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Predicting Language

• Optical character recognition	


• Automatic speech recognition	


• Machine translation	


• Spelling/grammar correction	


• Restoring redacted texts



Scoring Language

• Language identification	


• Text categorization	


• Grading essays (!)	


• Information retrieval



Larger Contexts

text1.concordance("match")	
Displaying 9 of 9 matches:	
t in the seventh heavens . Elsewhere match that bloom of theirs , ye cannot , s	
ey all stand before me ; and I their match . Oh , hard ! that to fire others , 	
h , hard ! that to fire others , the match itself must needs be wasting ! What 	
 so sweet on earth -- heaven may not match it !-- as those swift glances of war	
 end ; but hardly had he ignited his match across the rough sandpaper of his ha	
utting the lashing of the waterproof match keg , after many failures Starbuck c	
asks heaped up in him and the slow - match silently burning along towards them 	
 followed by Stubb ' s producing his match and igniting his pipe , for now a re	
 aspect , Pip and Dough - Boy made a match , like a black pony and a white one 

text2.concordance("match")	
Displaying 15 of 15 matches:	
isregarded her disapprobation of the match . Mr . John Dashwood told his mother	
ced of it . It would be an excellent match , for HE was rich , and SHE was hand	
you have any reason to expect such a match ." " Don ' t pretend to deny it , be	
ry much . But mama did not think the match good enough for me , otherwise Sir J	
on ' t we all know that it must be a match , that they were over head and ears 	
ght . It will be all to one a better match for your sister . Two thousand a yea	
the other an account of the intended match , in a voice so little attempting co	
end of a week that it would not be a match at all . The good understanding betw	
d with you and your family . It is a match that must give universal satisfactio	
le on him a thousand a year , if the match takes place . The lady is the Hon . 	
 before , that she thought to make a match between Edward and some Lord ' s dau	
e , with all my heart , it will be a match in spite of her . Lord ! what a taki	
 certain penury that must attend the match . His own two thousand pounds she pr	
man nature . When Edward ' s unhappy match takes place , depend upon it his mot	
m myself , and dissuade him from the match ; but it was too late THEN , I found	



Language Models

• Probability distribution over strings of text	


• There may be hidden variables	


• E.g., grammatical structure, topics	


• Hidden variables may perform classification



Probability



Axioms of Probability

�
i Fi = �• Define event space	


• Probability function, s.t.	


• Disjoint events sum	


• All events sum to one	


• Show that:

P : F � [0, 1]

A ⌅B = ⇥ � P (A ⇤B) = P (A) + P (B)

P (�) = 1

P (Ā) = 1� P (A)



Conditional Probability

P (A | B) =
P (A,B)
P (B)

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A1, A2, . . . , An) = P (A1)P (A2 | A1)P (A3 | A1, A2)
· · · P (An | A1, . . . , An�1)Chain rule

A

BA
�B



Independence

P (A,B) = P (A)P (B)
�

P (A | B) = P (A) ⇥ P (B | A) = P (B)

In coding terms, knowing B doesn’t 
help in decoding A, and vice versa.



Markov Models

p(w1, w2, . . . , wn) = p(w1)p(w2 | w1)p(w3 | w1, w2)
p(w4 | w1, w2, w3) · · · p(wn | p1, . . . , pn�1)
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Yet Another View

The

results

have

shown

Bigram model as finite state machine

What about a trigram model?



Classifiers: 
Language under 

Different Conditions
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t and have a difficult time trying to explain why i did . " lucky	
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novel and yet it somehow still works for me . i know i ' m in the	

minority here but let me explain . the film takes place in harrisburg	

, pa in 1988 during an unseasonably warm winter . ...
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Setting up a Classifier

• What we want: 

p(☺ | w1, w2, ..., wn) > p(☹ | w1, w2, ..., wn) ?

• What we know how to build:

• A language model for each class
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Bayes’ Theorem

P (A,B) = P (B)P (A | B) = P (A)P (B | A)

P (A | B) =
P (B | A)P (A)

P (B)

By the definition of conditional probability:

we can show:

Seemingly trivial result from 1763; 
interesting consequences...



A “Bayesian” Classifier

Prior
Likelihood

max
R�{⇤̈,⌅̈}

p(R | w1, w2, . . . , wn) = max
R�{⇤̈,⌅̈}

p(R)p(w1, w2, . . . , wn | R)

Posterior

p(R | w1, w2, . . . , wn) =
p(R)p(w1, w2, . . . , wn | R)

p(w1, w2, . . . , wn)



Naive Bayes Classifier

w1 w2 w3 w4

R

No dependencies among words!



NB on Movie Reviews

>>> classifier.show_most_informative_features(5)	
!
classifier.show_most_informative_features(5)	
Most Informative Features	
   contains(outstanding) = True              pos : neg    =     14.1 : 1.0	
         contains(mulan) = True              pos : neg    =      8.3 : 1.0	
        contains(seagal) = True              neg : pos    =      7.8 : 1.0	
   contains(wonderfully) = True              pos : neg    =      6.6 : 1.0	
         contains(damon) = True              pos : neg    =      6.1 : 1.0

• Train models for positive, negative	


• For each review, find higher posterior	


• Which word probability ratios are highest?



What’s Wrong With 
NB?

• What happens for word dependencies are 
strong?	


• What happens when some words occur 
only once?	


• What happens when the classifier sees a 
new word?



LMs in IR

• Three possibilities:	


• probability of generating the query text 
from a document language model	


• probability of generating the document 
text from a query language model	


• comparing the language models 
representing the query and document 
topics



Query Likelihood in IR

• Rank documents by the probability that the 
query could be generated by language 
model estimated from that document	


• Given user query, start with p(D | Q)	


• Using Bayes’ Rule 
!

• Assuming prior is uniform, use unigram LM

p(D | Q)
rank
= p(Q | D)P (D)

p(Q | D) =
nY

i=1

p(qi | D)



Codes and Entropy



Codes Again

• How much information is conveyed in 
language?	


• How uncertain is a classifier?	


• How short of a message do we need to 
send to communicate given information?	


• Basic idea of compression: common data 
elements use short codes while uncommon 
data elements use longer codes



Compression and Entropy

• Entropy measures “randomness”	


• Inverse of compressability 
!

• Lg (base 2): measured in bits	


• Upper bound: lg n	


• Example curve for binomial

H(X) = �
nX

i=1

p(X = xi) lg p(X = xi)



Compression and Entropy

• Entropy bounds compression rate	


• Theorem: H(X)≤ E[ |encoded(X)| ]	


• Recall: H(X) ≤ lg n	


• n is the size of the domain of X	


• Standard binary encoding of integers optimizes for the worst case	


• With knowledge of p(X), we can do better:	


• H(X) ≤ E[ |encoded(X)| ] < H(X) + 1	


• Bound achieved by Huffman codes
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Predicting Language

Claude Shannon. Prediction and Entropy of Printed English. 1950 



Predicting Language

T H E R E I S N O R E V E R S E O N A M O T O R C Y C L E

- - - R - - I - - N - - R - V - - - E - O N - A M - - - - C - - - -

1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1



The Shannon Game





Estimation



Simple Estimation

• Probability courses usually start with 
equiprobable events	


• Coin flips, dice, cards	


• How likely to get a 6 rolling 1 die?	


• How likely the sum of two dice is 6?	


• How likely to see 3 heads in 10 flips?



Binomial Distribution
For n trials, k successes, and success probability p:

P (k) =
�

n

k

⇥
pk(1� p)n�k

�
n

k

⇥
=

n!
k!(n� k)!

Prob. mass function

Estimation problem: If we observe n and k, what is p?



Maximum Likelihood
Say we win 40 games out of 100.

P (40) =
�

100
40

⇥
p40(1� p)60

The maximum likelihood estimator for p solves:

max
p

P (observed data) = max
p

�
100
40

⇥
p40(1� p)60



Maximum Likelihood

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
2

0
.0
4

0
.0
6

0
.0
8

Likelihood of 40/100 wins

p

P
(4
0
)
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max
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40

⇥
p40(1� p)60How to solve

0 =
�

�p
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100
40

⇥
p40(1� p)60

= 40p39(1� p)60 � 60p40(1� p)59

= p39(1� p)59[40(1� p)� 60p]
= p39(1� p)5940� 100p

Solutions: 0, 1, .4In general, k/n

This is trivial here, but a widely useful approach.

The 
maximizer!



ML for Language Models

• Say the corpus has “in the” 100 times	


• If we see “in the beginning” 5 times, 
pML(beginning | in the) = ?	


• If we see “in the end” 8 times, 
pML(end | in the) = ?	


• If we see “in the kitchen” 0 times, 
pML(kitchen | in the) = ?



ML for Naive Bayes
• Recall: p(+ | Damon movie) 

           = p(Damon | +) p(movie | +) p(+)	


• If corpus of positive reviews has 1000 
words, and “Damon” occurs 50 times, 
pML(Damon | +) = ?	


• If pos. corpus has “Affleck” 0 times, 
p(+ | Affleck Damon movie) = ?



Will the Sun Rise Tomorrow?



Will the Sun Rise Tomorrow?
Laplace’s Rule of Succession:	

On day n+1, we’ve observed that 
the sun has risen s times before.

pLap(Sn+1 = 1 | S1 + · · · + Sn = s) =
s + 1
n + 2

What’s the probability on day 0?	

On day 1?	

On day 106?	

Start with prior assumption of equal rise/not-rise 
probabilities; update after every observation.



Laplace (Add One) Smoothing

• From our earlier example: 
pML(beginning | in the) = 5/100?  reduce! 
pML(end | in the) = 8/100?          reduce! 
pML(kitchen | in the) = 0/100?     increase!



Laplace (Add One) Smoothing

• Let V be the vocabulary size: 
i.e., the number of unique words that could 
follow “in the”	


• From our earlier example: 
pML(beginning | in the) = (5 + 1)/(100 + V)  
pML(end | in the) = (8  + 1)/(100 + V) 
pML(kitchen | in the) = (0 + 1) / (100 + V)



Generalized Additive Smoothing
• Laplace add-one smoothing generally 

assigns too much probability to unseen 
words	


• More common to use λ instead of 1:

p(w3 | w1, w2) =
C(w1, w2, w3) + �

C(w1, w2) + �V

= µ
C(w1, w2, w3)

C(w1, w2)
+ (1� µ)

1
V

µ =
C(w1, w2)

C(w1, w2) + �V
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Generalized Additive Smoothing
• Laplace add-one smoothing generally 

assigns too much probability to unseen 
words	


• More common to use λ instead of 1:

interpolation

What’s the 
right λ?

p(w3 | w1, w2) =
C(w1, w2, w3) + �

C(w1, w2) + �V

= µ
C(w1, w2, w3)

C(w1, w2)
+ (1� µ)

1
V

µ =
C(w1, w2)

C(w1, w2) + �V



Picking Parameters

• What happens if we optimize parameters 
on training data, i.e. the same corpus we 
use to get counts?	


• Maximum likelihood estimate!	


• Use held-out data aka development data



Good-Turing Smoothing
• Intuition: Can judge rate of novel events by 

rate of singletons	


• Developed to estimate # of unseen species in field biology	


• Let Nr = # of word types with r training 
tokens	


• e.g., N0 = number of unobserved words	


• e.g., N1 = number of singletons (hapax legomena)	


• Let N =  ∑ r Nr = total # of training tokens



Good-Turing Smoothing
• Max. likelihood estimate if w has r tokens? r/N	


• Total max. likelihood probability of all words with r tokens? Nr 
r / N	


• Good-Turing estimate of this total probability:	


• Defined as: Nr+1 (r+1) / N	


• So proportion of novel words in test data is estimated by 
proportion of singletons in training data.  	


• Proportion in test data of the N1 singletons is estimated by 
proportion of the N2 doubletons in training data.   etc.	


• p(any given word w/freq. r) = Nr+1 (r+1) / (N Nr)	


• NB: No parameters to tune on held-out data



Backoff

• Say we have the counts: 
C(in the kitchen) = 0 
C(the kitchen)    = 3 
C(kitchen)          = 4 
C(arboretum)     = 0	


• ML estimates seem counterintuitive: 
p(kitchen | in the) = p(arboretum | in the) = 0



Backoff

• Clearly we shouldn’t treat “kitchen” the 
same as “arboretum”	


• Basic add-λ (and other) smoothing 
methods assign the same prob. to all 
unseen events	


• Backoff divides up prob. of unseen 
unevenly in proportion to, e.g., lower-order 
n-grams	


• If p(z | x,y) = 0, use p(z | y), etc.



Deleted Interpolation

• Simplest form of backoff	


• Form a mixture of different order n-gram 
models; learn weights on held-out data	


!

!

!

• How else could we back off?

pdel(z | x, y) = �3p(z | x, y) + �2p(z | y) + �1p(z)
�

�i = 1



Reading

• Bo Pang, Lillian Lee, Shivakumar 
Vaithyanathan. Thumbs up? Sentiment 
Classification using Machine Learning 
Techniques. EMNLP 2002. 
http://www.aclweb.org/anthology-new/W/
W02/W02-1011.pdf	


• LM background: Jurafsky & Martin, c.4

http://www.aclweb.org/anthology-new/W/W02/W02-1011.pdf

