The Graphics Pipeline

CS 4300/5310
also today: particle systems .
Computer Graphics

ANNOUNCEMENTS

Upcoming Deadlines

HW2: Raytracer
FodaylFebruary 22!

HW3: Particle Systems
March 2nd

Late Day Policy Reminder

5 total across all assighments.

There are 4 assignments.

Cannot use late days for projects, reading
responses.

Art Contest Policies

Must be the result of your assignment or
project!

Can turn in any time before end of semester

No more than 1 entry per contest per
assignment per person

No more than 2 entries per contest per
project per group

Workshop Class Thursday

| will be out of town

Morteza will be running class

Opportunity to get started on assignment 3 with
In-person support

Ask questions about OpenGL/DirectX setup for
projects

Or continue working on assignment 2!

RENDERING BY RASTERIZATION

Object-Order Rendering

Why is it called object-order rendering?

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting A series of steps to turn a
T T 3D environment into a 2D
Image
Clipping .
Output of one step = input
Projection to 2D space to the next

Rasterization

Pixel Shading

[Frame Buffer }

The Graphics Pipeline

[3D Primitives

Modeling Transformation Processing (P3D or OPENGL renderer)

Lighting box(5)
sphere(15)

Viewing Transformation beginShape() ... endShape()

Clipping OPENGL/GLUT
o g/Begin(GL_POLYGON)
Projection to 2D space glBegin(GL_TRIANGLE FAN)

Rasterization

Pixel Shading

[Frame Buffer]

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer

The Graphics Pipeline

3D Primitives

Modeling Transformation

\ 7

Lighting

) e e,
7 AVAVG YA AN
a
ZaVAVAV AV, SV

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

Frame Buffer

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

[Lighting]

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer J

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting
L Viewing Transformation] SEMera
irangdormation
Clipping

Projection to 2D space

Rasterization

Pixel Shading vord space

[Frame Buffer }

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting

Viewing Transformation

N
t Clipping J
Projection to 2D space

Rasterization

Pixel Shadmg From ryg blog: http://fgiesen.wordpress.com/2011/07/05/

a-trip-through-the-graphics-pipeline-2011-part-5/

[Frame Buffer]

The Graphics Pipeline

[3D Primitives]

2 . From Computer Desktop Encyclopedia
Modeling Transformation Reproduced uith permission.
@ 1998 Intergraph Computer Systems

Lighting

far
clip
plane _

Viewing Transformation

Clipping

[Projection to 2D space]

Rasterization

viewing / e 4
frustum

near

Pixel Shading clip plane Viewpoint

[Frame Buffer }

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting !

Viewing Transformation / A

Clipping / \

Projection to 2D space

— (z4,y4)

. (z1,91) 7]
Rasterization

Pixel Shading

[Frame Buffer]

The Graphics Pipeline

[3D Primitives]

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

Frame Buffer

The Graphics Pipeline

[3D Primitives]

Modeling Transformation
Lighting We've seen this before...
Viewing Transformation

Clipping

Projection to 2D space

‘ Rasterization]
Pixel Shading
[Frame Buffer]

The Graphics Pipeline

[3D Primitives]
Modeling Transformation Next week!
L Lighting J

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

a)

Frame Buffer

_ J

The Graphics Pipeline

3D Primitives

Modeling Transformation

Lighting The Matrix Stack
 Viewing Transformation | Perspective Transformation
Clipping : Clipping and culling
 Projection to 2D space | The Z-Buffer
Rasterization

Pixel Shading

[Frame Buffer }

The Matrix Stack

-

N—To i1 [l 1= What is the matrix stack?

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer]

The Matrix Stack

3D Primitives

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer

]

A single transformation is
continually updated

What if | want to make a
bunch of transformations
and then “forget” | did
them?

pushMatrix(), popMatrix()

Viewing Transformation

__ SDPrimitves | Want camera to be the
Modeling Transformation Origin of our coordinate
Lighting SyStem

L Viewing Transformation]

Clipping

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer }

Perspective Transformation

___ 3oprmitves | Objects further away
Modeling Transformation should dppear smaller
e User-specified near and far
planes

Viewing Transformation

1 Viewpoint: how much of
[Projection to 2D space J the rendered screen
should | see?

Like a little window over
the larger “screen”

Rasterization

Pixel Shading

[Frame Buffer }

Perspective Projection (Several Steps)

Move from world space to Parallel projection along z-axis
camera space coordinates Window transformation
ob act space camer-a space R [———
> 3 - e—
-l
L -
s | —
b 4 —_-—
w | —
2l
modelng ﬂcz;.'r?era' ‘ projection viewgorn
transfosmation o Siomalion ransfomMaten trangfarmation
I'-",.
I o)
world space canonical
viegw volumea
Picture from the book Transform the view frustum to orthographic view

volume then to canonical view (-1,1) (so we can do
parallel projection)

Final Equation

From Computer Desktop Encyclopedia
Reproduced with permission.
© 1998 Intergraph Computer Systems

— N e

< pixel S|
\) viewing o _ / S Q
frustum near - .
clip plane Viewpoint
n n,—1 2 r+l
X x = 0 0 _r=t _
: 0 0 ; — - n 0O 0 0 x, vy, z 0 1 0 0 -x
0 ny 0 ny_l 0 % 0 —% 0 n 0 0 XY % 0 010 =Y.
2 2 i i 0 0 n+f —fn
0 0 1 0 0 0 2 _I’l+f f f xw yw Zw O O 0 1 _Zc
co 0 R o0 1 0 00 0 1)looo0 1
0 0 1

=

Morth P Mcam

Clipping & Culling

[3D Primitives]

Modeling Transformation

Lighting

Viewing Transformation

N
t Clipping J
Projection to 2D space

Rasterization

Pixel Shadmg From ryg blog: http://fgiesen.wordpress.com/2011/07/05/

a-trip-through-the-graphics-pipeline-2011-part-5/

[Frame Buffer]

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Viewing Transformation

{ Clipping J

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer]

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Completely outside the
viewing area

Viewing Transformation

{ Clipping] Partially outside the

Projection to 2D space VIEWINg area

Facing away from the
camera

Rasterization

Pixel Shading

[Frame Buffer }

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Completely outside the
viewing area [culling]

Viewing Transformation

[Clipping] Partially outside the
viewing area [clipping]

Projection to 2D space

[— | Facing away from the
camera [backface culling]
Pixel Shading Blocked by other objects
[Frame Buffer } [occlusion culling]

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Completely outside the
viewing area [culling]

Viewing Transformation

{ Clipping] Partially outside the
viewing area [clipping]

Projection to 2D space

Rasterization

Pixel Shading

[Frame Buffer }

Clipping

6 planes define the
viewing frustum

Front
Back
Left
Right
Top

Bottom

From Introduction to 3D Game Programming with DirectX 9.0

Clipping: Algorithm

How do you think we

can do this? <
X \

2 4

From ryg blog: http://fgiesen.wordpress.com/2011/07/05/

a-trip-through-the-graphics-pipeline-2011-part-5/

Clipping: Algorithm

for each plane:
if (t outside plane): 4
N

break

if (t spans plane):
clip triangle
if (quadrilateral):

break into 2 triangles

From ryg blog: http://fgiesen.wordpress.com/2011/07/05/

a-trip-through-the-graphics-pipeline-2011-part-5/

Clipping: Algorithm

for each plane:
if (t outside plane):
break

if (t spans plane):

clip triangle
if (quadrilateral):

break into 2 triangles

From ryg blog: http://fgiesen.wordpress.com/2011/07/05/
a-trip-through-the-graphics-pipeline-2011-part-5/

Clipping: Important Things to Know

Your graphics APl only knows how to clip
things on a triangle-by-triangle basis

While optimized, this is still fairly time
consuming

How can we make it perform better?

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Viewing Transformation

{ Clipping]

Projection to 2D space

Facing away from the

Rasterization .
camera [backface culling]

Pixel Shading

[Frame Buffer }

Occlusion Culling

ldea: we only need
to draw what we
can see from the
camera

Works with single-
sided polygons

Backfaces No backfaces

How do we know if
a triangle is facing
away?

Occlusion Culling

Use the surface normal!

Front Facing Back Facing

Dot product of surface Polygon Polygon

normal with eye vector e i e
if positive: front facing < % _&

if negative: back facing et vt o Dok et <0

Clipping & Culling

___ 3oprmitves | Why would we want to
Modeling Transformation not render certain
- objects?
Lighting

Viewing Transformation

Clipping

Projection to 2D space

L Rasterization]

Pixel Shading Blocked by other objects

[Frame Buffer } [occlusion culling]

The Z Buffer

If one object is in front
of another, we only
need to render the
frontmost one!

Polygons might be
clipping through each

other

How do we deal with
this?

<

The Z Buffer

Buffer on the graphics

card with n bit-depth
n: 8 — 32 bits (higher is
better!)

Pros and cons of this
vs. what we do in
raytracing?

Problem: z-fighting

8 | 8| 8| 8

8 | 81 8|8

8 | 8| 8| 8

8| 8| 8] 8

— | et | e,

w| w| w| g

o O 8 S

N3 8|8

— et | et | ek

W w| w| g

w| w| wl| g

— | e A

N3 8|8

ool g|s

w| w| wl| g

Wl w| w| g

w| w| wl| g

The Graphics Pipeline

[3D Primitives]
Modeling Transformation Next week!
L Lighting J

Viewing Transformation

Clipping

Projection to 2D space

Rasterization

Pixel Shading

a)

Frame Buffer

_ J

PARTICLE SYSTEMS

Uses: Fire

Uses: Liquids

Uses: Fireworks

Uses: Clouds

ses: Explosions

First Use: Star Trek!

What is a Particle System?

Emitter
Position
Surface
(Range of) directions

Particles
Size
Shape
Position
Velocity (speed, direction)
Color/texture
Transparency
Lifetime

What is a Particle System?

Emitter
Position
Surface
(Range of) directions

Particles
Size
Shape
Position
Velocity (speed, direction)
Color/texture Others??
Transparency
Lifetime

The Particle Life Cycle

Generation

Dynamics

Death

The Particle Life Cycle

Generation
Spawned by the emitter

Initial attributes (position, direction) based on
emitter properties

Dynamics

Death

The Particle Life Cycle

Generation
Spawned by the emitter
Initial attributes (position, direction) based on
emitter properties

Dynamics

Attributes change over time or in response to
events

Particles often independent of each other
Death

The Particle Life Cycle

Generation
Spawned by the emitter

Initial attributes (position, direction) based on
emitter properties

Dynamics

Attributes change over time or in response to
events

Particles often independent of each other

Death

When an attribute reaches a threshold
Due to external event

Particle Dynamics: Boids

Three independent
behaviors affecting
velocity and direction
Separation
Alignment
Cohesion

Only care about local
flockmates

Combined independent
behaviors to simulate
real lifel

Your Assighment: Build a Particle System

