

Color Spaces and Perception

also today: pre-survey results, 2D project brainstorming

CS 4300/5310 Computer Graphics

ANNOUNCEMENTS

Deadlines

- Assignment 1: Today!
 - Art contest?

- 2D Project Proposal:
 January 22nd
 - Submit as a group on Blackboard

2D Project main deadline:
 February 5th

pre-course survey results

WHO ARE YOU?

Required Course?

Java Experience

Java Familiarity

- Expert: I use this language all the time
- Intermediate: I have used it in several classes or for a couple of projects
- Beginner: I have written some simple programs in it, but nothing complex
- Aware: I have read some programs written in Java, but never written in it
- None: I have never been exposed to Java

C++ Experience

C++ Familiarity

- Expert: I use this language all the time
- Intermediate: I have used it in several classes or for a couple of projects
- Beginner: I have written some simple programs in it, but nothing complex
- Aware: I have read some programs written in C++, but never written in it
- None: I have never been exposed to C++

OpenGL Experience

OpenGL Familiarity

- Intermediate: I have used it in several classes or for a couple of projects
- Beginner: I have written some simple programs in it, but nothing complex
- Aware: I have read some programs that use OpenGL, but never written any
- None: I have never been exposed to OpenGL

Linear Algebra

Linear Algebra Knowledge

Calculus

Calculus Knowledge

WHAT IS COLOR?

Graphics Problems

Modeling

- 2D and 3D representation
- Curved surfaces
- Procedural techniques

Rendering

- Realism
- Speed
- Non-realism

Animation

- Illusion of life
- Motion capture
- Keyframing
- Physical simulation

Graphics Problems

Modeling

- 2D and 3D representation
- Curved surfaces
- Procedural techniques
- Rendering
 - Realism
 - Speed
 - Non-realism
- Animation
 - Illusion of life
 - Motion capture
 - Keyframing
 - Physical simulation

What is Color?

- Visible light: the portion of the light spectrum we can see
- Color: corresponds to a wavelength of light

How do we perceive color?

Rods: sensitive to low light

- Cones: sensitive to bright light
 - Short wavelength
 - Medium wavelength
 - Long wavelength

How do we perceive color?

• Hue: what color is it?

Saturation: how close to grey is it?

Lightness: how intense is the light?

Cone/Rod Density

Cone Distribution

Color Sensitivity

 Cone color sensitivity, weighted by proportion of L, M, and S cones in retina

What color are we most sensitive to?

Metamerism

 Two different light functions evaluate to the same tristimulus values

Additive vs. Subtractive Color

Grassman's Laws

 Trichromaticity: any color can be expressed as a function of three component colors

- Grassman's Laws: color as linear combination
 - Scaling a color and scaling its primaries by the same amount preserves the match
 - 2C = 2R + 2G + 2B
 - Adding two colors is the same as adding its primaries
 - C1 + C2 = (R1 + R2) + (G1 + G2) + (B1 + B2)

COLOR SPACES

Color Spaces as Spaces

- Gamut
 - Colors that can be represented by a color representation
 - Colors that can be seen on certain devices

- Representations of color form "spaces" of color
 - Distance between colors?
 - Averaging colors?

Color Spaces: RGB

Color Spaces: HSV

- Hue:
 - 0 360 degrees

- Saturation:
 - 0 100 (radius)

- Value:
 - 0 100 (height)

Color Spaces: YIQ

- Y = luminance
 - luminance = ?*r + ?*g + ?*b

I, Q hold all color information

- NTSC TV standard
 - Take away I, Q and you have B&W TV!

Color Spaces: YIQ

- Y = luminance
 - luminance = 0.299*r + ?*g + ?*b

I, Q hold all color information

- NTSC TV standard
 - Take away I, Q and you have B&W TV!

Color Spaces: YIQ

- Y = luminance
 - luminance = 0.299*r + 0.587*g + 0.114*b

I, Q hold all color information

- NTSC TV standard
 - Take away I, Q and you have B&W TV!

Color Spaces: CMY

- Cyan, Magenta, Yellow
 - Complements of: red, green, and blue
 - Subtractive color space, origin is white
 - Useful for printing on white paper

- What about K?
 - Fourth component added by printers

Standard Observers

- Each human perceives color differently
 - Why?

 Perform color matching experiments, average results to find the standard observer

Color Spaces: XYZ

 X, Y, Z correspond to human tristimulus values

Based on "average" human

Lots of green

Color Spaces: Lab

Good analog to human perception

 L is adjusted to be equivalent to human perception of brightness

 A and B experimentally determined to keep perceptually similar colors close together

requirements, initial ideas, early feedback

2D PROJECT BRAINSTORMING

2D Project Proposal: Grading Criteria

- 75%: Clarity of written text and adherence to project requirements
- 15%: Inclusion of relevant figures, diagrams, mockups, story boards...
- 5%: Schedule providing work breakdown and team member responsibilities

2D Project Execution: Grading Criteria

- 70%: adherence to scope-modified project proposal
- 20%: code style, legibility, and comments
- 10%: user manual

- Modifiers:
 - Project difficulty
 - Team member peer evaluations

2D Project Presentation: Grading Criteria

- 50% clarity of presentation
- 30% inclusion of visuals
- 20% adherence to time limit

 In-class demos following lightning presentations, time permitting

Goals

- Build an interactive 2D graphics program
- Implement 2D transformations
 - Translation (i.e. movement)
 - Scaling
 - Rotation
- Implement 2D picking (i.e. selecting/ manipulating drawn objects on screen)
- Writing about software features
 - Planning your project
 - User manual

Example Ideas

- Simple 2D game
 - Hundreds, Robot Unicorn Attack, One Button Bob
 - Interactive art?
- (Abstract?) painting
 - Brush styles: circles, squares, lines
 - "Paint" over existing photo, image manipulation
- Diagramming software
 - Click and drag to create elements, connectors attach to anchor points

Group Formation Recommendations

Goals

Desired development environment

- Level of experience
 - Grad students and undergrad students?

Brainstorming Exercise

- Break into large groups based on general area you're interested in
 - Not sure? Pick one for now, float to another later...
- 5-10 minutes: write down ideas individually
- Share project ideas with group
 - Everyone must share something
 - All ideas are good ideas
- Form smaller subgroups to refine ideas