Graphs II - Shortest paths

Single Source Shortest Paths
All Sources Shortest Paths

some drawings and notes from prof. Tom Cormen
Single Source SP

- Context: directed graph $G=(V,E,w)$, weighted edges
- The shortest path (SP) between vertices u and v is the path that has minimum total weight
 - total weight is obtained by summing up path's edges weights
 $$\delta(u, v) = \begin{cases} \min \{w(p) : u \xrightarrow{p} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$
- Note: SP cannot contain cycles
 - positive cycles: a shortest path obtained by taking out the cycle
 - negative cycles: a shortest path obtained by iterating through the cycle few more times, minimum weight is $-\infty$.
Negative edges and cycles

- Exercise: explain the following:
 - $SP(s, a) = 3$
 - $SP(s, b) = -1$
 - $SP(s, g) = 3$
 - $SP(s, e) = -\infty$

- negative weights possible
- negative cycles make some shortest paths $-\infty$
Task: Given a source vertex \(s \in V \), find the shortest path from \(s \) to all other vertices.

- Will write inside each vertex \(v \) the shortest path estimate \(\text{ESP}(s,v) \) weight from the source.
- These estimates change as the algorithm progresses.
- Highlight edges that give the SP-s.
- Highlighted edges form a tree with source as root.
- Tree not unique as (b) and (c) are both valid.
Relaxation

- If current (estimate) ESP(s,u) is 5 and edge (u,v) has weight w(u,v)=2, we can reach v with a path of 5+2=7
 - If current estimate ESP(s,v) is more than 7, we “relax edge (u,v)” by replacing the estimate ESP(s,v) =7.
 - If not (ESP(s,v) ≤7), we do nothing
Bellman Ford

- source is the SP tree root
- BF algorithm progresses in "waves", similar to BFS
- takes a maximum of $|V|-1$ waves to find SP
 - since there cannot be cycles
Bellman-Ford SSSP algorithm

- idea: relax all edges once (in any order) and we've got CORRECT all SP-s of one edge
 - relax again all edges (any order) and we obtained all SP-s of two edges
 - relax again, and get all SP-s of three edges
 - no SP can have more than |V|-1 edges, so repeat the relax-all-edges step |V|-1 times, to get all SP-s

Bellman-Ford

- init all SP: SP(s,v) = -∞ for all v
- for k=1:|V|-1
 - relax all edges
- check for negative cycles
SSSP exercise

- Discover SP by hand (start from source)
Bellman Ford

• discover \(SP(s,v) \) means having the current estimate equal with the actual (unknown) \(SP \)

 – discover \(SP : ESP(s,v) = SP(s,v) \)

 – ESP written "inside" each node, it may further decrease

 – once \(SP \) discovered, the ESP never decreases
Bellman Ford

- discover $SP(s,v)$ means having the current estimate equal with the actual (unknown) SP
 - discover $SP : ESP(s,v) = SP(s,v)$
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

- init all $ESP = \infty$
Bellman Ford

- discover \(SP(s,v) \) means having the current estimate equal with the actual (unknown) \(SP \)
 - discover \(SP : ESP(s,v) = SP(s,v) \)
 - ESP written "inside" each node, it may further decrease
 - once \(SP \) discovered, the ESP never decreases
 - init all ESP = \(\infty \)
 - relax all edges (first time): discover all \(SP \)-s of one edge
Bellman Ford

- discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 - discover SP : ESP(s,v) = SP(s,v)
 - ESP written "inside" each node, it may further decrease
 - once SP discovered, the ESP never decreases

- init all ESP = \(\infty \)
- relax all edges (first time): discover all SP-s of one edge
- relax all edges (second time): discover all SP-s of two edges
Bellman Ford

• discover SP(s,v) means having the current estimate equal with the actual (unknown) SP
 – discover SP : ESP(s,v) = SP(s,v)
 – ESP written "inside" each node, it may further decrease
 – once SP discovered, the ESP never decreases

• init all ESP = ∞
• relax all edges (first time): discover all SP-s of one edge
• relax all edges (second time): discover all SP-s of two edges
• . . . repeat
 – how many times?
Bellman Ford

Essential mechanism (BF proof):

- \(SP(s,v) = [a_1, a_2, a_3, a_4] \)
- Relaxing \(a_1 \), then \(a_2 \), then \(a_3 \), then \(a_4 \) – you can do them over any amount of time, but it has to be in the right order
- \(SP(s,v) \) discovered
- for every \(SP=(edges \ a_1,a_2,a_3,…) \) there was a relaxation sequence of these edges, in this precise order: \(a_1 \) in the first round, \(a_2 \) in the second round, etc.
- overall quite a few more relaxations than necessary, in order to enforce correctness in all possible cases

Running time: \(|V|-1 \) iterations for the outer loop

inner loop: relax all edges \(O(E) \)
SSSP in a DAG

• Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

• in a DAG we have a way to relax all edges in path-order, without doing \(|V|-1\) rounds of relax-all-edges

• use topological sort, relax edges in topological order.

• Running time \(O(E)\) (if \(E>V\))
 - formally \(O(E+V)\)
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

Essential mechanism:
- for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges
- use topological sort, relax edges in topological order.

- Running time \(O(E) \) (if \(E>V \))
 - formally \(O(E+V) \)
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time \(O(E)\) (if \(E>V\))
 - formally \(O(E+V)\)
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges $a_1,a_2,a_3,...$) there was a relaxation sequence of these edges, in this precise order: a_1 in the first round, a_2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing $|V|-1$ rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E>V$)
 - formally $O(E+V)$
SSSP in a DAG

- Essential mechanism:
 - for every SP=(edges a1,a2,a3,...) there was a relaxation sequence of these edges, in this precise order: a1 in the first round, a2 in the second round, etc.

- in a DAG we have a way to relax all edges in path-order, without doing |V|-1 rounds of relax-all-edges

- use topological sort, relax edges in topological order.

- Running time $O(E)$ (if $E \geq V$)
 - formally $O(E+V)$
Dijkstra SSSP algorithm

- No negative weight edges allowed
- Instead of relaxing all edges (like Bellman Ford), keep track of a current "closest" vertex to the SP tree
 - "closest" = minimum ESP(s,v) of nodes not already part of SP tree
 - Add the current-closest to the partial SP tree, v
 - Relax the outing edges of v (all edges v->x)
- Repeat
- Similar to Prim's algorithm (conceptually)
We want to find the shortest path from s to every node

diagram

graph G
source = s
After initialization, we have $v.\pi = NIL$ for all $v \in V, s.d = 0$, and $v.d = \infty$ for $v \in V - \{s\}$.
We are at node s

$s = \text{EXTRACT-MIN}(Q)$

$S = \{s\}$

$Q = \{t, x, y, z\}$
Test whether we can improve the shortest path to t found so far by going through s
Update $t.d = 10$ and $t.\pi = s$

RELAX(s, t, w)

$S = \{s\}$

$Q = \{t, x, y, z\}$
Test whether we can improve the shortest path to \(y \) found so far by going through \(s \).
Update \(y.d = 5 \) and \(y.\pi = s \)

\[
\text{RELAX}(s, y, w)
S = \{s\}
Q = \{t, x, y, z\}
\]
All edges leaving s have been tested

$S = \{s\}$

$Q = \{t, x, y, z\}$
We are at node y

\[y = \text{EXTRACT-MIN}(Q) \]
\[S = \{ s, y \} \]
\[Q = \{ t, x, z \} \]
Test whether we can improve the shortest path to t found so far by going through y.
Update $t.d = 8$ and $t.\pi = y$

RELAX(y, t, w)

$S = \{s, y\}$

$Q = \{t, x, z\}$
Test whether we can improve the shortest path to x found so far by going through y.

RELAX(y, x, w)

$S = \{s, y\}$

$Q = \{t, x, z\}$
Update $x.d = 14$ and $x.\pi = y$

RELAX(y, x, w)

$S = \{s, y\}$

$Q = \{t, x, z\}$
Test whether we can improve the shortest path to z found so far by going through y
Update $z.d = 7$ and $z.\pi = y$

\text{RELAX}(y, z, w)
$S = \{s, y\}$
$Q = \{t, x, z\}$
All edges leaving y have been tested.
We are at node z

$z = \text{EXTRACT-MIN}(Q)$

$S = \{s, y, z\}$

$Q = \{t, x\}$
Test whether we can improve the shortest path to s found so far by going through z.

RELAX(z, s, w)
$S = \{s, y, z\}$
$Q = \{t, x\}$
Test whether we can improve the shortest path to x found so far by going through z
Update $x.d = 13$ and $x.\pi = z$

RELAX(z, x, w)
$S = \{s, y, z\}$
$Q = \{t, x\}$
All edges leaving z have been tested.

$S = \{s, y, z\}$

$Q = \{t, x\}$
We are at node t

t=EXTRACT-MIN(Q)

S = \{s, y, z, t\}

Q = \{x\}
Test whether we can improve the shortest path to y found so far by going through t.

$$RELAX(t, y, w)$$

$S = \{s, y, z, t\}$

$Q = \{x\}$
Test whether we can improve the shortest path to x found so far by going through t
Update $x.d = 9$ and $x.\pi = t$

\begin{align*}
\text{RELAX}(t, x, w) \\
S &= \{s, y, z, t\} \\
Q &= \{x\}
\end{align*}
All edges leaving t have been tested

\[S = \{s, y, z, t\} \]
\[Q = \{x\} \]
We are at node \(x \)

\[x = \text{EXTRACT-MIN}(Q) \]
\[S = G.V \]
\[Q = \emptyset \]
Test whether we can improve the shortest path to \(z \) found so far by going through \(x \)
All edges leaving x have been tested.
Every vertex’s shortest path from s has been determined. We are done.
Dijkstra's Algorithm

- correctness proof in the book
 - idea: proof that for each SP, there is a relaxation sequence of its edges in path-order

- Running Time depends on implementation of queue operations
 - $|V|$ * extract-min
 - $|E|$ * decrease key (at relaxation)

- Total
 - $O(V^*T_{\text{extract-min}} + E^*T_{\text{decrease-key}})$
 - with Fibonacci heaps: extract-min is $O(\log V)$ and decrease-key is $O(1)$; total $O(E + V \log V)$

Dijkstra(G, w, s)

1. **Initialize-Single-Source**(G, s)
2. $S = \emptyset$
3. $Q = G.V$
4. while $Q \neq \emptyset$
5.
6.
7.
8.

all edges from u

Dijkstra algorithm implementation:

1. Initialize S to the empty set.
2. Set Q to the set of all vertices.
3. While Q is not empty:
 - Extract the minimum vertex u from Q.
 - Add u to S.
 - For each neighbor v of u in G:
 - Relax the edge from u to v.

Dijkstra(G, w, s)

1. **Initialize-Single-Source**(G, s)
2. $S = \emptyset$
3. $Q = G.V$
4. while $Q \neq \emptyset$
5.
6.
7.
8.

all edges from u

Dijkstra algorithm implementation:

1. Initialize S to the empty set.
2. Set Q to the set of all vertices.
3. While Q is not empty:
 - Extract the minimum vertex u from Q.
 - Add u to S.
 - For each neighbor v of u in G:
 - Relax the edge from u to v.

Dijkstra(G, w, s)

1. **Initialize-Single-Source**(G, s)
2. $S = \emptyset$
3. $Q = G.V$
4. while $Q \neq \emptyset$
5.
6.
7.
8.

all edges from u

Dijkstra algorithm implementation:

1. Initialize S to the empty set.
2. Set Q to the set of all vertices.
3. While Q is not empty:
 - Extract the minimum vertex u from Q.
 - Add u to S.
 - For each neighbor v of u in G:
 - Relax the edge from u to v.

Graphs II - Shortest paths

Lesson 2: All Sources Shortest Paths
Task: find all shortest paths, between any two vertices (no fixed source)

Slow: run Bellman Ford separately from each vertex as source.

- running time $|V| \times \text{BF-time} = V \times O(VE) = O(V^2E)$
- that is $O(V^4)$ if graph dense $E \approx V^2$
Instead, we will use dynamic programming.

\(C_{ij} = \min \text{ SP weight (objective) between vertices } i,j \)

optimal solution structure:

- If path \(P(i\rightarrow j) \) from \(i \) to \(j \) in optimal and passes vertex \(k \), then the subpaths \(P(i\rightarrow k) \) and \(P(k\rightarrow j) \) must be also optimal.

- Optimal = shortest.
ASSP dynamic programming

- two options for dynamic programming
 - A. go by the number of edges used in a path
 - $C_{ij}^{(m)}$: minimum path weight between i and j using at most m edges
 - $C_{ij}^{(1)}$: weight of edge $i \rightarrow j$, if exists (one edge)
 - $C_{ij}^{(2)}$: min weight of any path $i \rightarrow k \rightarrow j$ (max 2 edges)
 - $C_{ij}^{(0)}$: we 0 if $i \neq j$, ∞ otherwise (no edge)
 - B. by the intermediary nodes in a certain fixed order
 - fix order of all vertices 1,2,3,...,$|V|$
 - $C_{ij}^{(m)}$: minimum path weight between i and j using only intermediary vertices $\{1,2,...,m\}$
 - similar to discrete knapsack idea, see module 6
ASSP dynamic programming by edges

\[C_{ij}^{(m)} = \min_k \{ C_{ij}^{(m-1)}, C_{ik}^{(m-1)} + w_{kj} \} \] //bottom up computation

- the \(C_{ij} \) using \(m \) edges is either
 - the same as \(C_{ij} \) using \(m-1 \) edges, OR
 - \(C_{ik} \) using \(m-1 \) edges to intermediary \(k \), plus an edge from \(k \) to \(j \) \(w_{kj} \)
 - all nodes \(k \) are eligible as possible “last” intermediary
ASSP dynamic programming by edges

- Compute the $C^{(m)}$ matrix from $C^{(m-1)}$ matrix using edges matrix W

- **Extend-SP** $(C^{(m-1)}, W)$
  ```
  for i=1:n
    for j=1:n
      a=\infty;
      for k=1:n
        a=min\{a, C^{ik^{(m-1)}} + w_{kj}\};
      C^{ij^{(m)}}=a
  ```

- **ASSP-slow(W)**
  ```
  C^{(1)} = W
  for m=2:n-1
    C^{(m)}=Extend-SP(C^{(m-1)}, W)
  return C^{(n-1)}
  ```
ASSP dynamic programming by edges

• Extend-SP looks like matrix multiplication!
 - Extend-SP running time $O(n^3)$

• ASSP-slow is $n \times O(n^3) = O(n^4)$, same as running Bellman Ford separately from each vertex

\begin{align*}
 \text{Extend-SP} \ (C^{(m-1)}, W) & \quad \text{D=multiply}(C,W) \\
 \text{for } i=1:n & \quad \text{for } i=1:n \\
 \quad \text{for } j=1:n & \quad \text{for } j=1:n \\
 \quad \quad \ a=\infty; & \quad \ a=0; \\
 \quad \quad \text{for } k=1:n & \quad \quad \text{for } k=1:n \\
 \quad \quad \quad \ a=\min\{a, C_{ik}^{(m-1)} + w_{kj}\}; & \quad \quad \quad \ a=a+ C_{ik} \times w_{kj}; \\
 \quad \quad \quad \ C_{ij}^{(m)}=a & \quad \quad \quad \ D_{ij}=a
\end{align*}
ASSP dynamic programming by edges

- Think of Extending-SP as of matrix multiplication
 - $C^{(1)} = C^{(0)} \times W = W$; the "\times" means "$a = \min\{a, C_{ik}^{(m-1)} + w_{kj}\}$" inner operation
 - $C^{(2)} = C^{(1)} \times W = W_2$
 - $C^{(3)} = C^{(2)} \times W = W_3$
 -

- Only need $C^{(n-1)}$, not the intermediary ones
 - $C^{(1)} = W$
 - $C^{(2)} = W^2 = (W^1)^2$
 - $C^{(4)} = W^4 = (W^2)^2$
 - $C^{(8)} = W^8 = (W^4)^2$, etc
ASSP dynamic programming by edges

- ASSP-fast(W)
 - $C^{(1)} = W$
 - while $m < n-1$
 - $C^{(m)} = \text{Extend-SP}(C^{(m-1)}, C^{(m-1)}, W)$
 - $m = 2 \times m$
 - return $C^{(m)}$

- After $\lceil \log(n) \rceil$ iterations we have computed $C^{(m)}$ with $m \geq n-1$. It's ok to "overshoot" as C doesn't change after finding the SP.

- Running time $\Theta(V^3 \log V)$
ASSP dynamic programming by vertices

- "Floyd-Warshall" algorithm
- Fix a vertex order: 1, 2, 3, ..., n
 - \(S_k \) = set first k of vertices = \(\{v_1, v_2, ..., v_k\} \)
- \(C_{ij}^{(m)} \) = the weight of SP(i,j) going only through intermediary vertices in set \(S_k \)

 \(m=0 \): no intermediary allowed; \(C_{ij}^{(0)} = w_{ij} \)

 \(m=1 \): only \(k = v_1 \) intermediary allowed
 - \(C_{ij}^{(1)} = \min \{ w_{ij}, w_{ik} + w_{kj} \} \)
ASSP dynamic programming by vertices

- **dynamic recursion**

- \(C_{ij}^{(m)} = \min \{ C_{ij}^{(m-1)}, C_{im}^{(m-1)} + C_{mj}^{(m-1)} \} \)

 \(- C_{ij}^{(m)} = \text{minimum between } C_{ij}^{(m-1)} \text{ and the SP including vertex } v_m \text{ and only other intermediaries } <m. \)
ASSP dynamic programming by vertices

- **bottom up computation**
 - **Floyd-Warshall-ASSP(W)**
    ```
    for m=1:n
      for i=1:n
        for j=1:n
          C_{ij}^{(m)} = min\{ c_{ij}^{(m-1)}, c_{im}^{(m-1)} + c_{mj}^{(m-1)} \}
    
    return C^{(n)}
    ```

- **Running time** $\Theta(V^3)$
 - for dense graphs $E \approx V^2$, Floyd-Warshall-ASSP same cost as Bellman-Ford-SSSP