Log-Linear Models with Structured Outputs

Natural Language Processing CS 6120—Spring 2014 Northeastern University

David Smith (some slides from Andrew McCallum)

Overview

- Sequence labeling task (cf. POS tagging)
- Independent classifiers
- HMMs
- (Conditional) Maximum Entropy Markov Models
- Conditional Random Fields
- Beyond Sequence Labeling

Sequence Labeling

- Inputs: $x = (x_1, ..., x_n)$
- Labels: $y = (y_1, ..., y_n)$
- Typical goal: Given x, predict y
- Example sequence labeling tasks
 - Part-of-speech tagging
 - Named-entity-recognition (NER)
 - Label people, places, organizations

NER Example:

Red Sox and Their Fans Let Loose

Fans of the slugger David Ortiz in Boston's Copley Square.

By PETE THAMEL

Published: October 31, 2007

BOSTON, Oct. 30 — Jonathan Papelbon turned Boston's World Series victory parade into a full-scale dance party Tuesday as the Red Sox put an exclamation point on the 2007 season.

	\boxtimes	E-MAIL
t		PRINT
		REPRINTS
	G.	SAVE

First Solution: Maximum Entropy Classifier

- Conditional model p(y|x).
 - Do not waste effort modeling p(x), since x is given at test time anyway.
 - Allows more complicated input features, since we do not need to model dependencies between them.
- Feature functions f(x,y):
 - $-f_1(x,y) = \{ word is Boston \& y=Location \}$
 - $f_2(x,y) = \{ \text{ first letter capitalized & } y=\text{Name } \}$
 - $-f_3(x,y) = \{ x \text{ is an HTML link & y=Location} \}$

First Solution: MaxEnt Classifier

- How should we choose a classifier?
- Principle of maximum entropy
 - We want a classifier that:
 - Matches feature constraints from training data.
 - Predictions maximize entropy.
- There is a unique, exponential family distribution that meets these criteria.

First Solution: MaxEnt Classifier

- Problem with using a maximum entropy classifier for sequence labeling:
- It makes decisions at each position independently!

Second Solution: HMM

$$P(\mathbf{y}, \mathbf{x}) = \prod_{t} P(y_t \mid y_{t-1}) P(x \mid y_t)$$

- Defines a generative process.
- Can be viewed as a weighted finite state machine.

Second Solution: HMM

- How can represent we multiple features in an HMM?
 - Treat them as conditionally independent given the class label?
 - The example features we talked about are not independent.
 - Try to model a more complex generative process of the input features?
 - We may lose tractability (i.e. lose a dynamic programming for exact inference).

Second Solution: HMM

• Let's use a conditional model instead.

Third Solution: MEMM

- Use a series of maximum entropy classifiers that know the previous label.
- Define a Viterbi algorithm for inference.

$$P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} P_{y_{t-1}}(y_t \mid \mathbf{x})$$

Third Solution: MEMM

- Combines the advantages of maximum entropy and HMM!
- But there is a problem...

Problem with MEMMs: Label Bias

 In some state space configurations, MEMMs essentially completely ignore the inputs.

 This is not a problem for HMMs, because the input sequence is generated by the model.

Fourth Solution: Conditional Random Field

- Conditionally-trained, undirected graphical model.
- For a standard linear-chain structure:

$$P(\mathbf{y} \mid \mathbf{x}) = \prod_{t} \Psi_{k}(y_{t}, y_{t-1}, \mathbf{x})$$

$$\Psi_k(y_t, y_{t-1}, \mathbf{x}) = \exp\left(\sum_k \lambda_k f(y_t, y_{t-1}, \mathbf{x})\right)$$

Fourth Solution: CRF

- Have the advantages of MEMMs, but avoid the label bias problem.
- CRFs are globally normalized, whereas MEMMs are locally normalized.
- Widely used and applied. CRFs give state-the-art results in many domains.

Fourth Solution: CRF

 Have the advantages of MEMMs, but avoid the label bias problem.

 CRFs are globally normalized, whereas MEMMs are locally normalized.

 Widely used and applie state-the-art results in r

Remember, Z is the normalization constant. How do we compute it?

CRF Applications

- Part-of-speech tagging
- Named entity recognition
- Document layout (e.g. table) classification
- Gene prediction
- Chinese word segmentation
- Morphological disambiguation
- Citation parsing
- Etc., etc.

O B-E O O B-L I-L

O B-E O O B-L I-L

O B-E O O B-L I-L

Overview

- What computations do we need?
- Smoothing log-linear models
- MEMMs vs. CRFs again
 - Action-based parsing and dependency parsing

Recipe for Conditional Training of p(y | x)

.Gather constraints/features from training data

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\alpha_{iy} = \tilde{E}[f_{iy}]} f_{iy}(x_j, y_j)$$

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\alpha_{iy} = \tilde{E}[f_{iy}]} f_{iy}(x_j, y_j)$$

 $\mathbf{2.Initialize}^{\alpha_{iy} \cdot \alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_j, y_j \in D} f_{iy}(x_j, y_j)}$

- 3. Classify training $E_{\Theta}[f_{iy}] = \sum_{E_{\Theta}[f_{iy}]} \sum_{e} \sum_{p_{\Theta}(y'|x_j) f_{iy}(x_j, y')} \sum_{e} \sum_{f \in D} \sum_{g'} \sum_{g' \in D} \sum_{g'} \sum_{g' \in D} \sum_{g'$
- **4.**Gradient is $\tilde{E}[f_{i}\tilde{E}[f_{iy}] E_{\Theta}[f_{iy}]]$
- 5. Take a step in the direction of the gradient
- 6. Repeat from 3 until convergence

43

Recipe for Conditional Training of p(y | x)

.Gather constraints/features from training data

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\substack{-\\ \alpha_{iy} = \alpha_{iy} = \alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_j, y_j \in D} f_{iy}(x_j, y_j)} f_{iy}(x_j, y_j)$$
2.Initialize

- Classify training $E_{\Theta}[f_{iy}] = \sum_{E_{\Theta}[f_{iy}]} \sum_{E_{\Theta}[f_{$
- **4.**Gradient is $\tilde{E}[f_{i}\tilde{E}[f_{i}y] E_{\Theta}[f_{i}y]]$ **5.**Take a step in the direction of the gradient
- **6.**Repeat from 3 until convergence

Where have we seen expected counts before?

Recipe for Conditional Training of p(y | x)

.Gather constraints/features from training data

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{j=1}^{n} f_{iy}(x_j, y_j)$$
 2.Initialize
$$\tilde{\alpha}_{iy} = \tilde{E}[f_{iy}] = \sum_{j=1}^{n} f_{iy}(x_j, y_j)$$

3. Classify training
$$E_{\Theta}[f_{iy}] = \sum_{E_{\Theta}[f_{iy}]} \sum_{E_{\Theta}[$$

EM!

- **4.**Gradient is $\tilde{E}[f_{i}\tilde{E}[f_{i}y] E_{\Theta}[f_{i}y]]$ **5.**Take a step in the direction of the gradient
- **6.**Repeat from 3 until convergence

Where have we seen expected counts before?

Gradient-Based Training

- $\lambda := \lambda + rate * Gradient(F)$
- After all training examples? (batch)
- After every example? (on-line)
- Use second derivative for faster learning?
- A big field: numerical optimization

Overfitting

- If we have too many features, we can choose weights to model the training data perfectly
- If we have a feature that only appears in spam training, not ham training, it will get weight ∞ to maximize p(spam | feature) at 1.
- These behaviors
 - Overfit the training data
 - Will probably do poorly on test data

Solutions to Overfitting

- Throw out rare features.
 - Require every feature to occur > 4 times, and > 0 times with ling, and > 0 times with spam.
- Only keep, e.g., 1000 features.
 - Add one at a time, always greedily picking the one that most improves performance on held-out data.
- Smooth the observed feature counts.
- Smooth the weights by using a prior.
 - $\max p(\lambda | data) = \max p(\lambda, data) = p(\lambda)p(data | \lambda)$
 - decree $p(\lambda)$ to be high when most weights close to 0

Smoothing with Priors

- What if we had a prior expectation that parameter values wouldn't be very large?
- We could then balance evidence suggesting large (or infinite) parameters against our prior expectation.
- The evidence would never totally defeat the prior, and parameters would be smoothed (and kept finite)
- We can do this explicitly by changing the optimization objective to maximum posterior likelihood:

$$\log P(y, \lambda \mid x) = \log P(\lambda) + \log P(y \mid x, \lambda)$$

Posterior Prior Likelihood

Smoothing: Priors

- Gaussian, or quadratic, priors:
 - Intuition: parameters shouldn't be large.
 - Formalization: prior expectation that each parameter will be distributed according to a gaussian with mean μ and variance σ^2 .

$$P(\lambda_i) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(\lambda_i - \mu_i)^2}{2\sigma_i^2}\right)$$

- Penalizes parameters for drifting to far from their mean prior value (usually μ =0).
- $2\sigma^2=1$ works surprisingly well.

Parsing as Structured Prediction

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb $ ightarrow$ book, (Choice $\#1$ of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det $ ightarrow$ that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun $ o$ flight
(Verb Det Noun)		reduce, $NOM \rightarrow Noun$
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)		reduce, $VP \rightarrow Verb NP$
(Verb)		reduce, $S \rightarrow V$
(S)		SUCCESS!

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb $ ightarrow$ book, (Choice $\#1$ of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det $ o$ that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun $ o$ flight
(Verb Det Noun)		reduce, $NOM \to Noun$
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)		reduce, $VP \rightarrow Verb NP$
(Verb)		reduce, $S \rightarrow V$
(S)		SUCCESS!

Ambiguity may lead to the need for backtracking.

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb $ ightarrow$ book, (Choice $\#1$ of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det $ ightarrow$ that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun $ ightarrow$ flight
(Verb Det Noun)		reduce, NOM $ ightarrow$ Noun
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)		reduce, $VP \rightarrow Verb NP$
(Verb)		reduce, $S \rightarrow V$
(S)		SUCCESS!

Ambiguity may lead to the need for backtracking.

Train log-linear model of p(action | context)

Compare to an MEMM

Shift-reduce parsing

Stack	Input remaining	Action
()	Book that flight	shift
(Book)	that flight	reduce, Verb $ ightarrow$ book, (Choice $\#1$ of 2)
(Verb)	that flight	shift
(Verb that)	flight	reduce, Det $ ightarrow$ that
(Verb Det)	flight	shift
(Verb Det flight)		reduce, Noun $ o$ flight
(Verb Det Noun)		reduce, NOM \rightarrow Noun
(Verb Det NOM)		reduce, NP \rightarrow Det NOM
(Verb NP)		reduce, $VP \rightarrow Verb NP$
(Verb)		reduce, $S \rightarrow V$
(S)		SUCCESS!
` ,		

Ambiguity may lead to the need for backtracking.

Train log-linear model of p(action | context)

Linear model for scoring structures

$$score(out, in) = \theta \cdot \mathbf{features}(out, in)$$

- Linear model for scoring structures
- Get a probability distribution by normalizing

$$score(out, in) = \theta \cdot \mathbf{features}(out, in)$$

$$p(out \mid in) = \frac{1}{Z}e^{score(out,in)} Z = \sum_{out' \in GEN(in)} e^{score(out',in)}$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
 - Viz. logistic regression, Markov random fields, undirected graphical models

$$score(out, in) = \theta \cdot \mathbf{features}(out, in)$$

$$p(out \mid in) = \frac{1}{Z}e^{score(out,in)} Z = \sum_{out' \in GEN(in)} e^{score(out',in)}$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
 - Viz. logistic regression, Markov random fields, undirected graphical models

$$score(out, in) = \theta \cdot \mathbf{features}(out, in)$$

$$p(out \mid in) = \frac{1}{Z} e^{score(out,in)} Z = \sum_{out' \in GEN(in)} e^{score(out',in)}$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
 - Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...

$$score(out, in) = \theta \cdot \mathbf{features}(out, in)$$

$$p(out \mid in) = \frac{1}{Z} e^{score(out,in)} Z = \sum_{out' \in GEN(in)} e^{score(out',in)}$$

- Linear model for scoring structures
- Get a probability distribution by normalizing
 - Viz. logistic regression, Markov random fields, undirected graphical models
- Inference: sampling, variational methods, dynamic programming, local search, ...
- Training: maximum likelihood, minimum risk, etc.

$$score(out, in) = \theta \cdot features(out, in)$$

$$p(out \mid in) = \frac{1}{Z} e^{score(out,in)} Z = \sum_{out' \in GEN(in)} e^{score(out',in)}$$

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

$$p(out_1 \mid in) = \sum_{out_2, alignment} p(out_1, out_2, alignment \mid in)$$

With latent variables

- Several layers of linguistic structure
- Unknown correspondences
- Naturally handled by probabilistic framework
- Several inference setups, for example:

$$p(out_1 \mid in) = \sum_{out_2, alignment} p(out_1, out_2, alignment \mid in)$$

Another computational problem

- No global features of a parse (McDonald et al. 2005)
- Each feature is attached to some edge
- MST or CKY-like DP for fast O(n²) or O(n³) parsing

• Is this a good edge?

• Is this a good edge?

yes, lots of positive features ...

• Is this a good edge?

• Is this a good edge?

Is this a good edge?

• Is this a good edge?

Is this a good edge?

Is this a good edge?

• Is this a good edge?

• Is this a good edge?

How about this competing edge?

• How about this competing edge?

not as good, lots of red ...

• How about this competing edge?

• How about this competing edge?

• How about this competing edge?

```
jasný ← hodiny
("bright clocks")
... undertrained ...

Byl jasný studený dubnový den a hodiny odbíjely třináctou

V A A A N J N V C
```

How about this competing edge?

```
jasný ← hodiny
  ("bright clocks")
 ... undertrained ...
          jasný studený dubnový
                                                odbíjely
                                                        třináctou
     Byl
                                den a hodiny
                      dubn den a
                                                  odbí
                 stud
```

How about this competing edge?

"It was a bright cold day in April and the clocks were striking thirteen"

How about this competing edge?

"It was a bright cold day in April and the clocks were striking thirteen"

How about this competing edge?

• How about this competing edge?

• How about this competing edge?

- Which edge is better?
 - "bright day" or "bright clocks"?

- Which edge is better?
- Score of an edge $e = \theta \cdot features(e)$
- Standard algos
 valid parse with max total score

- Which edge is better? our current weight vector
- Score of an edge $e = \theta$ features(e)
- Standard algos → valid parse with max total score

"It was a bright cold day in April and the clocks were striking thirteen"

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

Possible tagging (i.e., assignment to remaining variables)

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

Possible tagging (i.e., assignment to remaining variables)

Another possible tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

Possible tagging (i.e., assignment to remaining variables)

Another possible tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

"Unary" factor evaluates this tag

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

(could be made to depend on entire observed sentence)

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

find preferred tags

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

- First, a familiar example
 - Conditional Random Field (CRF) for POS tagging

First, a familiar example

find

Conditional Random Field (CRF) for POS tagging

preferred

51

tags

First, a labeling example

- CRF for POS tagging
- Now let's do dependency parsing!
 - \bullet O(n²) boolean variables for the possible links

... find

preferred

links ...

• First, a labeling example

- CRF for POS tagging
- Now let's do dependency parsing!
 - ❖ O(n²) boolean variables for the possible links

• First, a labeling example

- CRF for POS tagging
- Now let's do dependency parsing!
 - \bullet O(n²) boolean variables for the possible links

- First, a labeling example

- CRF for POS tagging
- Now let's do dependency parsing!
 - O(n²) boolean variables for the possible links

- First, a labeling example
 - CRF for POS tagging

- Now let's do dependency parsing!
 - $O(n^2)$ boolean variables for the possible links

- First, a labeling example

- CRF for POS tagging
- Now let's do dependency parsing!
 - $O(n^2)$ boolean variables for the possible links

- First, a labeling example
 - CRF for POS tagging

- Now let's do dependency parsing!
 - $O(n^2)$ boolean variables for the possible links

- First, a labeling example
 - CRF for POS tagging

- Now let's do dependency parsing!
 - \bullet O(n²) boolean variables for the possible links

- First, a labeling example
 - CRF for POS tagging

- Now let's do dependency parsing!
 - $O(n^2)$ boolean variables for the possible links

What factors determine parse probability?

- What factors determine parse probability?
 - Unary factors to score each link in isolation

- What factors determine parse probability?
 - Unary factors to score each link in isolation

- What factors determine parse probability?
 - Unary factors to score each link in isolation
- But what if the best assignment isn't a tree?

- What factors determine parse probability?
 - Unary factors to score each link in isolation

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1

Global Factors for Parsing optionally require the

- What factors determine parse tree to be projective
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1

64 entries (0/1)

Global Factors for Parsing optionally require the

- What factors determine parse tree to be projective
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1

64 entries (0/1)

fin Note: traditional parsers don't loop through this table to consider exponentially many trees one at a time.

They use combinatorial algorithms; so should we!

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1
 - Second order effects: factors on 2 variables
 - Grandparent—parent—child chains

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1
 - Second order effects: factors on 2 variables
 - Grandparent—parent—child chains

- What factors determine parse probability?
 - Unary factors to score each link in isolation
 - Global TREE factor to require links to form a legal tree
 - A hard constraint: potential is either 0 or 1
 - Second order effects: factors on 2 variables
 - Grandparent—parent—child chains
 - No crossing links
 - Siblings
 - Hidden morphological tags
 - Word senses and subcategorization frames

preferred

links

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

In the CRF, message passing = forward-backward= "sum-product algorithm"

Sum-Product Equations

Message from variable v to factor f

$$m_{v \to f}(x) = \prod_{f' \in N(v) \setminus \{f\}} m_{f' \to v}(x)$$

Message from factor f to variable v

Recipe for Conditional Training of p(y | x)

.Gather constraints/features from training data

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\alpha_{iy} = \tilde{E}[f_{iy}]} f_{iy}(x_j, y_j)$$

$$\alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{\alpha_{iy} = \tilde{E}[f_{iy}]} f_{iy}(x_j, y_j)$$

 $\mathbf{2.Initialize}^{\alpha_{iy} \cdot \alpha_{iy} = \tilde{E}[f_{iy}] = \sum_{x_j, y_j \in D} f_{iy}(x_j, y_j)}$

- 3. Classify training $E_{\Theta}[f_{iy}] = \sum_{E_{\Theta}[f_{iy}]} \sum_{e} \sum_{p_{\Theta}(y'|x_j) f_{iy}(x_j, y')} \sum_{e} \sum_{f \in D} \sum_{g'} \sum_{g' \in D} \sum_{g'} \sum_{g' \in D} \sum_{g'$
- **4.**Gradient is $\tilde{E}[f_{i}\tilde{E}[f_{iy}] E_{\Theta}[f_{iy}]]$
- 5. Take a step in the direction of the gradient
- 6. Repeat from 3 until convergence

43

propagation

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE)
 compute the message to the link in question?
 - * "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE)
 compute the message to the link in question?
 - * "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

- Loopy belief propagation is easy for local factors
- How do combinatorial factors (like TREE)
 compute the message to the link in question?
 - * "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

- How does the TREE factor compute the message to the link in question?
 - "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

- How does the TREE factor compute the message to the link in question?
 - * "Does the TREE factor think the link is probably t given the messages it receives from all the other links?"

Old-school parsing to the rescue!

This is the outside probability of the link in an edge-factored parser!

...TREE factor computes all outgoing messages at once (given all incoming messages)

Projective case: total O(n³) time by inside-outside

Non-projective: total $O(n^3)$ time by inverting Kirchhoff matrix

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)

The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the **sum of scores of all directed spanning trees** of G rooted at node r.

Graph Theory to the Rescue!

Tutte's Matrix-Tree Theorem (1948)

The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the **sum of scores of all directed spanning trees** G rooted at node r.

Exactly the Z we need!

Graph Theory to the Rescue!

O(n³) time!

Matrix-Tree Theorem (1948)

The **determinant** of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the **sum of scores of all directed spanning trees** G rooted at node r.

Exactly the Z we need!

$$\begin{bmatrix} 0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\ 0 & 0 & -s(2,1) & \cdots & -s(n,1) \\ 0 & -s(1,2) & 0 & \cdots & -s(n,2) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -s(1,n) & -s(2,n) & \cdots & 0 \end{bmatrix}$$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

$$\begin{bmatrix}
0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\
0 & 0 & -s(2,1) & \cdots & -s(n,1) \\
0 & -s(1,2) & 0 & \cdots & -s(n,2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -s(1,n) & -s(2,n) & \cdots & 0
\end{bmatrix}$$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

$$\begin{bmatrix} 0 & -s(1,0) & -s(2,0) & \cdots & -s(n,0) \\ 0 & \sum_{j \neq 1} s(1,j) & -s(2,1) & \cdots & -s(n,1) \\ 0 & -s(1,2) & \sum_{j \neq 2} s(2,j) & \cdots & -s(n,2) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & -s(1,n) & -s(2,n) & \cdots & \sum_{j \neq n} s(n,j) \end{bmatrix} \quad \begin{array}{c} \text{Negate edge scores} \\ \text{Sum columns} \\ \text{(children)} \\ \text{Strike root row/col.} \\ \text{Take determinant} \\ \end{array}$$

- Negate edge scores

$$\begin{vmatrix} \sum_{j\neq 1} s(1,j) & -s(2,1) & \cdots & -s(n,1) \\ -s(1,2) & \sum_{j\neq 2} s(2,j) & \cdots & -s(n,2) \\ \vdots & \vdots & \ddots & \vdots \\ -s(1,n) & -s(2,n) & \cdots & \sum_{j\neq n} s(n,j) \end{vmatrix}$$

- Negate edge scores
- Sum columns (children)
- Strike root row/col.
- Take determinant

$$\begin{vmatrix} \sum_{j \neq 1} s(1,j) & -s(2,1) & \cdots & -s(n,1) \\ -s(1,2) & \sum_{j \neq 2} s(2,j) & \cdots & -s(n,2) \\ \vdots & \vdots & \ddots & \vdots \\ -s(1,n) & -s(2,n) & \cdots & \sum_{j \neq n} s(n,j) \end{vmatrix}$$
 Negate education Sum column (children) Strike root Take determined at the second strike root of the se

- Negate edge scores
- Sum columns
- Strike root row/col.
- Take determinant

N.B.: This allows multiple children of root, but see Koo et al. 2007.

- Linear time
- Online
- Train a classifier to predict next action
- Deterministic or beam-search strategies
- But... generally less accurate

Arc-eager shift-reduce parsing (Nivre, 2003)

```
Start state: ([],[1,...,n],\{])
```

Final state: (S, [], A)

```
Shift: (S, i|B, A) \Rightarrow (S|i, B, A)
```

Reduce:
$$(S|i, B, A) \Rightarrow (S, B, A)$$

Right-Arc:
$$(S|i,j|B,A) \Rightarrow (S|i|j,B,A \cup \{i \rightarrow j\})$$

Left-Arc:
$$(S|i,j|B,A) \Rightarrow (S,j|B,A \cup \{i \leftarrow j\})$$

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack	Buffer	Arcs
[]s	[who, did, you, see] $_B$	{}

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack	Buffer	Arcs
$[who]_{\mathcal{S}}$	[did, you, see] $_B$	{}

Shift

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

Buffer

Arcs

 $[]_S$

[did, you, see] $_B$

 $\{ \text{ who } \stackrel{\mathsf{OBJ}}{\leftarrow} \text{ did } \}$

Left-arc OBJ

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

 $[did]_S$

Buffer

[you, see] $_B$

Arcs

 $\{ \text{ who } \stackrel{\mathsf{OBJ}}{\longleftarrow} \text{ did } \}$

Shift

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

Buffer

 $[did, you]_S$ $[see]_B$

Arcs

 $\{ \text{ who } \stackrel{\mathsf{OBJ}}{\longleftarrow} \text{ did, }$ did \xrightarrow{SBJ} you }

Right-arc SBI

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack	Butter	Arcs
$[did]_S$	$[see]_B$	$\{ \text{ who } \stackrel{OBJ}{\longleftarrow} \text{ did}, $
		$did \xrightarrow{SBJ} you \}$

Reduce

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

[did, see]_S []_B

Buffer

Right-arc VG

Arcs

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

Buffer

 $[did, you]_S$ $[see]_B$

Arcs

 $\{ \text{ who } \stackrel{\mathsf{OBJ}}{\longleftarrow} \text{ did, }$ did \xrightarrow{SBJ} you }

Right-arc SBI

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

Buffer

 $[did, you]_S$ $[see]_B$

Arcs

 $\{ \text{ who } \stackrel{\mathsf{OBJ}}{\leftarrow} \text{ did, }$ did $\stackrel{SBJ}{\longrightarrow}$ you }

Right-arc

Choose action w/best classifier score 100k - IM features

Arc-eager shift-reduce parsing (Nivre, 2003)

Stack

 $[did, you]_S$

Very fast linear-time performance WSI 23 (2k sentences) in 3 s

ala — you

Right-arc

VG

Choose action w/best classifier score 100k - 1M features