Context-Free Parsing:

CKY & Earley Algorithms
and Probabilistic Parsing

Natural Language Processing
CS 6120—Spring 2014
Northeastern University

David Smith

with some slides
from Jason Eisner & Andrew McCallum



Language structure and meaning

We want to know how meaning is mapped onto what language structures.
Commonly in English in ways like this:

'THING The dog] is [PLACE in the garden]
'THING The dog] is [PROPERTY fierce]

[ACTION [THING The dog] is chasing [THING the cat]]

STATE [THING The dog| was sitting [PLACE in the garden] [TIME
yesterday]]

[ACTION [THING We] ran [PATH out into the water]]

[ACTION [THING The dog] barked [PROPERTY/MANNER loudly]]

[ACTION [THING The dog] barked [PROPERTY/AMOUNT nonstop for five
hours]]
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Part of speech “Substitution Test”

The {sad, intelligent, green, fat, ...} one is in the corner.



Constituency

The idea: Groups of words may behave as a single unit or phrase, called a
consituent.

E.g. Noun Phrase

Kermit the frog

they

December twenty-sixth

the reason he is running for president



Constituency

Sentences have parts, some of which appear to have subparts. These
groupings of words that go together we will call constituents.

(How do we know they go together? Coming in a few slides...)

I hit the man with a cleaver
| hit [the man with a cleaver]
| hit [the man] with a cleaver

You could not go to her party
You [could not] go to her party
You could [not go| to her party



Constituent Phrases

For constituents, we usually name them as phrases based on the word that
heads the constituent:

the man from Amherst is a Noun Phrase (NP) because the head man is a noun

extremely clever is an Adjective Phrase (AP) because the head clever is an adjective
down the river is a Prepositional Phrase (PP) because the head down is a preposition
killed the rabbit is a Verb Phrase (VP) because the head killed is a verb

Note that a word is a constituent (a little one). Sometimes words also act
as phrases. In:

Joe grew potatoes.
Joe and potatoes are both nouns and noun phrases.

Compare with:

The man from Amherst grew beautiful russet potatoes.

We say Joe counts as a noun phrase because it appears in a place that a
larger noun phrase could have been.



Evidence constituency exists

1. They appear in similar environments (before a verb)
Kermat the frog comes on stage
They come to Massachusetts every summer
December twenty-sixzth comes after Christmas
The reason he is running for president comes out only now.
But not each individual word in the consituent
*The comes our... *is comes out... *for comes out...

2. The constituent can be placed in a number of different locations
Consituent = Prepositional phrase: On December twenty-sixth
On December twenty-sixth 1'd like to fly to Florida.

I’d like to fly on December twenty-sizth to Florida.
I’d like to fly to Florida on December twenty-sizth.
But not split apart

*On December I'd like to fly twenty-sizth to Florida.
*On I'd like to fly December twenty-sixth to Florida.




Context-free grammar

The most common way of modeling constituency.

CFG = Context-Free Grammar = Phrase Structure Grammar
— BNF = Backus-Naur Form

The idea of basing a grammar on constituent structure dates back to
Wilhem Wundt (1890), but not formalized until Chomsky (1956), and,
independently, by Backus (1959).



Context-free grammar
G = (T,N,S,R)

e T is set of terminals (lexicon)

e N is set of non-terminals For NLP, we usually distinguish out a set
P C N of preterminals which always rewrite as terminals.

e S is start symbol (one of the nonterminals)

e R is rules/productions of the form X — ~, where X is a nonterminal
and ~ is a sequence of terminals and nonterminals (may be empty).

e A grammar G generates a language L.



An example context-free grammar

G = (T,N,S,R)

T = {that, this, a, the, man, book, flight, meal, include, read, does}
N ={S, NP, NOM, VP, Det, Noun, Verb, Aux}

S=S5

R ={

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S— VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP



Application of grammar rewrite rules

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S — VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP

S — NP VP

Det NOM VP

The NOM VP

The Noun VP

The man VP

The man Verb NP

The man read NP

The man read Det NOM
The man read this NOM
The man read this Noun
The man read this book

L T A S A



Parse tree

S
NP/\
T A

Det NOM Verb

The Noun o5y Det NOM

man this Noun

|
book



CFGs can capture recursion

Example of seemingly endless recursion of embedded prepositional phrases:
PP — Prep NP
NP — Noun PP

[s The mailman ate his [y p lunch [pp with his friend [pp from the cleaning
staff [pp of the building [pp at the intersection [pp on the north end [pp
of town]]]]]]].

(Bracket notation)



Grammaticality

A CFG defines a formal language = the set of all sentences (strings of
words) that can be derived by the grammar.

Sentences in this set said to be grammatical.

Sentences outside this set said to be ungrammatical.



The Chomsky hierarchy

Type 0 Languages / Grammars
Rewrite rules a« — 3
where o« and (3 are any string of terminals and nonterminals

Context-sensitive Languages / Grammars

Rewrite rules a X — avy(

where X is a non-terminal, and «, (3, are any string of terminals and
nonterminals, (7 must be non-empty).

Context-free Languages / Grammars

Rewrite rules X —

where X is a nonterminal and ~ is any string of terminals and
nonterminals

Regular Languages / Grammars

Rewrite rules X — aY

where X, Y are single nonterminals, and « is a string of terminals; Y
might be missing.



Parsing regular grammars

(Languages that can be generated by finite-state automata.)
Finite state automaton « regular expression < regular grammar

Space needed to parse: constant

Time needed to parse: linear (in the length of the input string)

Cannot do embedded recursion, e.g. a”b™. (Context-free grammars can.)
In the language: ab, aaabbb; not in the language: aabbb

The cat likes tuna fish.
The cat the dog chased likes tuna fish
The cat the dog the boy loves chased likes tuna fish.

John, always early to rise, even after a sleepless night filled with the cries
of the neighbor’s baby, goes running every morning.

John and Mary, always early to rise, even after a sleepless night filled with
the cries of the neighbor’s baby, go running every morning.




Parsing context-free grammars

(Languages that can be generated by pushdown automata.)

Widely used for surface syntax description (correct word order specification)
in natural languages.

Space needed to parse: stack (sometimes a stack of stacks)
In general, proportional to the number of levels of recursion in the data.

Time needed to parse: in general O(n?).

Can to a™b"™, but cannot do a™b"c".

Chomsky Normal Form

All rules of the form X — Y Z or X —aor S —e.
(S is the only non-terminal that can go to ¢.)
Any CFG can be converted into this form.

How would you convert the rule W — XY aZ to Chomsky Normal Form?



Chomsky Normal Form Conversion
These steps are used in the conversion:

1. Make S non-recursive
2. Eliminate all epsilon except the one in S (if there is one)
3. Eliminate all chain rules

4. Remove useless symbols (the ones not used in any production).

How would you convert the following grammar?
S — ABS

S — €

A — e

A — xyz

B —wB

B —w



What is parsing?

We want to run the grammar backwards to find the structure.
Parsing can be viewed as a search problem.

We search through the legal rewritings of the grammar.

We want to find all structures matching an input string of words (for the
moment)

We can do this bottom-up or top-down

This distinction is independent of depth-first versus breadth-first; we can do
either both ways.

Doing this we build a search tree which is different from the parse tree.



Recognizers and parsers

e A recognizer is a program for which a given grammar and a given
sentence returns YES if the sentence is accepted by the grammar (i.e.,
the sentence is in the language), and NO otherwise.

e A parser in addition to doing the work of a recognizer also returns the
set of parse trees for the string.



Soundness and completeness

A parser is sound if every parse it returns is valid /correct.

A parser terminates if it is guaranteed not to go off into an infinite loop.

A parser is complete if for any given grammar and sentence it is sound,

produces every valid parse for that sentence, and terminates.

(For many cases, we settle for sound but incomplete parsers:
probabilistic parsers that return a k-best list.)

e.g.



Top-down parsing
Top-down parsing is goal-directed.

e A top-down parser starts with a list of constituents to be built.

e |t rewrites the goals in the goal list by matching one against the LHS of
the grammar rules,

e and expanding it with the RHS,

e ...attempting to match the sentence to be derived.

If a goal can be rewritten in several ways, then there is a choice of which
rule to apply (search problem)

Can use depth-first or breadth-first search, and goal ordering.



Top-down parsing example (Breadth-first)

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S — VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP

Book that flight.

(Work out top-down, breadth-first search on the board...)



Top-down parsing example (Breadth-first)

S
NP VP
/\ \
Det NOM Verb

S

PN

NP

VP

N

Det

S

S
/N
Aux NP VP
S
/\
NP VP
TN

NOM Verb NP

S
|
VP
S S
| |
VP VP
|
Verb Verb
S
|
VP
Verb NP
‘ /\
book Det NOM
| |
that Noun

flight

VP



Problems with top-down parsing

Left recursive rules... e.g. NP — NP PP... lead to infinite recursion

Will do badly if there are many different rules for the same LHS. Consider
if there are 600 rules for S, 599 of which start with NP, but one of which
starts with a V, and the sentence starts with a V.

Useless work: expands things that are possible top-down but not there
(no bottom-up evidence for them).

Top-down parsers do well if there is useful grammar-driven control: search
is directed by the grammar.

Top-down is hopeless for rewriting parts of speech (preterminals) with
words (terminals). In practice that is always done bottom-up as lexical
lookup.

Repeated work: anywhere there is common substructure.



Bottom-up parsing
Top-down parsing is data-directed.

e The initial goal list of a bottom-up parser is the string to be parsed.

e If a sequence in the goal list matches the RHS of a rule, then this
sequence may be replaced by the LHS of the rule.

e Parsing is finished when the goal list contains just the start symbol.

If the RHS of several rules match the goal list, then there is a choice of
which rule to apply (search problem)

Can use depth-first or breadth-first search, and goal ordering.

The standard presentation is as shift-reduce parsing.



Bottom-up parsing example

S — NP VP Det — that | this | a | the

S — Aux NP VP Noun — book | flight | meal | man
S — VP Verb — book | include | read

NP — Det NOM Aux — does

NOM — Noun

NOM — Noun NOM

VP — Verb

VP — Verb NP

Book that flight.

(Work out bottom-up search on the board...)



Shift-reduce parsing

Stack Input remaining Action

() Book that flight  shift

(Book) that flight reduce, Verb — book, (Choice #1 of 2)
(Verb) that flight shift

(Verb that) flight reduce, Det — that
(Verb Det) flight shift

(Verb Det flight) reduce, Noun — flight
(Verb Det Noun) reduce, NOM — Noun
(Verb Det NOM) reduce, NP — Det NOM
(Verb NP) reduce, VP — Verb NP
(Verb) reduce, S — V

(S) SUCCESS!

Ambiguity may lead to the need for backtracking.



Shift Reduce Parser

Start with the sentence to be parsed in an input buffer.

e a "shift” action correponds to pushing the next input symbol from the
buffer onto the stack

e a "reduce’ action occurrs when we have a rule’'s RHS on top of the
stack. To perform the reduction, we pop the rule’'s RHS off the stack
and replace it with the terminal on the LHS of the corresponding rule.

(When either "shift” or "reduce” is possible, choose one arbitrarily.)

If you end up with only the START symbol on the stack, then success!
If you don’t, and you cannot and no "shift” or "reduce” actions are possible,
backtrack.



Shift Reduce Parser

In a top-down parser, the main decision was which production rule to pick.
In a bottom-up shift-reduce parser there are two decisions:

1. Should we shift another symbol, or reduce by some rule?

2. If reduce, then reduce by which rule?

both of which can lead to the need to backtrack



Problems with bottom-up parsing

Unable to deal with empty categories: termination problem, unless
rewriting empties as constituents is somehow restricted (but then it's
generally incomplete)

Useless work: locally possible, but globally impossible.

Inefficient when there is great lexical ambiguity (grammar-driven control
might help here). Conversely, it is data-directed: it attempts to parse
the words that are there.

Repeated work: anywhere there is common substructure.

Both Top-down (LL) and Bottom-up (LR) parsers can (and frequently
do) do work exponential in the sentence length on NLP problems.



Principles for success

e Left recursive structures must be found, not predicted.
e Empty categories must be predicted, not found.

e Don't waste effort re-working what was previously parsed before
backtracking.

An alternative way to fix things:

e Grammar transformations can fix both left-recursion and epsilon
productions.

e Then you parse the same language but with different trees.

e BUT linguists tend to hate you, because the structure of the re-written
grammar isn't what they wanted.



From Shift-Reduce to CKY

® Shift-reduce parsing can make wrong turns,
needs backtracking

® Shift-reduce must pop the top of the stack,
but how many items to pop?

® Time-space tradeoff

® Chomsky normal form



Chomsky Normal Form

® Any CFL can be generated by an equivalent
grammar in CNF

® Rules of three types

e X »Y/~Z XY, Z nonterminals
® X 23 X nonterminal, a terminal
® S E S the start symbol

® NB: the derivation of a given string may change



CNF Conversion

® Create new start symbol
® Remove NTs that can generate epsilon

® Remove NTs that can generate each other,
(unary rule cycles)

® Chain rules with RHS > 2

® Related topic: rule Markovization (later)



CKY Algorithm

® |nput: string of n words
® Output (of recognizer): grammatical or not
® Dynamic programming in a chart:

® rows labeled 0 to n-|

® columns labeled | to n

® cell [i,j] lists possible constituents spanning
words between i and |



CKY Algorithm

= fori:=1ton
= Add to [i-1,i] all (part-of-speech) categories for the it word
= forwidth :=2ton
= for start := 0 to n-width
» Define end := start + width
= for mid := start+1 to end-1
= for every constituent X in [start,mid]
= for every constituent Y in [mid,end]
. for all ways of combining X and Y (if any)
. Add the resulting constituent to

[start,end]ifit'snot-already-there—
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CKY Algorithm

= fori:=1ton
= Add to [i-1,i] all (part-of-speech) categories for the it word
= forwidth :=2ton
= for start := 0 to n-width
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time 1 fles 2 like 3 an 4 arrow 5
NP 3
Vst 3
0
NP 4
1 VP 4
P 2
2 V 5
3 Det 1
4

O WIN K N NOE

NP — time
Vst — time
NP — flies
VP — flies
P — like

V — like
Det — an
N — arrow

S—- NPVP
S — Vst NP
S—-SPP

VP — V NP
VP — VP PP

NP — Det N

NP — NP PP
NP — NP NP

PP — P NP



1 2 like 3 an 4 arrow 5

NP 3
Vst 3

S —- NP VP
S — Vst NP
S—-SPP

VP — V NP
VP — VP PP

NP 4
VP 4

NP — Det N
NP — NP PP

<
3

Det 1 NP — NP NP

OO WINKF N NOH-

PP — P NP




1 2 like 3 an 4 arrow 5
NP 10

Vst 3

S —- NP VP
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S—-SPP

VP — V NP
VP — VP PP

VP 4

NP — Det N
NP — NP PP

N~ NN~ NOY

<
3

Det 1

0 PP—PNP




1 2 like 3 an 4 arrow 5

NP 10
Vst 3 S 8

NP — NP PP

Det 1

NP — NP NP
PP — P NP

6 S— Vst NP
2 S—SPP
NP 4

1 VP—-=VNP

2 VP — VP PP
P 2 1 NP — Det N
V 5

2

3

0




1 2 like 3 an 4 arrow 5

NP 3 NP 10
S 8
S 13

1 S— NPVP

S —>SPP

VP 4 VP%VNP

VP — VP PP

NP — Det N
NP — NP PP

<
3

Det 1

NP — NP NP
PP — P NP

-
N
O WINEFE NN DN




time 1 flies 2 like
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PP — P NP
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Follow backpointers

time 1 flies 2

like 3

4 arrow 5

NP 3
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NP 10
S 8
S 13
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PP — P NP
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VP — V NP
VP — VP PP

NP — Det N

NP — NP PP
NP — NP NP

PP — P NP



time 1

NP 3
Vst 3

o

10

13

24
22
27
24
27
22
27

NP

18
21
18

T

16

Det 1

10

= N O =

O WN =

NP VP

S—- NPVP
S — Vst NP
S—-SPP

VP — V NP

NP — Det N

NP — NP PP
NP — NP NP

PP — P NP



time 1 flies 2

NP 3
Vst 3

NP
S
S

10

13

24
22
27
24
27
22
27

NP
VP

18
21
18

12
16

Det 1

WNNEE= NN NO -

S—- NPVP
S — Vst NP
S—-SPP

VP — V NP
VP — VP PP

NP — Det N

NP — NP PP
NP — NP NP



time 1 fles 2 like 3
NP 3 [NP 10 |_ NP 24
Vst 3 |S 8 S 22
S 13 S 27
0 NP 24
S 27
S 22
S 27
NP 4 | _ NP 18
1 VP 4 S 21
VP 18
P PP 12
2 Y} VP 16
3 NP 10

4

N = NOY =

WN

S—- NPVP
S — Vst NP
S—-SPP

VP — V NP
VP — VP PP

NP — NP PP
NP — NP NP

PP — P NP



Parsing as Deduction

® CKY as inference rules
® CKY as Prolog program
® But Prolog is top-down with backtracking

® i.e, backward chaining”, CKY is “forward
chaining”

® |nference rules as Boolean semiring



Probabilistic CFGs

® Generative process (already familiar)

® |t’s context free: Rules are applied
independently, therefore we multiply their
probabilities

® How to estimate probabilities!?

® Supervised and unsupervised



Questions for PCFGs

® What is the most likely parse for a
sentence! (parsing)

® What is the probability of a sentence!
(language modeling)

® What rule probabilities maximize the
probability of a sentence! (parameter
estimation)



Algorithms for PCFGs

® Exact analogues to HMM algorithms
® Parsing:Viterbi CKY
® | anguage modeling: inside probabilities

® Parameter estimation: inside-outside
probabilities with EM



Parsing as Deduction

VA, B,C e NW eV, 0<11,7,k<m
constit(B, i, 5) N constit(C, 5, k) N A — BC = constit(A,1, k)

word(W,1) NA — W = constit(A,1,7 + 1)

In Prolog:
constit(A, I1, I) :- constit(A, I, K) :-
word(I, W), constit(B, I, J),
(A ---> [W]), constit(C, J, K),
I1 is I - 1. (A ---> [B, CD).

But Prolog uses top-down search with backtracking...



Parsing as Deduction

VA, B,C e NW eV, 0<11,7,k<m
constit(B, i, 5) N constit(C, 5, k) N A — BC = constit(A,1, k)

word(W,1) NA — W = constit(A,1,7 + 1)

constit(A,i k) = \/ constit(B,1,5) N constit(C,j, k) NA— B C
B,C.,j

constit(A,i,j) = \/ word(W,i,j) NA — W
1%



Parsing as Deduction

constit(A,i, k) = \/ constit(B,1i,5) N constit(C,j, k) NA— B C
B7C7j

constit(A,1,7) = \/ word(W,i,j) NA — W
7%

score(constit(A,i,k)) = m score(constit(B,1,7))

ax

,C,J
- score(constit(C, 5, k))
- score(A — B C)

score(constit(A,i,75)) = max score(word(W,i,j)) - score(A — W)

And how about the inside algorithm!?



Problems with Inside-Outside EM

® Each sentence at each iteration takes
O(m>n3)

® | ocal maxima even more problematic than
for HMMs: Charniak (1993) found a different
maximum for each of 300 trials

® More NTs needed to learn a good model

® NTs don’t correspond to intuitions: HMMs
are easier to constrain with tag dictionaries



Treebank Grammars

® What rules would you extract from this
tree?

® What probabilities would S

/\

‘ ?
you assign them!? NP A

Det NOM Verb

The Noun .54 Det NOM

man this  Noun

|
book



Treebank Grammars

® Penn Treebank

® | ots of rules have high fanout (flat phrases)
® | ots of unary cycles

® How should we evaluate!

® What are the consequences of CNF
conversion!?



Inside & Viterbi Algorithms

NB: inde>$ between words;
LEt ﬁA (’L, ]) — p(CO'n/St’I:t(A7 7:7 ])) M&S index words

= p(w;; | nonterminal A from i to j)

Bai,k) = > Bsli,j)-Be( k) p(A— BC)

B7C7j
Prest(constit(A, i, 7))

Let 514(27])

max 05(4, 7)) - 6¢c(j, k) - p(A — B C)

5A(ivk) B.C.j

65(0,77,) = 7 55(0,71) = 7



Inside & Outside

constit(A, i, j)

p(words 0-i, words j-n, constit)

w(0, I) w(i-1, i) w(j, j+1) w(n-1, n)



Inside & Outside

constit(A, i, j)

Inside:

p(words i-j |
p(words 0-i, words j-n, constit) constit)

w(0, I) w(i-1, i) w(j, jt1) w(n-1, n)



Inside & Outside

Inside:
p(words i-j |
constit)

w(0, I) w(i-1, i) w(j, jt1) w(n-1, n)



Inside & Outside

Inside x
Outside =
Inside
probability of
the whole tree

Inside:
p(words i-j |
constit)

w(0, I) w(i-1, i) w(j, jt1) w(n-1, n)



Outside Algorithm

aa(t,J) = p(wo,, Aij, Wjn) Uss:oil::de
aali,j) = Y ap(i,k)-Be(j k) -p(B—AC)
B,C,k=j
+ ) ap(k.j) Belk,i)-p(B — C A)
B,C,k=0
aS(O’n) = Some

resemblance

to derivative
product rule

aPP(Ov TL) ="




Top-Down/Bottom-Up

® Jop-down parsers

® Can get caught in infinite loops

® Jake exponential time backtracking
o CKY

® Needs Chomsky normal form

® Builds all possible constituents



Earley Parser (1970)

* Nice combination of
— dynamic programming
— Incremental interpretation
— avoids infinite loops

— no restrictions on the form of the context-free
grammar.
A — B C the D of causes no problems

— O(n3) worst case, but faster for many grammars

— Uses left context and optionally right context to
constrain search.



Earley’s Overview

* Finds constituents and partial constituents in input
is partial: only the first half of the

+

D _ A

A N\
B C D E

JANWAN ANVANAY




Earley’s Overview

* Proceeds incrementally left-to-right

Before it reads word 5, it has already built all hypotheses that are
consistent with first 4 words

Reads word 5 & attaches it to immediately preceding hypotheses.
Might yield new constituents that are then attached to hypotheses
Immediately preceding them ...

E.g., attaching D to gives

Attaching E to that gives

Now we have a complete A that we can attach to hypotheses
Immediately preceding the A, etc.



The Parse Table

« Columns 0 through n corresponding to the gaps between
words

« Entries in column 5 look like
(but we'll omit the — etc. to save space)
— Built while processing word 5

— Means that the input substring from 3 to 5
matches the initial NP portion of a rule

— Dot shows how much we’ve matched as of column 5
— Perfectly fine to have entries like



The Parse Table

 Entries in column 5 look like

« What will it mean that we have this entry?

— Unknown right context: Doesn’t mean we’ll necessarily be able
to find a VP starting at column 5 to complete the S.

— Known left context: Does mean that some dotted rule back in
column 3 is looking for an S that starts at 3.

« So if we actually do find a VP starting at column 5, allowing us to
complete the S, then we’ll be able to attach the S to something.

« And when that something is complete, it too will have a customer
to its left ...

 In short, a top-down (i.e., goal-directed) parser: it chooses to start
building a constituent not because of the input but because that’s
what the left context needs. In the spoon, won'’t build spoon as a
verb because there’s no way to use a verb there.

» So any hypothesis in column 5 could get used in the correct parse,
if words 1-5 are continued in just the right way by words 6-n.



Earley’s as a Recognizer

e Add ROOT — . S to column O.

* ForeachjfromO to n:

— For each dotted rule in column |,
(including those we add as we go!)
look at what's after the dot:

e |fit’'s a word w, SCAN:

— If w matches the input word between j and j+1, advance the dot
and add the resulting rule to column j+1

* Ifit's a non-terminal X, PREDICT:

— Add all rules for X to the bottom of column j, wth the dot at the
start: e g. X—=.YZ

« If there’s nothing after the dot, ATTACH:

— We've finished some constituent, A, that started in column I<j. So
for each rule in column j that has A after the dot: Advance the dot
and add the result to the bottom of column j.

* Qutput “yes” just if last column has ROOT — S.

« NOTE: Don’t add an entry to a column if it’s already there!



Earley’s Summary

* Process all hypotheses one at a time in order.
( Is shown in blue.)

 This may add new hypotheses to the end of the to-do
list, or try to add old hypotheses again.

* Process a hypothesis according to what follows
the dot:
 If a word, scan input and see if it matches

 If a nonterminal, predict ways to match it

» (we'll predict blindly, but could reduce # of predictions by
looking ahead k symbols in the input and only making
predictions that are compatible with this limited right context)

« If nothing, then we have a complete constituent, so

attach it to all its customers



A (Whimsical) Grammar

S — NPVP NP — Papa

NP — Det N N — caviar

NP — NP PP N — spoon

VP — V NP V —ate

VP — VP PP P — with

PP— P NP Det — the
Det — a

An Input Sentence

Papa ate the caviar with a spoon.



0

0ROOT. S

AN

Remember this stands for (0, ROOT — . S)




0S.NPVP

AN

Remember this stands for (0, S — . NP VP)



0ROOT. S

ONP . DetN

0 NP . NP PP

0 NP . Papa

(actually we'll look for 3 kinds: any of the 3 will do)



0

0 ROOT. S

0S.NPVP

ONP . DetN

ONP.NPPP

0 NP . Papa

0 Det . the

0 Det.a

predict the kind of Det we are looking for (2 kinds)



0ROOT. S

0S.NPVP

ONP.DetN

0 NP . Papa

0 Det . the

0Det.a

but we were already looking for these so
don't add duplicate goals! Note that this happened
when we were processing a left-recursive rule.



Papa

1

0ROOT. S

0 NP Papa .

0S.NPVP

ONP.DetN

ONP.NPPP

0 Det . the

0Det.a




Papa

1

0ROOT. S

0 NP Papa .

0S.NPVP

ONP.DetN

ONP.NPPP

0 NP . Papa

0Det.a




Papa

1

0ROOT. S

0 NP Papa .

0S.NPVP

ONP.DetN

ONP.NPPP

0 NP . Papa

0 Det . the




0ROOT. S

O0SNP.VP
ONP.DetN ONP NP .PP
0 NP . Papa
0 Det . the

0Det.a

(which starts at 0) to its
(incomplete constituents that end at 0
and have NP after the dot)



0ROOT .S 0 NP Papa .
0S.NPVP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VP PP
0 Det. the

0Det.a




0ROOT .S 0 NP Papa .
0S.NPVP OSNP.VP
O NP .DetN

ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VPPP
0 Det . the 1PP.PNP

0Det.a




0 Papa

0ROOT .S 0 NP Papa .
0S.NPVP O0SNP.VP
ONP.DetN |ONPNP.PP
0O NP . NP PP

0 NP . Papa 1VP.VP PP
0 Det . the 1PP.PNP
ODet.a 1V.ate




0 Papa

0ROOT .S 0 NP Papa .
0S.NPVP O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |[1VP.VNP
0 NP . Papa

0 Det . the 1PP.PNP
ODet.a 1V.ate




0 Papa

0ROOT .S 0 NP Papa .
0S.NPVP O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VP PP
0 Det . the

ODet.a 1V.ate

1P . with




0 Papa ate 2
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VP PP
0 Det . the 1PP.PNP
ODet.a

1P . with




0 Papa ate 2
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VP PP
0 Det . the 1PP.PNP
ODet.a 1V.ate




0 Papa

0ROOT .S 0 NP Papa .

0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |ONPNP.PP

0O NP . NP PP

0 NP . Papa 1VP.VP PP

0 Det . the 1PP.PNP

ODet.a 1V.ate

1P . with




0 Papa

0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP

ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1TVP.VPPP | 2NP . Papa
0 Det . the 1PP.PNP

ODet.a 1V.ate

1P . with




0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with

(these next few steps
should look familiar)



0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with




0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1VP.VP PP
0 Det. the 1PP.PNP 2 Det . the
0Det.a 1V.ate 2Det.a

1P . with

(this time we fail since
Papa is not the next word)



0 Papa 1 ate the 3
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the .
0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det . the 1PP.PNP
ODet.a 1V.ate 2Det.a

success!

1P . with




0 Papa 1 ate the 3
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the
0S.NPVP O0SNP.VP 1VPV.NP
ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate

1P . with




0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate.
0S.NPVP 0SNP.VP 1TVPV.NP 2 NP Det . N
ONP .DetN ONP NP . PP
ONP.NPPP |1VP.VNP 2 NP . NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
0Det.a 1V .ate 2Det.a

1P . with




0 Papa 1 ate

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the .
0S.NPVP O0SNP.VP 1VPV.NP

ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar
ONP.NPPP |1VP.VNP 2NP .NPPP |3 N.spoon
0 NP . Papa 1VP.VPPP | 2NP.Papa

0 Det. the 1PP.PNP 2 Det . the

ODet.a 1V.ate 2Det.a

1P . with




0 Papa 1 ate 2 the caviar 4
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2 NP Det . N
ONP.DetN |[ONPNP.PP |2NP.DetN
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with




0 Papa 1 ate 2 the caviar 4
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2 NP Det . N
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar
ONP.NPPP |1VP.VNP 2NP . NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with




0 Papa 1 ate 2 the
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with




0 Papa 1 ate
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1TVPV.NP 2 NP Det . N
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP . NP PP |3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a

1P . with

(again!)



0 Papa

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .

0S.NPVP OSNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar

ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1TVP . VP PP | 2NP.Papa O0SNPVP.

0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a

1P . with

(again!)



0 Papa 1 ate

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .

0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.

ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon

0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.

0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a 4 PP .PNP

1P . with




0 NP Papa . 1V ate . 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP | 2NP.Papa
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a 4 PP.PNP

1P . with 0ROOTS.

(again!)



0 Papa

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.
0 Det. the 1PP.PNP 2 Det . the
ODet.a 1V.ate 2Det.a 4 PP.PNP
1P . with 0ROOTS.




0 Papa 1 ate 2 the 3  caviar

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
0Det.a 1V.ate 2Det.a

1P . with 0ROOTS.

4 P . with




0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a 4 PP.PNP
1w [oroors |

4 P . with




0 Papa 1 ate 2 the 3  caviar with 5
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.

0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a 4 PP.PNP
1P . with 0ROOTS.




0 Papa 1 ate 2 the 3  caviar
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN. |4PPP.NP
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
0Det.a 1V.ate 2Det.a
1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3  caviar

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN.
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP. 5NP . DetN
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NPNP.PP [5NP.NP PP
0 NP . Papa 1VP.VPPP | 2NP.Papa 0SNPVP. 9 NP . Papa
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
ODet.a 1V.ate 2Det.a 4 PP.PNP

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3 caviar 4 with

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN. |4PPP.NP
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NPNP.PP |[5NP.NPPP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 5NP . Papa
0 Det. the 1PP.PNP 2 Det . the 1VPVP.PP |5Det.the
0Det.a 1V.ate 2Det.a 4 PP.PNP 5Det.a

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3 caviar 4 with
0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN. |4PPP.NP
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP. 5NP . DetN
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 5NP . Papa
0 Det. the 1PP.PNP 2 Det . the 1VPVP.PP |5Det.the
0Det.a 1V.ate 2Det.a 4 PP.PNP 5Det.a

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3 caviar 4 with

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP OSNP.VP 1VPV.NP 2NPDet.N |2NPDetN. |4PPP.NP
ONP.DetN ONPNP.PP | 2NP.DetN 3 N . caviar 1VPVNP. 5NP . DetN
ONP.NPPP |1VP.VNP 2NP .NPPP | 3N.spoon 2NPNP.PP |5NP.NPPP
0 NP . Papa 1VP.VPPP | 2NP.Papa 0SNPVP.
0 Det . the 1PP.PNP 2 Det . the 1VPVP.PP | 5Det.the
0Det.a 1V .ate 2Det.a 4 PP .PNP 5Det. a

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3 caviar 4 with

0ROOT .S 0 NP Papa . 1V ate.. 2 Det the . 3 N caviar . 4 P with .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N [2NPDetN. |4PPP.NP
ONP.DetN |ONPNP.PP |2NP.DetN |3N. caviar TVPVNP. 5NP . DetN
ONP.NPPP |1VP.VNP 2NP .NPPP |[3N.spoon 2NPNP.PP |[5NP.NPPP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 5NP . Papa
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP
0Det.a 1V.ate 2Det.a 4 PP.PNP 5Det.a

1P . with 0ROOTS.

4 P . with




2 the 3 caviar 4 with a
1V ate. 2 Det the . 3 N caviar . 4 P with . 5Deta.
1VPV.NP 2NPDet.N |2NPDetN. |4PPP.NP
2NP . DetN 3 N . caviar 1TVPVNP. 5NP . DetN
2NP .NPPP |3N.spoon 2NPNP.PP |5NP.NPPP
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1VPVP.PP | 5Det.the
2Det.a 4 PP .P NP
0ROOTS.

4 P . with




2  the 3 caviar 4  with
1V ate. 2 Det the . 3 N caviar . 4 P with .
1VPV.NP 2NPDet.N |2NPDetN. |[4PPP.NP 5NP Det. N
2NP .DetN |3 N. caviar TVPVNP. 5NP . DetN
2NP.NPPP |3 N.spoon 2NPNP.PP |5NP.NPPP
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1TVPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0 ROOTS.

4 P . with




2  the 3 caviar 4  with
1V ate. 2 Det the . 3 N caviar . 4 P with . 5Deta.
1VPV.NP 2NPDet.N |2NPDetN. |[4PPP.NP
2NP . DetN 3 N . caviar TVPVNP. S5NP . DetN 6 N . caviar
2NP .NPPP |3N.spoon 2NPNP.PP |SNP.NPPP |6N.spoon
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1TVPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0 ROOTS.

4 P . with




2 the 3 caviar 4 with 5 a
1V ate. 2 Det the . 3 N caviar . 4 P with . 5Deta.
1VPV.NP 2NPDet.N |[2NPDetN. |4PPP.NP 5NP Det. N
2NP .DetN |3 N. caviar TVPVNP. 5NP . DetN
2NP .NPPP |3N.spoon 2NPNP.PP |SNP.NPPP |6N.spoon
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1TVPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0 ROOTS.

4 P . with




2 the 3 caviar 4 with 5 a spoon 7
1V ate . 2 Det the . 3 N caviar . 4 P with . 5Deta. 6 N spoon .
1VPV.NP 2NPDet.N |[2NPDetN. |4PPP.NP 5NP Det. N
2NP . DetN 3 N . caviar TVPVNP. S5NP . DetN 6 N . caviar
2NP .NPPP |[3N.spoon 2NPNP.PP |[5NP.NPPP
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1VPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0ROOTS.

4 P . with




2 the 3 caviar 4  with 5 a
1V ate. 2 Det the . 3 N caviar . 4 P with . 5Deta.
1VPV.NP 2NPDet.N |[2NPDetN. |4PPP.NP 5NPDet.N [5NPDetN.
2NP . DetN 3 N . caviar TVPVNP. S5NP . DetN 6 N . caviar
2NP .NPPP |3N.spoon 2NPNP.PP |SNP.NPPP |6N.spoon
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1TVPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0 ROOTS.

4 P . with




2  the 3 caviar 4  with
1V ate . 2 Det the . 3 N caviar . 4 P with . 5Deta. 6 N spoon .
1VPV.NP 2NPDet.N [2NPDetN. [4PPP_NP 5NP Det. N
2NP . DetN 3 N . caviar TVPVNP. S5NP . DetN 6 N . caviar 4PPPNP.
2NP .NPPP |3N.spoon 2NPNP.PP | 5NP.NPPP |6N.spoon 9 NP NP . PP
2 NP . Papa 0SNPVP. 5 NP . Papa
2 Det . the 1TVPVP.PP |5Det.the
2Det.a 4 PP.PNP 5Det.a

0 ROOTS.

4 P . with




0 Papa 1 ate 2 the 3  caviar

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2 NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP ..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
ODet.a 1V.ate 2Det.a 4 PP.PNP

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate 2 the 3 caviar 4 with

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .

0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.

ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP

0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
ODet.a 1V.ate 2Det.a 4 PP.PNP 7PP.PNP

1P . with 0ROOTS.

4 P . with




0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1TVPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP . NP PP | 3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP.
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with 0ROOTS. 1TVPVNP.
4 P . with 2NP NP . PP




0 Papa

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP OSNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP

0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with 2NP NP . PP

OSNPVP.

1VPVP.PP




0 Papa 1 ate 2 the 3 caviar 4 withaspoon

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP OSNP.VP 1VPV.NP 2 NP Det . N 2 NP Det N . 5NP Det N .
ONP.DetN ONPNP.PP |[2NP.DetN 3 N . caviar 1VPVNP. 4PPPNP.
ONP.NPPP |[1VP.VNP 2NP .NPPP | 3N.spoon 2 NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP | 2NP.Papa 0SNPVP. 2 NP NP PP,
0 Det. the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP .

0Det.a 1V .ate 2Det.a 4 PP .PNP
1P . with 0ROQTS. 1TVPVNP.
4 P . with 2NP NP . PP
0SNPVP.
1VP VP . PP

7 P . with




0 Papa

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP 1VPV.NP 2NPDet.N | 2NPDetN. 5NP DetN .
O NP .DetN ONPNP.PP | 2NP.DetN 3 N . caviar 1TVPVNP. 4PPPNP.
ONP.NPPP [1VP.VNP 2NP .NPPP | 3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 2 NP . Papa O0SNPVP. 2NP NP PP .
0 Det . the 1PP.PNP 2 Det . the 1VPVP.PP 1VP VP PP.
0Det.a 1V.ate 2Det.a 4 PP .PNP 7PP.PNP
1P . with 0ROOTS.

4 P . with 2NP NP . PP

O0SNPVP.

1VP VP . PP

7 P . with




0 Papa 1 ate
0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7 PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with
OSNPVP.
1VPVP.PP

7 P . with




0ROOT . S 0 NP Papa . 1V ate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with 2NP NP . PP
1VPVP.PP
7 P . with

0ROOTS.




0 Papa

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7 PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with 2NP NP . PP

OSNPVP.

7 P . with

0ROOTS.




0 Papa 1 ate 2 the 3 caviar 4 withaspoon

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with 2NP NP . PP

OSNPVP.
1VPVP.PP

0ROOTS.




0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with 0ROOTS. TVPVNP.
4 P . with 2NP NP . PP
OSNPVP.
1VPVP.PP
7 P . with

':




0 Papa 1 ate 2 the 3 caviar 4 withaspoon 7
0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP O0SNP.VP 1VPV.NP 2NPDet.N |2NPDetN. 5NP Det N .
ONP.DetN |ONPNP.PP |2NP.DetN |3N.caviar TVPVNP. 4PPPNP.
ONP.NPPP |1VP.VNP 2NP.NPPP |3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 1VP.VPPP |2NP.Papa OSNPVP. 2NP NP PP..
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP.
0Det.a 1V.ate 2Det . a 4PP.PNP 7PP.PNP
1P . with TVPVNP.
4 P . with 2NP NP . PP
OSNPVP.
1VPVP.PP
7 P . with

‘OROOTS.




Left Recursion Kills Pure
Top-Down Parsing ...

VP

Andrew McCallum, UMass Amherst



Left Recursion Kills Pure
Top-Down Parsing ...

VP

VP PP

Andrew McCallum, UMass Amherst



Left Recursion Kills Pure
Top-Down Parsing ...

VP
VP PP

VP PP

Andrew McCallum, UMass Amherst



Left Recursion Kills Pure
Top-Down Parsing ...

VP

AN makes new hypotheses
X PP ad infinitum before we've
VP PP seen the PPs at all
/\
VP PP

hypotheses try to predict
in advance how many
PP’s will arrive in input



... but Earley’s Alg is Okay!

VP
1VP— .VPPP

VP PP

(in column 1)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1VP— .VPPP

VP PP

(in column 1)

VP

/N

V NP
ate the caviar

1VP—-VNP.

(in column 4)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1VP— .VPPP

VP PP

(in column 1)

attach

/"\P 1 VP — VP . PP
VP PP

/N

V NP
ate the caviar

(in column 4)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1VP— .VPPP

VP PP

(in column 1)

VP s v vpPP.

/N

VP PP
/\with a spoon

V NP
ate the caviar

(in column 7)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1 VP — . VP PP

ve PP Can be reused

(in column 1)

VP i vpvPPP.

/N

VP PP
/\with a spoon

V NP
ate the caviar

(in column 7)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1VP— .VPPP

ve PP Can be reused

(in column 1)

attaCh\A VP VP vp. PP

/N
VP PP

/N

VP PP
/\with a spoon

V NP
ate the caviar

(in column 7)

Andrew McCallum, UMass Amherst



. but Earley’s Alg is Okay!

VP
1 VP — . VP PP

ve PP Can be reused

(in column 1)

VP
A LVP = VPPP.
VP PP

/\ln his bed

VP PP
/\with a spoon

V NP
ate the caviar

(in column 10)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1 VP — . VP PP

ve PP can be reused again

(in column 1)

VP
A LVP = VPPP.
VP PP

/\in his bed
vP PP
/\with a spoon

V NP
ate the caviar

(in column 10)

Andrew McCallum, UMass Amherst



... but Earley’s Alg is Okay!

VP
1 VP — . VP PP

ve PP can be reused again

(in column])\> VP

attach / 1VP —=VP. PP
VP PP

/N

vP PP
/\in his bed
vP PP
/\with a spoon

V NP
ate the caviar

(in column 10)

Andrew McCallum, UMass Amherst



~ col 1 lets us use it in a VP PP structure

0 Papa 1 ate 2 the 3 caviar 4 withaspoon 7
0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP 1VPV.NP 2NP Det. N 2 NP Det N . 5NP DetN .
O NP .DetN ONPNP.PP | 2NP.DetN 3 N . caviar 4PPPNP.
ONP.NPPP [1VP.VNP 2NP .NPPP | 3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 2 NP . Papa O0SNPVP. 2 NP NP PP .
0 Det . the 1PP.PNP 2 Det . the 1VP VP .PP 1VP VP PP .
0Det.a 1V.ate 2Det.a 4 PP .PNP 7PP.PNP
1P . with 0ROQTS. 1TVPVNP.
4 P . with 2NP NP . PP
OSNPVP.
L ] 1VP VP .PP
completed a VP in col 4 5 with

0ROOTS.




__can reuse col 1 as often as we need

0 Papa 1 ate 2 the 3 caviar 4 withaspoon 7

0ROOT. S 0 NP Papa . 1Vate. 2 Det the . 3 N caviar . ..| 6 N spoon .
0S.NPVP 1VPV.NP 2 NP Det. N 2 NP Det N . 5NP DetN .
ONP.DetN ONPNP.PP |[2NP.DetN 3 N. caviar 1VPVNP. 4PPPNP.
ONP.NPPP [1VP.VNP 2NP .NPPP | 3N.spoon 2NP NP . PP 5NP NP . PP
0 NP . Papa 2 NP . Papa 0SNPVP. 2 NP NP PP .
0 Det . the 1PP.PNP 2 Det . the 1VPVP.PP .
0Det.a 1V.ate 2Det.a 4PP.PNP 7PP.PNP
1 P . with 0ROOTS. 1VPVNP.
4 P . with 2NP NP . PP

0SNPVP.

1VP VP .PP

— completed that VP = VP PP in col 7 ——,

~ col 1 would let us use itin a VP PP structure| [oroots.




Beyond Recognition

So far, we've described an Earley recognizer

Note what we did when we tried to create
entries that already existed

What should we do when combining items!?

How to derive outside algorithm!?



Parsing Tricks



Left-Corner Parsing

* Technique for 1 word of lookahead in algorithms
like Earley’s

* (can also do multi-word lookahead but it’s
harder)



Basic Earley’s Algorithm

0ROOT.S attach

O0SNP.VP

ONP.DetN |0NPNP.PP

0 NP . Papa

0 Det . the

0 Det. a




0ROOT.S |0NP Papa.
0S.NPVP
ONP.DetN |ONPNP.PP
ONP.NPPP [1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the

0 Det. a

predict



0ROOT.S |0NP Papa.
0S.NPVP |0OSNP.VP
ONP.DetN

ONP.NPPP [1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP

0 Det. a

predict



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP
ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP
ODet.a 1V .ate
1V . drank
1V . snorted

predict



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP
ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP
ODet.a 1V .ate
1V . drank
1V . snorted

predict



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP
ONP.Papa |1VP.VPPP
0 Det . the 1PP.PNP
ODet.a 1V .ate
1V . drank
1V . snorted

predict

V



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa
0 Det . the 1PP.PNP
ODet.a 1V.ate
1V . drank
1V . snorted

predict



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |0OSNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
0 NP . Papa
0 Det . the 1PP.PNP
ODet.a 1V.ate
1V . drank
1V . snorted

predict



0 Papa 1

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
ONP.Papa |1VFP . VPPP
0 Det . the 1PP.PNP
ODet.a 1V .ate

1V . drank

1V . snorted

predict

Every .VP adds all VP - ... rules again.
Before adding a rule, check it's not a
duplicate.

Slow if there are > 700 VP = ... rules,
so what will you do in Homework 37?



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the
ODet.a 1V.ate
1V . drank
1V . snorted
1P . with

predict



0 Papa

0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPNP.PP
ONP.NPPP |1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the
ODet.a 1V.ate
1V . drank
1V . snorted
1P . with

predict
P



1-word lookahead would help

0 Papa 1 ate

0ROOT.S |0NP Papa.

0S.NPVP |0SNP.VP

ONP.DetN |ONPNP.PP

ONP.NPPP |1VP.VNP

ONP.Papa |1VP.VPPP

0 Det . the TPP.PNP

0Det.a 1V . ate

1V .drank

1V . snorted

1P . with




1-word lookahead would help

0 Papa 1 ate

0ROOT.S |0NP Papa.

0S.NPVP |0SNP.VP

ONP.DetN |ONPNP.PP

ONP.NPPP |1VP.VNP

ONP.Papa |1VP.VPPP

0 Det . the TPP.PNP

0Det.a 1V . ate

1\ __drank

snerded—|  No point in adding words other than ate

4B __with




1-word lookahead would help

0 Papa 1 ate
O0ROOT.S |O0NPPapa.
0S.NPVP |0OSNP.VP
ONP.DetN |ONPNPPP-
ONP.NPPP |[1VP.VNP
ONP.Papa |1VP.VPPP
0 Det . the 4PR PNP
ODet.a 1V .ate

1\ drank
41\ snorted —
4P —with

In fact, no point in adding any constituent
that can’t start with ate
Don't bother adding PP, P, etc.

No point in adding words other than ate



With Lett-Corner Filter

ate

0ROOT.S attach

O0SNP.VP

ONP.DetN |GiFPINFE—FF-

0 NP . Papa

0 Det . the

0 Det. a




With Lett-Corner Filter

ate
0 ROOT. S attach
OSNP.VP
ONP.DetN |GNENE—FFP- ate
0 NP . Papa
0 Det . the

0 Det. a




With Lett-Corner Filter

ate

0ROOT. S attach
O0SNP.VP
ONP .DetN |ONPNFEF—FF— ate
0 NP . Papa
0 Det . the 1 PP.PNP

0 Det 2 1 PP . ate




With Lett-Corner Filter

ate

0ROOT. S attach
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With Lett-Corner Filter

ate

0ROOT. S attach
O0SNP.VP
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ate

0ROOT.S |0NP Papa.
0S.NPVP

ONP.DetN [ONPNPPP-
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0 Det . the

0 Det. a
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ate

0 Papa
0ROOT.S |0NP Papa.
0S.NPVP |O0SNP.VP
ONP.DetN |ONPINPPP-
ONP.NPPP |[1VP.VNP
0 NP . Papa
0 Det . the 1V.ate
ODet.a e

1\ _snorted

predict



Merging Right-Hand Sides

* Grammar might have rules
X—AGHP
X—BGHP

* Could end up with both of these in chart:
(2, X—=A.GHP)incolumn5
(2, X—=B.GHP)incolumn5

* But these are now interchangeable: if one
produces X then so will the other

* To avoid this redundancy, can always use dotted
rules of this form: X —...GHP



Merging Right-Hand Sides

* Similarly, grammar might have rules
X—AGHP
X—=AGHQ

* Could end up with both of these in chart:
(2, X—=A.GHP)incolumn5
(2, X—=A.GHQ)incolumn5

* Not interchangeable, but we’ll be processing them
in parallel for a while ...

* Solution: write grammar as X — A GH (P|Q)



Merging Right-Hand Sides

* Combining the two previous cases:
X—AGHP
X—=AGHQ
X—BGHP
X—BGHQ

becomes
X—(A|B)GH(P]| Q)

e And often nice to write stuff like
NP — (Det | €) Adj* N
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* These are regular expressions!
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Merging Right-Hand Sides

X—(A|B)GH(P|Q)
NP — (Det | £) Adj* N

* These are regular expressions!

 Build their minimal DFAs:

A P
X -6 eoe—o0—0 O
B G :H
Q .
Det Adj

NP —o _© -0
Adj



Merging Right-Hand Sides

Indeed, all NP — rules can be unioned into a single DFA!

NP — ADIJP ADJP JJ JJ NN NNS
NP — ADJP DT NN

NP — ADJP JJ NN

NP — ADJP JJ NN NNS
NP — ADJP JJ NNS

NP — ADJP NN

NP — ADJP NN NN

NP — ADIJP NN NNS

NP — ADJP NNS

NP — ADJP NPR

NP — ADIJP NPRS

NP — DT

NP — DT ADJP

NP — DT ADJP, JJ NN
NP — DT ADJP ADJP NN
NP — DT ADJP JJ JJ NN
NP — DT ADJP JJ NN

NP — DT ADJP JJ NN NN
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Indeed, all NP — rules can be unioned into a single DFA!
NP — ADJP ADJP JJ JJ NN NNS

ADJP DT NN ADJ.p<>
ADJP JJ NN
NP —=°_ DT
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ADJP NN O
ADJP NN NN
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NP — ADJP ADJP JJ JJ NN NNS

ADJP DT NN
ADJP JJ NN

ADJP JJ NN NNS
ADJP JJ NNS
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Merging Right-Hand Sides

NP — ADJP ADJP JJ JJ NN NNS

ADJP DT NN
ADJP JJ NN

ADJP JJ NN NNS
ADJP JJ NNS
ADJP NN

ADJP NN NN
ADJP NN NNS
ADJP NNS

ADJP NPR

ADJP NPRS

DT

DT ADJP

DT ADJP, JJ NN
DT ADJP ADJP NN
DT ADJP JJ JJ NN
DT ADJP JJ NN
DT ADJP JJ NN NN

etc.
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Earley’s Algorithm on DFAs

 What does Earley’s algorit
PP EEN
VP — .®8
np @
PP & EEE
Column 4
O predict
(4,0)
(4,0)

nm now look like?

NP —

@

Det

Adj

e

Adj

O

PP




Earley’s Algorithm on DFAs

 What does Earley’s algorithm now look like?
PP ]
Ad PP
VP — .8 Det (/7
Adj N

PP & EEN N

Column4 [Column5 |... Column 7

(2,@) 11O predict

or attach?
(4,0) |
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Earley’s Algorithm on DFAs

 What does Earley’s algorithm now look like?
PP ]
Ad PP
VP — .8 Det (/7
Adj N
PP & EEN N
Column4 [Column5 |... Column 7
(2,@) 11O predict
or attach?
(4,0) |
Both!
(410) """ (41 O)
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Pruning for Speed

* Heuristically throw away constituents that probably won’t
make it into best complete parse.

* Use probabilities to decide which ones.
—So probs are useful for speed as well as accuracy!

* Both safe and unsafe methods exist

—Throw x away if p(x) < 10-2%
(and lower this threshold if we don’t get a parse)

—Throw x away if p(x) < 100 * p(y)
for some y that spans the same set of words

—Throw x away if p(x)*q(x) is small, where qg(x) is an estimate of
probability of all rules needed to combine x with the other
words in the sentence
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Agenda (“Best-First”) Parsing

Explore best options first
— Should get some good parses early on — grab one & go!

Prioritize constits (and dotted constits)

— Whenever we build something, give it a priority
 How likely do we think it is to make it into the highest-prob parse?

— usually related to log prob. of that constit
— might also hack in the constit’s context, length, etc.
— if priorities are defined carefully, obtain an A* algorithm

Put each constit on a priority queue (heap)

Repeatedly pop and process best constituent.
— CKY style: combine w/ previously popped neighbors.
— Earley style: scan/predict/attach as usual. What else?
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Preprocessing

* First “tag” the input with parts of speech:

—Guess the correct preterminal for each word, using faster
methods we’ll learn later

—Now only allow one part of speech per word
—This eliminates a lot of crazy constituents!
—But if you tagged wrong you could be hosed

* Raise the stakes:

—What if tag says not just “verb” but “transitive verb”? Or
“verb with a direct object and 2 PPs attached”?

(“supertagging”)



Preprocessing

* First “tag” the input with parts of speech:

—Guess the correct preterminal for each word, using faster
methods we’ll learn later

—Now only allow one part of speech per word
—This eliminates a lot of crazy constituents!
—But if you tagged wrong you could be hosed

* Raise the stakes:

—What if tag says not just “verb” but “transitive verb”? Or
“verb with a direct object and 2 PPs attached”?

(“supertagging”)

e Safer to allow a few possible tags per word, not just one



if X

then
ify
then
if a
then b
endif
else b
endif

else b

endif
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then b
endif
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Center-Embedding

if x

then STATEMENT — if EXPR then

ity STATEMENT endif
then

if a STATEMENT — if EXPR then STATEMENT
then b else STATEMENT endif

endif

else b

endif

else b
endif
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Center-Embedding

 This is the rat that ate the malt.
 This is the malt that the rat ate.

 This is the cat that bit the rat that ate the malt.
 This is the malt that the rat that the cat bit ate.

* This is the dog that chased the cat that bit the rat that
ate the malt.

* This is the malt that [the rat that [the cat that [the dog
chased] bit] ate].
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[What did you disguise
[those handshakes that you

greeted

[the people we bought
[the bench
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More Center-Embedding

[What did you disguise

[those handshakes that you

greeted

[the people we bought
[the bench

on]
with]

with]
for]?

[Billy was read to]

[Which mantelpiece did you put

[the idol | sacrificed

[the fellow we sold
[the bridge you threw
[the bench
[Billy was read to]
on]
off]

to]
to]

on]?



More Center-Embedding

[What did you disguise [Which mantelpiece did you put
[those handshakes that you [the idol | sacrificed
greeted [the fellow we sold
[the people we bought [the bridge you threw
[the bench [the bench

[Billy was read to]
on]
off]

- Také that,

with]

WEII!IlISlI teachers!

on]?




Center Recursion vs. Tail Recursion

| |

v v
[What did you disguise [For what did you disguise
[those handshakes that you [those handshakes with which
greeted you greeted
[the people we bought [the people with which we bought
[the bench [the bench on which
[Billy was read to] [Billy was read to]?
on]
with] “pied piping” —
with] NP moves leftward,
for]?

preposition follows along
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Disallow Center-Embedding?

* Center-embedding seems to be in the grammar, but people
have trouble processing more than 1 level of it.

* You can limit # levels of center-embedding via features: e.g.,
S[S_DEPTH=n+1] — A S[S_DEPTH=n] B

* If a CFG limits # levels of embedding, then it can be compiled
into a finite-state machine — we don’t need a stack at all!

— Finite-state recognizers run in linear time.

— However, it’s tricky to turn them into parsers for the original CFG from
which the recognizer was compiled.



Overview

® [reebanks and evaluation
® | exicalized parsing (with heads)

® Examples: Collins



Treebanks

* Pure Grammar Induction Approaches tend not to
produce the parse trees that people want

% Solution

@ Give a some example of parse trees that we want
@ Make a learning tool learn a grammar

* Treebank

@ A collection of such example parses
@ PennTreebank is most widely used




Treebanks

® Penn Treebank

@ T[rees are represented via bracketing

e Fairly flat structures for Noun Phrases
(NP Arizona real estate loans)

e Tagged with grammatical and semantic functions
(-SBJ , -LOC, ...)

e Use empty nodes(*) to indicate understood subjects and
extraction gaps




( (S (NP-SBJ The move)
( VP followed
(NP (NP around)
(PP of
(NP ( NP similar increases )

( PP by
( NP other lenders ) )

( PP against
( NP Arizona real estate loans )))))

( S-ADV ( NP-SBJ *)
( VP reflecting
( NP a continuing decline )
( PP-LOC in
(NP that market ))))))




Treebanks

e Many people have argued that it is better to have
linguists constructing treebanks than grammars

® Because it is easier
— to work out the correct parse of sentences

e than

— to try to determine what all possible manifestations of a
certain rule or grammatical construct are




Parser Evaluation




Evaluation

Ultimate goal is to build system for IE, QA, MT

People are rarely interested in syntactic analysis for its own
sake

Evaluate the system for evaluate the parser

For Simplicity and modularization, and Convenience

Compare parses from a parser with the result of hand
parsing of a sentence(gold standard)

What is objective criterion that we are trying to
maximize?




Evaluation

Tree Accuracy (Exact match)

It is a very tough standard!!!
But in many ways it is a sensible one to use

PARSEVAL Measures

For some purposes, partially correct parses can be useful
Originally for non-statistical parsers

Evaluate the component pieces of a parse

Measures : Precision, Recall, Crossing brackets




Evaluation

(Labeled) Precision

How many brackets in the parse match those in the correct
tree (Gold standard)?

(Labeled) Recall

How many of the brackets in the correct tree are in the
parse?

Crossing brackets

Average of how many constituents in one tree cross over

constituent boundaries in the other tree
Bl ( )

B2 ( )
B3 ( )
B4 ( )

wl w2 w3 w4 w5 w6 w7 w8




Problems with PARSEVAL

Even vanilla PCFG performs quite well

It measures success at the level of individual decisions

You must make many consecutive decisions correctly to be
correct on the entire tree.




Problems with PARSEVAL (2)

Behind story
The structure of Penn Treebank
Flat =& Few brackets — Low Crossing brackets

Troublesome brackets are avoided
— High Precision/Recall

The errors in precision and recall are minimal

In some cases wrong PP attachment penalizes Precision,
Recall and Crossing Bracket Accuracy minimally.

On the other hand, attaching low instead of high, then every
node in the right-branching tree will be wrong: serious harm




(a) ROOT

S
NP VP NP .
. i S { f
NNS NNS VBD VP NN

| i [ — I

o Sales ; executives ; were VBG NP PP yesterday g
| T T
3 examining DT NNS IN NP

| { | T
4 the 5 figures ¢ with JI NN
: u
7 great g care g

(b) ROOT

|
S
NP VP
/\\\ A
NNS NNS VBD VP
| | i I
o Sales y executives » were VBG NP
| T
3 examining NP PP
//"‘~\ T T —
DT NNS IN NP
1 l ! ——— T T —
4 the s figures g with NN NN NN

| | x
7 great g care g yesterday 19

{(c) Brackets in gold standard tree (a.):
$-(0:11), NP-(0:2), [VP-( EP (3: 9); NP- (4 6) (6 9) NP-(7, 9) “NP-(9: 10)

(d) Bracketsin candldate p rse(b.): K 5
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:10), NP-(4: 6) PP (6-10), NP/_(LLQ)

(e) Precision: 3/8=37.5%  Crossing Brackets: 3 7
Recall: 3/8=37.5% Crossing Accuracy: 62%

Labeled Precision: 3/8 =37.5% Tagging Accuracy: 10/11 = 90.9%
Labeled Recall: 3/8 =37.5%

- 11

- 11




Evaluation

Do PARSEVAL measures succeed in real tasks?

Many small parsing mistakes might not affect tasks of
semantic interpretation
(Bonnema 1996,1997)

Tree Accuracy of the Parser : 62%
Correct Semantic Interpretations : 88%

(Hermajakob and Mooney 1997)
English to German translation

At the moment, people feel PARSEVAL measures are
adequate for the comparing parsers




Lexicalized Parsing




Limitations of PCFGs

e PCFGs assume:
- Place invariance
= Context free: P(rule) independent of
e words outside span
® also, words with overlapping derivation
- Ancestor free: P(rule) independent of
e Non-terminals above.

® | ack of sensitivity to lexical information
e | ack of sensitivity to structural frequencies




Lack of Lexical Dependency

Means that
P(VP — V NP NP)

is independent of the particular verb
iInvolved!

... but much more likely with ditransitive
verbs (like gave).

He gave the boy a ball.
He ran to the store.




The Need for Lexical Dependency

Probabilities dependent on Lexical words

Problem 1 : Verb subcategorization

VP expansion is independent of the choice of verb

However ...
verb
come take think want
VP >V 9.5% 2.6% 4.6% 5.7%
VP ->V NP 1.1% | 32.1% 0.2% | 13.9%
VP ->V PP 34.5% 3.1% 7.1% 0.3%
VP ->V SBAR 6.6% 0.3% | 73.0% 0.2%
VP->VS 2.2% 1.3% 4.8% | 70.8%

Including actual words information when making decisions

about tree structure is necessary




Weakening the independence
assumption of PCFG

Probabilities dependent on Lexical words

Problem 2 : Phrasal Attachment
Lexical content of phrases provide information for decision

Syntactic category of the phrases provide very little
information

Standard PCFG is worse than n-gram models

S
_____,_———"———_._____
NP VPt — - ———-—— T T 7~ .
| — - T T
-7 N
Moscow sent NP < — — — )

movre than 100,000 soldiers '.

into Afghanistan




Another case of PP attachment
ambiguity

(a) S

T

NP VP

| /\
NNS
|

VP PP
workers /\ /\
VBD NP IN NP

| | | N
dumped NNS into DT NN

sacks a bin




Another case of PP attachment
ambiguity

(b) S

N

NP VP

| /\
NNS

| VBD NP

workers d | /\

umped NP PP

|
NNS 1IN NP

| | P
sacks into DT NN

a bin




Another case of PP attachment
ambiguity

Rules Rules
S — NP VP S — NP VP
NP — NNS NP — NNS
VP — VP PP NP — NP PP
VP — VBD NP VP — VBD NP
NP — NNS NP — NNS

(a) PP — IN NP (b) PP — IN NP
NP — DT NN NP — DT NN
NNS — workers NNS — workers
VBD — dumped VBD — dumped
NNS — sacks NNS — sacks
IN — into IN — into
DT — a DT — a
NN — bin NN — bin

If PINP— NPPP | NP) > P(VP— VPPP | VP) then (b) is
more probable, else (a) is more probable.

Attachment decision is completely independent of the words




A case of coordination ambiguity

(a) NP

NP CcC
/\ |
NP PP and
| P
NNS IN NP
| | |
do gs in NNS
|

houses

Rules

NP — NP CC NP
NP — NP PP
NP — NNS

PP — IN NP
NP — NNS
NP — NNS
NNS — dogs
IN — in

NNS — houses
CC — and
NNS — cats

NP
NNS

cats

(b)

(b) NP
NP PP
| A
NNS
| IN NP
oz | T~
£ in
NP CC NP
| | |
NNS and NNS
| |
houses cats
Rules
NP — NP CC NP
NP — NP PP
NP — NNS
PP — IN NP
NP — NNS
NP — NNS
NNS — dogs
IN — in
NNS — houses
CC — and
NNS — cats

Here the two parses have identical rules, and therefore have
identical probability under any assignment of PCFG rule

probabilities




Weakening the independence
assumption of PCFG

Probabilities dependent on Lexical words

Solution
Lexicalize CFG : Each phrasal node with its head word
S S walked
________——'—_'-_—_-—‘———_______ __————_____—____—___—__———__
NP VP NPs,.. VP alked
[ ——— | —
NNP VBD PP NNPg,e VBDuwalked PPinto
| [ T — | | ——
Sue walked P )E\ Sue walked Pinio NPtore
. I | —-—"’ﬁ"""———
e l:)|T NlN into DTH?E NN.&'tore
the store y hl ¢ o (I) e

Background idea

Strong lexical dependencies between heads and their
dependents




Heads in Context-Free Rules

Add annotations specifying the ‘“head” of each rule:

S NP VP Vi = sleeps

. Vt = saw
b= v NN = man
Vb= Vit NP NN = woman
vb = VP PP NN = telescope
NP = DT NN A P
NP = NP PP N = m
PP — IN NP W

IN = m

Note: S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional
phrase, DT=determiner, Vi=intransitive verb, Vt=transitive verb, NN=noun,
IN=preposition




More about heads

e Each context-free rule has one “special” child that is the head
of the rule. e.g.,

S = NP VP (VP is the head)
VP = Vt NP (Vt 1s the head)
NP = DT NN NN (NN is the head)

e A core idea in linguistics
(X-bar Theory, Head-Driven Phrase Structure Grammar)

e Some intuitions:

— The central sub-constituent of each rule.

— The semantic predicate in each rule.




Rules which recover heads:
Example rules for NPs

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,
NP = DT NNP NN
NP = DT NN NNP
NP = NP PP
NP = DT JJ
NP = DT




Adding Headwords to Trees

S(questioned)
NP(lawyer) VP(questioned)
TN /\
DT NN .
| | Vit NP(witness)

the lawyer |
e questioned DT ~ NN

the witness

e A constituent receives its headword from its head child.

S = NP VP (S receives headword from VP)
VP = Vt NP (VP receives headword from Vt)
NP = DT NN (NP receives headword from NN)




Adding Headtags to Trees

S(questioned, Vt)

T T

NP(lawyer, NN) VP(questioned, Vt)
N /\
DT NN
| | Vit NP(witness, NN)
the lawyer | N

questioned DT NN
| |

the witness

e Also propogate part-of-speech tags up the trees




Explosion of number of rules

New rules might look like:
VP[gave] — V[gave] NP[man] NP[book]

But this would be a massive explosion in number of
rules (and parameters)




Sparseness and the Penn Treebank

m The Penn Treebank - 1 million words of parsed English
WSJ - has been a key resource (because of the widespread
reliance on supervised learning)

m But 1 million words is like nothing:

0 965,000 constituents, but only 66 WHAD]JP, of which
only 6 aren’t how much or how many, but there is an
infinite space of these (how clever/original/incompetent
(at risk assessment and evaluation))

m Most of the probabilities that you would like to compute,

you can’t compute




Sparseness and the Penn Treebank

m Most intelligent processing depends on bilexical statis-
tics: likelihoods of relationships between pairs of words.
m Extremely sparse, even on topics central to the WSJ:
o stocks plummeted 2 occurrences
0  stocks stabilized 1 occurrence
o  stocks skyrocketed O occurrences
0 *stocks discussed 0 occurrences
m So far there has been very modest success augmenting
the Penn Treebank with extra unannotated materials or
using semantic classes or clusters (cf. Charniak 1997,
Charniak 2000) - as soon as there are more than tiny
amounts of annotated training data.




Lexicalized, Markov out from head




Collins 1997:
Markov model out from head

Charniak (1997) expands each phrase structure tree in
a single step.

This is good for capturing dependencies between child
nodes

But it is bad because of data sparseness

A pure dependency, one child at a time, model is worse
But one can do better by in between models, such as
generating the children as a Markov process on both
sides of the head (Collins 1997; Charniak 2000)




Modeling Rule Productions as Markov Processes

e Step 1: generate category of head child

S(told,V[6])

4

S(told,V[6])

|
VP(told,V[6])

P,(VP | S, told, V[6])




Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])

T

72 VP(told,V[6])

4

S(told,V[6])

N

NP(Hillary, NNP) VP(told,V[6])

P,(VP | S, told, V[6]) x P;(NP(Hillary,NNP) | S,VP,told,V[6],LEFT)




Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])

7 NP(Hillary,NNP)  VP(told,V[6])

Y
S(told,V[6])

NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6])

P, (VP | S, told, V[6]) x Py(NP(Hillary,NNP) | S,VPtold,V[6],LEFT)x
P,;(NP(yesterday,NN) | S,VPtold,V[6],LEFT)




Modeling Rule Productions as Markov Processes

e Step 2: generate left modifiers in a Markov chain

S(told,V[6])
77 NP(yesterday,NN)  NP(Hillary,NNP) VP(told,V|[6])
Y
S(told,V[6])
STOP NP(yesterday,NN)  NP(Hillary,NNP) VP(told,V[6])

P (VP | S, told, V[6]) x Py(NP(Hillary,NNP) | S,VP,told,V[6],LEFT) x
P, (NP(yesterday,NN) | S,VP,told,V[6],LEFT) x P;(STOP | S,VP,told,V[6],LEFT)




Modeling Rule Productions as Markov Processes

e Step 3: generate right modifiers in a Markov chain

S(told,V[6])
STOP NP(yesterday,NN)  NP(Hillary,NNP) VP(told,V[6]) 77
Y
S(told,V[6])
STOP NP(yesterday,NN) NP(Hillary,NNP) VP(told,V[6]) STOP

P, (VP | S, told, V[6]) x P;(NP(Hillary,NNP) | S,VP,told,V[6],LEFT) x
P, (NP(yesterday,NN) | S,VP,told,V[6].LEFT) x P;(STOP | S,VPitold,V[6],LEFT) x
P,4(STOP | S,VPtold,V[6],RIGHT)




A Refinement: Adding a Distance Variable

e A = 1 if position is adjacent to the head.

S(told,V[6])

S

7 VP(told,V[6])

4

S(told,V[6])

TN

NP(Hillary,NNP)  VP(told,V[6])

P,(VP | S, told, V[6])x
P,(NP(Hillary,NNP) | S,VP;told,V[6],LEFT,A = 1)




Adding dependency on structure




Weakening the independence
assumption of PCFG

Probabilities dependent on structural context

PCFGs are also deficient on purely structural grounds too
Really context independent?

Expansion % as Subj | % as Obj

NP — PRP 13.7% 2.1%
NP — NNP 3.5% 0.9%
NP — DT NN 5.6% 4.6%
NP — NN 1.4% 2.8%
NP — NP SBAR 0.5% 2.6%
NP — NP PP 5.6% 14.1%




Weakening the independence
assumption of PCFG

VP"S VP"S
AN PN
TO VP VP TO VP VP VP
to VB PP VP to VB'VP SBAR"VP
N | PR
see IN NP~ PP see IN"SBAR S"SBAR
PN | PN
if NN NNS if NP~ S VP"S
| |
advertising works NN"NP VBZ VP

advertising works

(@) (b)




