

February 7, 2013

TODAY'S CLASS

- Administrivia
- T3 Overview
- Ethnography Assignment
- Establishing Requirements (continued)
- Design (part 1)
- Paper Presentations: Design Skills

ADMINISTRIVIA

ASSIGNMENTS

- I3 now due 2/28 (week later)
- T1 returned soon
 - All statements need to be supported
 - "Physical activity is hard for people to achieve" → need to cite a source.
 - Be careful, avoid generalizations, "People want to know more about their health" – what people? How do you know this?
- See note on Piazza about presentation expectations
- Reminder to explicitly reference textbook + research paper readings, class discussions

T3

REQUIREMENTS IDENTIFICATION & DESIGN **IDEATION**

- Builds on T2
 - Read teammates' assignments
 - Be sure to relate this assignment to T2!
- Stakeholder analysis
 - primary, secondary, tertiary, facilitating
 - if multiple classes, identify each

T3

REQUIREMENTS IDENTIFICATION & DESIGN **IDEATION**

- Task analysis
 - 6 tasks, based on ethnographic work
 - · goal, preconditions, subtasks, and exceptions
 - Hierarchical decomposition (diagram)
 - Answer
 - Where is the task performed?
 - How often is the task performed?
 - What are its time or resource constraints?
 - How is the task learned?
 - What can go wrong? (errors, exceptions)Who else is involved in the task?

 - Domain-specific questions

T3

REQUIREMENTS IDENTIFICATION & DESIGN IDEATION

- Requirements
 - Functional (6)
 - Non-functional (6)
- Brainstorm 3 design concepts
 - Must go beyond initial ideas
 - Each concept must be very different from the others: think outside of the box
 - "Creating a diverse set of ideas helps people understand the space of designs and their relative merits" Dow et al. ToCHI 2010

T3

REQUIREMENTS IDENTIFICATION & DESIGN IDEATION

- Brainstorm 3 design concepts
 - Describe
 - How addresses your problem
 - How addresses your requirements
 - Innovation (how different from currently available systems)
 - Interaction metaphor
 - Potential unintended consequences (3)
- Storyboard
 - For each concept
 - High level

ETHNOGRAPHY

• What did you learn?

ESTABLISHING REQUIREMENTS

DESIGN REQUIREMENTS

- Developed from a sound understanding of users' needs
 - Justified and related back to the data collected
- Statement about an intended product that specifies
 - What it should do (functional)
 - Constraints on system (non-functional)
- Clear, specific, unambiguous
 - To identify when they've been addressed

ESTABLISHING REQUIREMENTS

- How does this happen?
 - Socio-technical modeling
 - Task Analysis
 - Contextual inquiry
 - Participatory design

SOCIO-TECHNICAL MODELS

- Reaction to technological determinism
 Bi-directional influence of people + machines
- Technical + human + social + organizational
- Describe impact of the introduction of a technology into an organization
- Detailed requirements for successful deployment
 - Interviews, observations, document analysis, etc.

SOCIO-TECHNICAL MODELING

- Examine
 - Problem being addressed
 - Stakeholders
 - Workgroups
 - Changes that will be supported
 - Proposed technology (and how it will fit in org)
 - External constraints/influences
 - Performance measures

SOCIO-TECHNICAL MODELING

- CUSTOM
 - Focus on stakeholders
 - Initial stage of design
- OSTA
 - Focus on tasks
- Soft systems methodology
 - Independent of technology
 - focus on rich picture of context
- Uses interviews, observations, focus groups, document analysis, etc.

ESTABLISHING REQUIREMENTS

- How does this happen?
 - Socio-technical modeling
 - Task Analysis
 - Contextual inquiry
 - Participatory design

TASK ANALYSIS

- Method of analyzing what people do
- Knowing how people accomplish tasks currently
 - Helps us identify
 - problems, limitations, successes
 - Design opportunities (functional requirements)
 - Contextual factors (non-functional requirements)

TASK ANALYSIS

- Not just limited to the computer interface
 - Broader context too
- Focus on observable behavior
 - As opposed to internal mental state
 - GOMS and other cognitive approaches get at this
- Help you
 - Clarify what you know
 - Organize what you know
 - Understand transitions/danger points
 - Fill in gaps

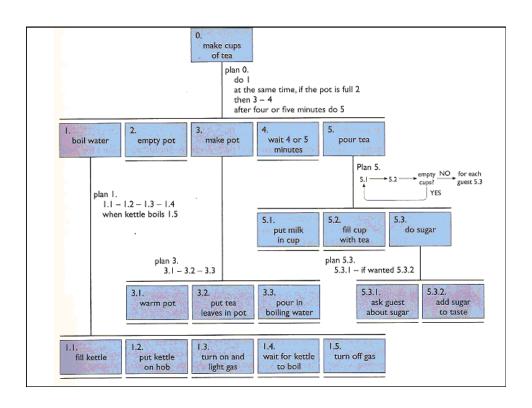
TASK ANALYSIS

- Method of analyzing what people do
 - the tasks involved TASK DECOMPOSITION
 - What they need to know KNOWLEDGE-BASED to do those tasks

TECHNIQUES

The artifacts (objects) they use do accomplish those tasks

ENTITY-RELATION BASED ANALYSIS


HIERARCHICAL TASK ANALYSIS

- Form of task decomposition
- Hierarchy of tasks & subtasks

- Plans
 - Express partial ordering on subtasks (possible parallelism)
 - Conditions on subtasks
 - Temporal constraints on subtasks (wait)
 - Cycles

HIERARCHICAL TASK ANALYSIS

- Iterative
 - Refinement of subtasks, plans
- Stopping rules
 - PxCrule
 - Probability of making a mistake in task X cost of mistake < threshold
 - Simple, non-costly tasks = don't expand
 - Complex motor responses (e.g., mouse movement)
 - No longer productive, accurate, useful
 - Internal decision making required
 - HTA based on observable behaviors
 - Use a cognitive modeling approach instead

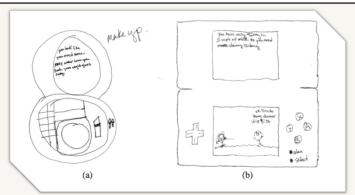
HIERARCHICAL TASK ANALYSIS

- Practically speaking
 - Task = Goal (what are you trying to do)
 - Top-level = problem you're solving
 - Decompose into subtasks/subgoals
 - For each task
 - Preconditions (other tasks, information)
 - Decompose if nontrivial "How do you do it?"
 - Exceptions
 - Plan

TASK ANALYSIS

- Sources of Data
 - Document analysis
 - Observation (naturalistic, lab)
 - Interviews
 - Sorting tasks
- How can it help with design?
 - establishing requirements
 - · Determine which tasks should be supported in new design
 - Help the client clarify what the important features are
 - Determine tasks to automate, unsupported tasks
 - Designing menus

TASK ANALYSIS


- Other information about tasks that may be useful
 - Where is the task performed?
 - How often is the task performed?
 - What are its time or resource constraints?
 - How is the task learned?
 - What can go wrong? (errors, exceptions)
 - Who else is involved in the task?
- (answer these questions in T3)

ESTABLISHING REQUIREMENTS

- How does this happen?
 - Socio-technical modeling
 - Task Analysis
 - Contextual inquiry
 - Participatory design

PARTICIPATORY DESIGN

- Include users throughout design process
- Not just as a data source, but design collaborator
- Help define & refine requirements, iteratively
 - Brainstorming
 - Storyboarding
 - Pencil and Paper Exercises (paper prototyping)

objects that can detect if the user needs something

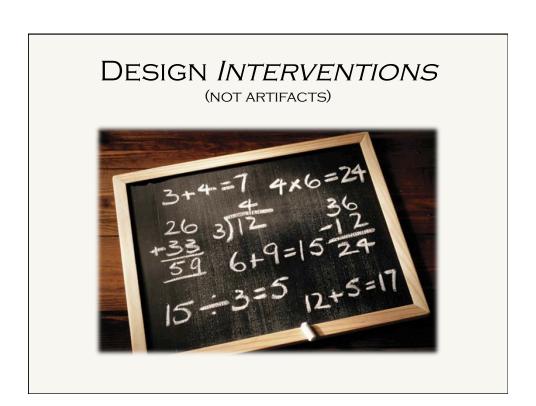
- (a) an augmented makeup compact reminding the user to drink water and
- (b) an augmented gaming system reminding the user to drink milk.

"Bridging the Information Gap: Collaborative Technology Design with Low-Income At-Risk Families to Engender Healthy Behaviors," Siek *et al.* OZCHI'09

DESIGN

WHAT IS DESIGN?

- Achieving goals within constraints
 - Goals
 - who is it for, why do they want it
 - Constraints
 - Materials, platforms, environments
 - Trade-offs
- Interaction Design
 - Not simply interface


Requirements Gathering

DESIGN INTERVENTIONS

(NOT ARTIFACTS)

GOLDEN RULE OF DESIGN

- Understand your materials
 - Computers
 - Software, hardware, networks, etc.
 - People ("Know your users")
 - Who are they?
 - Probably not like you!
 - Talk to them, watch them
 - how things *really--*vs. should--happen
 - Ethnography, Task & socio-organizational modeling, etc.
 - Look at the artifacts (objects) they use
 - Use your imagination...

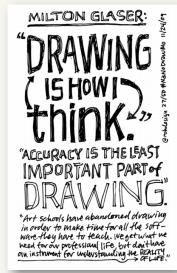
SCENARIOS & PERSONAS

- "Force you to think about the design in detail and notice potential problems before they happen"
- Rooted in real data
- Can be reused throughout the design process
- Also help
 - Communicate ideas
 - Validate other models (e.g., task)
 - Does your formulation hold up?
 - Express dynamics
 - System behavior (vs. just appearance)

PERSONAS

- · Description of an 'example' user
 - Not necessarily a real person
- Use as surrogate user
 - What would "Ralph" think
- Details matter
 - Realism helps in creation and use
- Develop several
 - Represent different user types/roles
- · Based on studies of actual users

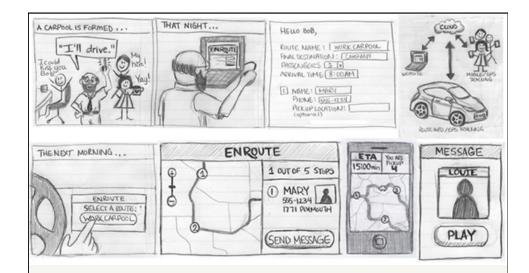
SCENARIOS


- What will users want to do?
- Step-by-step walkthrough
 - What can they see (screenshots, storyboards)
 - What do they do (keyboard, mouse etc.)
 - What are they thinking (mental models)?
- Use and reuse throughout design
- (But be careful ... Only show one path)

STORYBOARDING

- Illustrate interaction with a system
- Participant-driven

or


- Designer-driven
 - Help visualize scenarios
 - Support transition from conceptual to interface design
 - Allow us to make mistakes early (cheaper, quicker)

STORYBOARDING

- Hand-drawn (or digital)
 - Hand-drawn recommended (and what you'll do for assignments)
 - Because with a computer...
 - Stop thinking conceptually, start thinking pragmatically
 - Constraints of the software tool
 - Details (fonts, colors) vs. broader concepts (goals, tasks)

WWW.JONKOLKO.COM

Notice how the storyboard tells a story.

It is not just screenshots Context important.

STORYBOARDING

- Screens
 - Not the detailed interface yet!
 - General layout, navigational elements, core concepts
- Scenes
 - High level tasks
 - Focus on a couple primary use cases
 - Personas in action

STORYBOARDING

- Can be attractive, but not works of art
 - Quick!
 - Pencil & paper
- Tips
 - Long paper
 - 1 square/scene
 - Number each scene
 - (short!) text description for each scene (caption)

INTERACTION METAPHORS

- Interaction with system is designed to reflect something from the real world that the user is already familiar with
- Suggest how you might use something
 - Mental models
 - Suggest a *style* of interaction

INTERACTION METAPHORS

- data as **files** (in folders or directories)
- deleting a file as throwing it in the **trash**
- programming as building objects
- Adobe Flash content played back on a stage
- applications as **agents**

INTERACTION METAPHORS

- · can be mixed
 - e.g., windows and desktops
- · can be misleading
 - e.g., putting a disk in the trash
- some things don't seem to have any obvious metaphor
- one metaphor is better than another if...
 - it leads to more correct predictions about a system's behavior.

TO DO FOR NEXT WEEK

- DFAB Ch 8
- TohidiETAL06 on Piazza (GUI architectures & tools)
- Optional: Swing events & layout managers. (Or GUI doc in language of choice)
- T3 due on team website (by 6pm)
- Presentations
 - Stephen Flaherty
 - Junlei Wang
 - Desmond Yeung

PAPER PRESENTATIONS

- Dow et al, Parallel Prototyping Leads to Better Design Results, More Divergence, and Increased Self-Efficacy, ToCHI 2010 | `Sukhdeep Saini
- Davidoff et al., Rapidly Exploring Application Design through Speed Dating, UbiComp 2007
 Yang Huang
- Brandt, Designing Exploratory Design Games: A Framework for Participation in Participatory Design?, PDC'2006 | Miriam Zisook