected chains of
states are not properly handled. The Markovian assump-
tions in MEMMs and similar state-conditional models in-
sulate decisions at one state from future decisions in a way
that does not match the actual dependencies between con-
secutive states.

This paper introduces conditional random fields (CRFs), a
sequence modeling framework that has all the advantages
of MEMMs but also solves the label bias problem in a
principled way. The critical difference between CRFs and
MEMMs is that a MEMM uses per-state exponential mod-
els for the conditional probabilities of next states given the
current state, while a CRF has a single exponential model
for the joint probability of the entire sequence of labels
given the observation sequence. Therefore, the weights of
different features at different states can be traded off against
each other.

We can also think of a CRF as a finite state model with un-
normalized transition probabilities. However, unlike some
other weighted finite-state approaches (LeCun et al., 1998),
CRFs assign a well-defined probability distribution over
possible labelings, trained by maximum likelihood or MAP
estimation. Furthermore, the loss function is convex,2 guar-
anteeing convergence to the global optimum. CRFs also
generalize easily to analogues of stochastic context-free
grammars that would be useful in such problems as RNA
secondary structure prediction and natural language pro-
cessing.

2In the case of fully observable states, as we are discussing
here; if several states have the same label, the usual local maxima
of Baum-Welch arise.
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b:rob

Figure 1. Label bias example, after (Bottou, 1991). For concise-
ness, we place observation-label pairs o : l on transitions rather
than states; the symbol ‘ ’ represents the null output label.

We present the model, describe two training procedures and
sketch a proof of convergence. We also give experimental
results on synthetic data showing that CRFs solve the clas-
sical version of the label bias problem, and, more signifi-
cantly, that CRFs perform better than HMMs and MEMMs
when the true data distribution has higher-order dependen-
cies than the model, as is often the case in practice. Finally,
we confirm these results as well as the claimed advantages
of conditional models by evaluating HMMs, MEMMs and
CRFs with identical state structure on a part-of-speech tag-
ging task.

2. The Label Bias Problem
Classical probabilistic automata (Paz, 1971), discrimina-
tive Markov models (Bottou, 1991), maximum entropy
taggers (Ratnaparkhi, 1996), and MEMMs, as well as
non-probabilistic sequence tagging and segmentation mod-
els with independently trained next-state classifiers (Pun-
yakanok & Roth, 2001) are all potential victims of the label
bias problem.

For example, Figure 1 represents a simple finite-state
model designed to distinguish between the two words rib

and rob. Suppose that the observation sequence is r i b.
In the first time step, r matches both transitions from the
start state, so the probability mass gets distributed roughly
equally among those two transitions. Next we observe i.
Both states 1 and 4 have only one outgoing transition. State
1 has seen this observation often in training, state 4 has al-
most never seen this observation; but like state 1, state 4
has no choice but to pass all its mass to its single outgoing
transition, since it is not generating the observation, only
conditioning on it. Thus, states with a single outgoing tran-
sition effectively ignore their observations. More generally,
states with low-entropy next state distributions will take lit-
tle notice of observations. Returning to the example, the
top path and the bottom path will be about equally likely,
independently of the observation sequence. If one of the
two words is slightly more common in the training set, the
transitions out of the start state will slightly prefer its cor-
responding transition, and that word’s state sequence will
always win. This behavior is demonstrated experimentally
in Section 5.

Léon Bottou (1991) discussed two solutions for the label
bias problem. One is to change the state-transition struc-



Fourth Solution:

Conditional Random Field

• Conditionally-trained, undirected

graphical model.

• For a standard linear-chain structure:

! 

P(y | x) = "k (yt ,yt#1,x)
t
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Fourth Solution: CRF

• Have the advantages of MEMMs, but

avoid the label bias problem.

• CRFs are globally normalized, whereas

MEMMs are locally normalized.

• Widely used and applied.  CRFs give

state-the-art results in many domains.



Fourth Solution: CRF

• Have the advantages of MEMMs, but

avoid the label bias problem.

• CRFs are globally normalized, whereas

MEMMs are locally normalized.

• Widely used and applied.  CRFs give

state-the-art results in many domains.Remember, Z is the 
normalization constant. 
How do we compute it?



CRF Applications
• Part-of-speech tagging	


• Named entity recognition	


• Document layout (e.g. table) classification	


• Gene prediction	


• Chinese word segmentation	


• Morphological disambiguation	


• Citation parsing	


• Etc., etc.



NER as Sequence Tagging
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NER as Sequence Tagging

���17

The Phoenicians came from the Red Sea

O B-E O O O B-L I-L

Capitalized 
word

Ends in “s” Ends in 
“ans”

Previous 
word “the”

“Phoenicians” 
in gazetteer
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NER as Sequence Tagging

���18

The Phoenicians came from the Red Sea

O B-E O O O B-L I-L

Not 
capitalized

Tagged as 
“VB”B-E to right
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NER as Sequence Tagging

���19

The Phoenicians came from the Red Sea

O B-E O O O B-L I-L

Word “sea”

Word “sea” preceded 
by “the ADJ”

Hard constraint: I-L must 
follow B-L or I-L



Overview

• What computations do we need?	


• Smoothing log-linear models	


• MEMMs vs. CRFs again	


• Action-based parsing and dependency 
parsing



1.Gather constraints/features from training data 
!

2.Initialize all parameters to zero	


3.Classify training data with current parameters; calculate 
expectations 
!

4.Gradient is	


5.Take a step in the direction of the gradient	


6.Repeat from 3 until convergence 43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.
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Recipe for Conditional 
Training of p(y | x)
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Gradient-Based Training

• λ := λ + rate * Gradient(F)	


• After all training examples? (batch)	


• After every example? (on-line)	


• Use second derivative for faster learning?	


• A big field: numerical optimization



Overfitting

• If we have too many features, we can choose 
weights to model the training data perfectly	


• If we have a feature that only appears in spam 
training, not ham training, it will get weight ∞ to 
maximize p(spam | feature) at 1.	


• These behaviors	


• Overfit the training data	


• Will probably do poorly on test data



Solutions to Overfitting
• Throw out rare features. 	


• Require every feature to occur > 4 times, and > 0 times with 
ling, and > 0 times with spam. 	


• Only keep, e.g., 1000 features.  	


• Add one at a time, always greedily picking the one that most 
improves performance on held-out data. 	


• Smooth the observed feature counts. 	


• Smooth the weights by using a prior. 	


• max p(λ|data) = max p(λ, data) =p(λ)p(data|λ) 	


• decree p(λ) to be high when most weights close to 0 



Smoothing with Priors
• What if we had a prior expectation that parameter values 

wouldn’t be very large?	


• We could then balance evidence suggesting large (or infinite) 
parameters against our prior expectation.	


• The evidence would never totally defeat the prior, and 
parameters would be smoothed (and kept finite)	


• We can do this explicitly by changing the optimization 
objective to maximum posterior likelihood: 
log P(y, λ | x) = log P(λ) + log P(y | x, λ) 
Posterior          Prior        Likelihood



42 42

42



Parsing as Structured 
Prediction



Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb � book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det � that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun � flight
(Verb Det Noun) reduce, NOM � Noun
(Verb Det NOM) reduce, NP � Det NOM
(Verb NP) reduce, VP � Verb NP
(Verb) reduce, S � V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.
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Shift-reduce parsing

Stack Input remaining Action
() Book that flight shift
(Book) that flight reduce, Verb � book, (Choice #1 of 2)
(Verb) that flight shift
(Verb that) flight reduce, Det � that
(Verb Det) flight shift
(Verb Det flight) reduce, Noun � flight
(Verb Det Noun) reduce, NOM � Noun
(Verb Det NOM) reduce, NP � Det NOM
(Verb NP) reduce, VP � Verb NP
(Verb) reduce, S � V
(S) SUCCESS!

Ambiguity may lead to the need for backtracking.

Train log-linear model of 
p(action | context)

Compare to an MEMM
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Structured Log-Linear Models
• Linear model for scoring structures

• Get a probability distribution by normalizing
✤ Viz. logistic regression, Markov random fields, undirected 

graphical models

• Inference: sampling, variational methods, dynamic 
programming, local search, ...

• Training: maximum likelihood, minimum risk, etc.

p(out | in) =
1
Z

escore(out,in)

score(out, in) = � · features(out, in)Usually the 
bottleneck in NLP

Z =
�

out��GEN(in)

escore(out�,in)
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• Several layers of linguistic structure	


• Unknown correspondences	


• Naturally handled by probabilistic framework	


• Several inference setups, for example:

With latent variables

Structured Log-Linear Models

p(out1 | in) =
�

out2,alignment

p(out1, out2, alignment | in)
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• Several layers of linguistic structure	


• Unknown correspondences	


• Naturally handled by probabilistic framework	


• Several inference setups, for example:

With latent variables

Another computational 
problem

Structured Log-Linear Models

p(out1 | in) =
�

out2,alignment

p(out1, out2, alignment | in)
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Edge-Factored Parsers
• No global features of a parse (McDonald et al. 2005)	


• Each feature is attached to some edge	


• MST or CKY-like DP for fast O(n2) or O(n3) parsing

Byl jasný studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking
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Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• Is this a good edge?

yes, lots of positive features ...

“It bright cold day April and clocks were thirteen”was a in the striking
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Edge-Factored Parsers
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Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• Is this a good edge?

jasný ß den	

(“bright day”)
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Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• Is this a good edge?

jasný ß den	

(“bright day”)

jasný ß N	

(“bright NOUN”)

V A A A N J N V C

A ß N	

preceding 

conjunction A ß N

“It bright cold day April and clocks were thirteen”was a in the striking
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Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• How about this competing edge?
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Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• How about this competing edge?

V A A A N J N V C

not as good, lots of red ...

“It bright cold day April and clocks were thirteen”was a in the striking
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Edge-Factored Parsers
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• How about this competing edge?
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jasný ß hodiny	

(“bright clocks”)

... undertrained ...

Edge-Factored Parsers

Byl jasný studený dubnový den a hodiny odbíjely třináctou

• How about this competing edge?

V A A A N J N V C

jasn ß hodi	

(“bright clock,” 

stems only)

byl jasn stud dubn den a hodi odbí třin

Asingular ß Nplural 
A ß N  

where N follows  
a conjunction

“It bright cold day April and clocks were thirteen”was a in the striking
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jasný

Edge-Factored Parsers

Byl studený dubnový den a hodiny odbíjely třináctou

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

• Which edge is better?	


• “bright day” or “bright clocks”?

“It bright cold day April and clocks were thirteen”was a in the striking
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• Score of an edge e = θ ⋅ features(e)	


• Standard algos è valid parse with max total score
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Edge-Factored Parsers

Byl studený dubnový den a hodiny odbíjely třináctou

“It bright cold day April and clocks were thirteen”was a in the striking

V A A A N J N V C

byl jasn stud dubn den a hodi odbí třin

• Which edge is better?	


• Score of an edge e = θ ⋅ features(e)	


• Standard algos è valid parse with max total score

our current weight vector
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Another possible tagging

Observed input sentence (shaded)
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n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging

……

find preferred tags

v n a
v 0 2 1
n 2 1 0
a 0 3 1

v n a
v 0 2 1
n 2 1 0
a 0 3 1

”Binary” factor 
that measures 

compatibility of 2 
adjacent tags

Model reuses 
same parameters 
at this position
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Local factors in a graphical model
n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging

……

find preferred tags

v 0.2
n 0.2
a 0

“Unary” factor evaluates this tag
Its values depend on corresponding word

can’t be adj

v 0.2
n 0.2
a 0
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Local factors in a graphical model
n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging

……

find preferred tags

v 0.2
n 0.2
a 0

“Unary” factor evaluates this tag 
Its values depend on corresponding word

(could be made to depend on  
entire observed sentence)
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n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging
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find preferred tags
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n 0.2
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Local factors in a graphical model
n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging

……

find preferred tags

v 0.2
n 0.2
a 0

“Unary” factor evaluates this tag
Different unary factor at each position

v 0.3
n 0.02
a 0

v 0.3
n 0
a 0.1
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Local factors in a graphical model
n First, a familiar example 

q Conditional Random Field (CRF) for POS tagging

……

find preferred tags

v n a
v 0 2 1
n 2 1 0
a 0 3 1

v 0.3
n 0.02
a 0

v n a
v 0 2 1
n 2 1 0
a 0 3 1

v 0.3
n 0
a 0.1

v 0.2
n 0.2
a 0

v a n

= … 1*3*0.3*0.1*0.2 …
p(v a n) is proportional  

to the product of all 
factors’ values on v a n
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• First, a labeling example	

✤ CRF for POS tagging	


• Now let’s do dependency parsing!	

✤ O(n2) boolean variables for the possible links

v a n

Graphical Models for Parsing

find preferred links ……

f
t

t
f

t
t

An illegal 
parse...

... with a 
cycle and 
multiple 
parents!
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• What factors determine parse probability?
✤ Unary factors to score each link in isolation

• But what if the best assignment isn’t a tree?

Local Factors for Parsing

find preferred links ……

t 2
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t 1
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t 1
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f 3

t 1
f 8
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• What factors determine parse probability?
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• A hard constraint: potential is either 0 or 1
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• What factors determine parse probability?	

✤ Unary factors to score each link in isolation	


✤ Global TREE factor to require links to form a legal tree	


• A hard constraint: potential is either 0 or 1

Global Factors for Parsing

find preferred links ……

t
f

f
f

f
t

ffffff 0
ffffft 0
fffftf 0
… …

fftfft 1
… …

tttttt 0

optionally require the 
tree to be projective  
(no crossing links)

So far, this is equivalent to 
edge-factored parsing

we’re 
legal!

64 entries (0/1)

Note: traditional parsers don’t loop through this table  
to consider exponentially many trees one at a time. 
They use combinatorial algorithms; so should we!
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• What factors determine parse probability?	

✤ Unary factors to score each link in isolation	


✤ Global TREE factor to require links to form a legal tree	


• A hard constraint: potential is either 0 or 1	


✤ Second order effects: factors on 2 variables	


• Grandparent–parent–child chains

Local Factors for Parsing

find preferred links ……

f t

f 1 1

t 1 3
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Local Factors for Parsing

find preferred links ……

• What factors determine parse probability?	

✤ Unary factors to score each link in isolation	


✤ Global TREE factor to require links to form a legal tree	


• A hard constraint: potential is either 0 or 1	


✤ Second order effects: factors on 2 variables	


• Grandparent–parent–child chains	


• No crossing links	


• Siblings	


✤ Hidden morphological tags	


✤ Word senses and subcategorization frames
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Great Ideas in ML: Message Passing

1 
before
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there’s 
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only see 
my incoming 
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Belief: 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1 + 1 + 4 = 6 
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Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief: 
Must be 
14 of us

wouldn’t work correctly 
with a “loopy” (cyclic) graph

adapted from MacKay (2003) textbook
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Sum-Product Equations

n Message from variable v to factor f 
!

!

n Message from factor f to variable v

!71

mv!f (x) =
Y

f 02N(v)\{f}

mf 0!v(x)



1.Gather constraints/features from training data 
!

2.Initialize all parameters to zero	


3.Classify training data with current parameters; calculate 
expectations 
!

4.Gradient is	


5.Take a step in the direction of the gradient	


6.Repeat from 3 until convergence 43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

43 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

4343 43

Recipe for a Conditional

MaxEnt Classifier

1. Gather constraints from training data:

2. Initialize all parameters to zero.

3. Classify training data with current parameters.  Calculate
expectations.

4. Gradient is

5. Take a step in the direction of the gradient

6. Until convergence, return to step 3.

43

Recipe for Conditional 
Training of p(y | x)
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n Extend CRF to “skip chain” to capture non-local factor
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n Extend CRF to “skip chain” to capture non-local factor
q More influences on belief J

……

find preferred tags

Great ideas in ML: Forward-Backward 

v 3
n 1
a 6

v 2
n 1
a 7

α β

v 3
n 1
a 6

v 5.4
n 0
a 25.2

v 0.3
n 0
a 0.1
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n Extend CRF to “skip chain” to capture non-local factor 
q More influences on belief J 
q Graph becomes loopy L

……

find preferred tags
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α β
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n Extend CRF to “skip chain” to capture non-local factor 
q More influences on belief J 
q Graph becomes loopy L

……

find preferred tags

Great ideas in ML: Forward-Backward 

v 3
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v 2
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α β

v 3
n 1
a 6

v 5.4`
n 0
a 25.2`

v 0.3
n 0
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Red messages not independent?
Pretend they are!
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n Extend CRF to “skip chain” to capture non-local factor 
q More influences on belief J 
q Graph becomes loopy L

……

find preferred tags

Great ideas in ML: Forward-Backward 

v 3
n 1
a 6

v 2
n 1
a 7

α β

v 3
n 1
a 6

v 5.4`
n 0
a 25.2`

v 0.3
n 0
a 0.1

Red messages not independent?
Pretend they are!
“Loopy Belief Propagation”
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Terminological Clarification

beliefloopy propagation

loopy    belief propagation
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• Loopy belief propagation is easy for local factors	


• How do combinatorial factors (like TREE) 
compute the message to the link in question?	

✤ “Does the TREE factor think the link is probably t given the 

messages it receives from all the other links?”

Propagating Global Factors

find preferred links ……

?
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• Loopy belief propagation is easy for local factors	


• How do combinatorial factors (like TREE) 
compute the message to the link in question?	

✤ “Does the TREE factor think the link is probably t given the 

messages it receives from all the other links?”

Propagating Global Factors

find preferred links ……

?
TREE factor
ffffff 0
ffffft 0
fffftf 0
… …

fftfft 1
… …

tttttt 0
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• How does the TREE factor compute the message 
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✤ “Does the TREE factor think the link is probably t given the 
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Propagating Global Factors

find preferred links ……
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• How does the TREE factor compute the message 
to the link in question?	

✤ “Does the TREE factor think the link is probably t given the 

messages it receives from all the other links?”

Propagating Global Factors

find preferred links ……

?
TREE factor
ffffff 0
ffffft 0
fffftf 0
… …

fftfft 1
… …

tttttt 0

Old-school parsing to the rescue!	


This is the outside probability of the link in an edge-factored parser!	


∴TREE factor computes all outgoing messages at once 	
 	

	
           (given all incoming messages)	


Projective case: total O(n3) time by inside-outside	


Non-projective: total O(n3) time by inverting Kirchhoff matrix
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Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row 

and column r is equal to the sum of scores of all 
directed spanning trees of G rooted at node r.
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Graph Theory to the Rescue!

Tutte’s Matrix-Tree Theorem (1948)

The determinant of the Kirchoff (aka Laplacian) 
adjacency matrix of directed graph G without row 

and column r is equal to the sum of scores of all 
directed spanning trees of G rooted at node r.

Exactly the Z we need!

O(n3) time!
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Kirchoff (Laplacian) Matrix

  

€ 

0 −s(1,0) −s(2,0) ! −s(n,0)
0 0 −s(2,1) ! −s(n,1)
0 −s(1,2) 0 ! −s(n,2)
" " " # "
0 −s(1,n) −s(2,n) ! 0

# 

$ 
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% 
% 
% 
% 
% 

& 

' 

( 
( 
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( 
( 
( 

lNegate edge scores 
lSum columns 

(children) 
lStrike root row/col. 
lTake determinant
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lNegate edge scores 
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lStrike root row/col. 
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N.B.: This allows multiple children of root, but see Koo et al. 2007.



Transition-Based Parsing

• Linear time	


• Online	


• Train a classifier to predict next action	


• Deterministic or beam-search strategies	


• But... generally less accurate



Transition-Based Parsing
Parsing Methods

Arc-Eager Shift-Reduce Parsing [Nivre 2003]

Start state: ([ ], [1, . . . , n], { })

Final state: (S, [ ], A)

Shift: (S, i |B, A) ) (S|i , B, A)

Reduce: (S|i , B, A) ) (S, B, A)

Right-Arc: (S|i , j |B, A) ) (S|i |j , B, A [ {i ! j})

Left-Arc: (S|i , j |B, A) ) (S, j |B, A [ {i  j})

Bare-Bones Dependency Parsing 20(30)

Arc-eager shift-reduce parsing (Nivre, 2003)



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[ ]S [who, did, you, see]B { }

who OBJ � did
did SBJ�! you
did VG�! see }

Bare-Bones Dependency Parsing 21(30)
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Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[who]S [did, you, see]B { }

who OBJ � did
did SBJ�! you
did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Shift



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[ ]S [did, you, see]B { who OBJ � did }

did SBJ�! you
did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Left-arc	

OBJ
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Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did]S [you, see]B { who OBJ � did }

did SBJ�! you
did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Shift



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did, you]S [see]B { who OBJ � did,
did SBJ�! you }

did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Right-arc	

SBJ



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did]S [see]B { who OBJ � did,
did SBJ�! you }

did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Reduce



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did, see]S [ ]B { who OBJ � did,
did SBJ�! you,
did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Right-arc	

VG
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Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did, you]S [see]B { who OBJ � did,
did SBJ�! you }

did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Right-arc	

SBJ
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Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did, you]S [see]B { who OBJ � did,
did SBJ�! you }

did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Right-arc	

SBJ

Choose action w/best classifier score	

100k - 1M features



Transition-Based Parsing
Arc-eager shift-reduce parsing (Nivre, 2003)

Parsing Methods

Parsing Example

Stack Buffer Arcs

[did, you]S [see]B { who OBJ � did,
did SBJ�! you }

did VG�! see }

Bare-Bones Dependency Parsing 21(30)

Right-arc	

SBJ

Choose action w/best classifier score	

100k - 1M features

Very fast linear-time performance	

WSJ 23 (2k sentences) in 3 s


