

3D Shapes and Transformations

CS 4300/5310
Computer Graphics

ANNOUNCEMENTS

Upcoming Deadlines

- Raytracer
 - February 19th

- 2D Project Team Feedback
 - Today!

- Art Contests
 - ongoing...

and where are we going?

WHERE ARE WE?

2D Graphics

- Image processing
- Image warping

2D transformations

3D Graphics

- Raytracing
- Rasterization

3D transformations

2D Review

What does this 2D transformation matrix do?

2D Review

What does this 2D transformation matrix do?

```
2 3
0 3
```

2D Review

What does this 2D transformation matrix do?

3D?!

making objects move

3D TRANSFORMS

Scale

Scale

Same as 2D!

$$\begin{bmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & Sz \end{bmatrix}$$

Shear

2D: Shear along axis

3D: Shear along plane

$$\left[egin{array}{ccccc} 1 & d_{xy} & d_{xz} \ d_{yx} & 1 & d_{yz} \ d_{zx} & d_{zy} & 1 \ \end{array}
ight]$$

Rotation

- 2D: Around a point (the origin)
- 3D: Around an axis

Rotate a point around the z axis:

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

What is the matrix for this?

Rotation

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

z axis y axis x axis

Rotation: Putting it all Together

Assume α is angle around x-axis, β around y-axis, γ around z-axis. Compose matrices for general rotation matrix:

```
\cos \beta \cos \gamma - \cos \alpha \sin \gamma + \sin \alpha \sin \beta \cos \gamma \\
\cos \beta \sin \gamma + \cos \alpha \sin \beta \cos \gamma \\
\cos \beta \sin \gamma + \cos \alpha \sin \beta \cos \gamma \\
-\sin \beta + \cos \alpha \sin \beta \cos \gamma \\
-\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \\
-\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \\
-\sin \alpha \cos \gamma + \cos \alpha \sin \beta \sin \gamma \\
\cos \alpha \cos \beta + \cos \alpha \cos \beta
```

Affine Transforms

What is a linear transformation?

What is an affine transformation?

Translation: Homogenous Coordinates

What are homogenous coordinates?

3D translation: generalization from 2D

$$\begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
 \end{bmatrix}$$

3D: Quick "Quiz"

What does this 3D transformation matrix do?

```
\begin{bmatrix}
2 & 0 & 0 & 15 \\
0 & 1 & 0 & 3 \\
0 & 0 & 3 & 5 \\
0 & 0 & 0 & 1
\end{bmatrix}
```

3D: Quick "Quiz"

What does this 3D transformation matrix do?

```
\begin{bmatrix}
1 & 0 & 0 & 25 \\
0 & 1 & 0 & 0 \\
1.5 & 1.5 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
```

3D: Quick "Quiz"

What does this 3D transformation matrix do?

$$\begin{bmatrix} \cos(30) & -\sin(30) & 0 & 25 \\ \sin(30) & \cos(30) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Euler Angles

Pronounced "Oiler"

- Angles describing rotation around x, y, and z axes
 - Or any orthonormal basis vectors...

Pitch, roll, yaw

The Problem with Euler Angles

- Gimbal Lock!
 - Rotate one of your axes 90 degrees so it perfectly overlaps another
 - Lose one degree of freedom

- Interpolation

Avoiding Gimbal Lock with Quaternions

- What is a quaternion?
 - A real number, q
 - A vector, q
- Rotations use unit quaternions
 - $q^2 + ||q||^2 = 1$
 - Magnitude of **q** is $sin(\theta/2)$
 - q is $cos(\theta/2)$
 - q is the axis around which the object will rotate
 - \blacksquare θ is the amount of the rotation

Multiplying Quaternions

•
$$Q = (q, q)$$
 $R = (r, r)$

- QR = $(qr q \cdot r, q \times r + rq + qr)$
 - This corresponds to applying R first, then Q

- Rotating a point, s, by quaternion R:
 - Extend s to quaternion S: [0, s_x, s_y, s_z]
 - Multiply!

Spherical Linear Interpolation (SLERP)

 Smoothly rotate between two quaternion representations Q and R

• Compute $\varphi = \arccos(qr + \mathbf{q}_x\mathbf{r}_x + \mathbf{q}_y\mathbf{r}_y + \mathbf{q}_z\mathbf{r}_z)$

- Interpolation parameter, t (0 ≤ t ≤ 1)
 - if t = 0 or $\varphi = 0$, return Q
 - if t = 1 or $\phi = \pi$, return R
 - else return $(1/\sin \varphi)(\sin((1-t)\varphi)Q + \sin(t\varphi)R)$

looking ahead...

3D PROJECTS

Project Structure

- 2-3 person groups
 - Prefer not mixing grad/undergrad
- Proposal: March 19th
- Checkpoints: In class March 28th, April 4th
- Presentations: In class April 9th, 11th, 16th
- Report: April 16th

Suggested Topics

- Extension to Raytracer
 - More complex geometry
 - Experiment with different camera types
 - Texturing and/or bump mapping

- Interactive Applications
 - Make a game
 - 3D Data Visualization
 - Interactive Art

Project Goals

- More focused exploration of 3D topics
 - Longer term project than 2D
 - Time for deeper exploration and reflection

Technical writing and writing critique

Project critique and peer code review

Writing Requirements

- Project proposal: 3-5 pages
 - What are you going to do?
 - How are you going to do it?
 - Why is it interesting? What is the problem you are trying to solve?
 - What are some related projects?
- Project report: 6-8 pages
 - What did you do?
 - How was it related to what other people have done?
 - What were the results?

What can you do to get started?

- Assignments form a "sampler" of 3D graphics
 - Raytracing
 - Interactive 3D
 - Shaders

- What do you find interesting?
- What do you wish your assignment could do that it can't?
- What do you wish you knew more about?

building little prototypes

