Assignment 2: Raytracer
Computer Graphics - CS 4300/5310

Due: February 19th, 11:59pm
You may work in pairs (i.e. groups of two) on this assignment.

Educational Objectives
* Understand ray tracing
* Implement Lambertian diffuse and Blinn-Phong specular shading
* Become comfortable with thinking in 3D

Assignment Description

For this homework, you will be implementing a raytracer along the lines of that described in Chapter 4 of
the course textbook. All input data will come from a text file; the format of this file is described below.
You are required to produce a single, static image of the scene - there is no need to implement interactive
viewpoint navigation.

You will be reading in a scene from a file. We will test your raytracer will several different scene files. You
must make it easy for us to change what file we run your raytracer with. This may be done by
making the filename a command line argument to your program, or by using a file chooser. Processing
has a built-in file chooser dialog: selectinput(). If you are using Processing to render your image, make
sure that you enable noLoop() in the draw method and save your render to a file at the end of the draw
method using the save() function.

[strongly, strongly recommend starting this assignment early and testing it incrementally. Very
incrementally. Probably 90% of all bugs in raytracers manifest themselves as rendering a black screen,
and it is very difficult to debug. It is hard to know if the problem is in your camera or your ray-sphere
intersection test, for example. If your camera is facing the wrong way, then it’s not pointing at the scene.
If the ray-sphere intersection test isn’t working, then it won’t find any objects in the scene. Both bugs
result in a black screen.

You want to be sure that the feature you have just implemented is what caused the problem. Start small,
test frequently, and add features slowly. Develop incrementally.

Input File Format

The input file for this assignment is an ASCII text file. We promise to only ever give your raytracer well-
formed input; while testing for errors in the input is always a good idea, it is not necessary for this
assignment. If you encounter a line in the file for a feature you did not implement or that you do not
understand, simply throw it away and move on to the next line. This is a computer graphics class, not a
text parsing class; you should not be spending massive amounts of time perfecting your parser so that it
throws away bad input safely and gracefully.

Each line has a syntax determined by its first set of characters. The meaning, or semantics, of each line
type is described in detail below. All entries in a line are whitespace-delimited.

All values in the input file except for filename, vertex indices, specular highlight exponent, image
resolution parameters, and the recursion depth parameter are floating point numbers. Color values (r, g,
b) are guaranteed to be on [0, 1]. All floating point values are written to at most 4 decimal places. It is
possible that a value will have a + or - sign in front of it; you should be able to handle this.

Line types marked with an * are optional for undergraduate students but mandatory for graduate
students. Line types marked with an ** are optional for all students. See the “raytracer features and
assignment grading” section below for more information about assignment requirements for
undergraduate and graduate students.

Line type Start Rest
Comment HH Any remaining text
Vertex A% xyzdxdydz
Ambient Material am rgb

Diffuse Material dm rgb
Specular Material sm rgbn
Transmissive Material** | tm rgbior
Sphere SS i

Triangle* ts ijk

Plane ps i

Point Light pl irghb
Directional Light dl irghb

Spot Light* sl irghb
Ambient Light al rgb

Camera cc i

Image Resolution ir w h

Output Image out filename
Background back rgb
Recursion Depth rdepth n

When vertex lines are read in, they should be stored in an array in the order in which they are received.

Raytracer Features and Assignment Grading

You may choose to work in pairs for this assignment. Undergraduate and graduate students have
different requirements. If a pair contains a graduate student (even if the other partner is an
undergraduate student), the assignment will be graded according to graduate student criteria.

All students are required to implement the following features:
* Parsing the file as described above
* Sphere and plane primitives
* Lambertian (diffuse) and Phong (specular) shading
* Point lights, directional lights, and ambient lights
* Parameterizable perspective camera and image resolution
* Parameterizable background color
e Shadows

Graduate students are required to implement the following additional features:
* Triangle primitives (worth 5 points if implemented by undergraduate students)
* Reflection (worth 10 points if implemented by undergraduate students)
* Spotlights (worth 5 points if implemented by undergraduate students)

The following features are worth additional credit, to a maximum score of 130% on this assignment:
* Additional primitives, e.g. cones or cylinders (5 points per primitive, 10 points max)

* Constructive solid geometry: union, difference, and intersection (15 points)?!

* A UI that shows the scene being raytraced pixel by pixel (5 points)

* Refraction (10 points)

* An acceleration structure, e.g. bounding volumes, octree, BSP tree (5 - 10 points)

If you have other ideas for extensions to the raytracer and would like to know how many points they are
worth, ask!

10% of your assignment grade will be determined by how readable and well-organized your code is.
Comment it well! Partial credit can only be assigned to well-commented code.

Vertices

Each line starting in vv defines a 3D vertex in world frame. The first three numbers are the vertex
location [x, y, z], and the last three numbers are a direction vector at that location [dx, dy, dz], which has
different meanings in different situations, as described below.

Your program must create a vertex array corresponding to all the vertices specified in the input, in order.
If there are n vertices in the input, this array will have n entries, indexed from 0 to n - 1. In a language like
Java, an easy way to implement this is to store each vertex as you read it from the input into

a List 1 (typically ArrayList is used in a situation like this, but LinkedList will work also). Then after the
entire input has been processed, convert the list to an array by calling LtoArray().

Lights

Lights are defined in the input file as they were in class. Point lights have a point and intensity; assume
that the attenuation constants for point lights and spot lights are: a=0, b=0, c=1. All lights have their
intensity specified in RGB. All RGB colors are floating point colors specified on [0, 1].

Point lights are positioned at the [x, y, z] coordinate in its specified vertex. The vector portion is ignored.
Directional lights have the direction [dx, dy, dz] from its specified vertex. The point portion is ignored.
Spot lights have position and direction as specified in the vertex. Ambient light has no position or
direction, it simply exists.

It makes sense to store all lights in some sort of data structure; a list would be a good choice.

Camera

There is only one camera in the scene; if there are multiple cameras in the scene file, use the last one
specified. The camera is at the position [x, y, z] from its associated vertex, and its view direction is
specified by [dx, dy, dz] from its vertex. The up vector is always [0, 1, 0]. The right vector can be
calculated as the cross-product of the view direction and the up vector. Assume a 60 degree field of view.
If the camera is not specified, assume that it is at [0, 0, 0] and is looking down the negative z axis.

Materials

All materials have ambient, diffuse, specular, and transmissive properties. You are not required to
implement transmissive properties for the assignment - this constitutes extra credit (i.e. implementing
refraction). Ambient and diffuse properties are specified as [r, g, b] colors. Specular material properties
are an [r, g, b] color and an n shininess constant. Transmissive material properties are an [r, g, b] color
and an index of refraction for the material (ior). All RGB colors are floating point colors specified on [0, 1].

LIf you choose to implement CSG, you must update your scene file to parse the geometry. You may do this
in a manner of your choosing; make sure you describe in your README what format you used.

Material properties apply to all primitives specified after them, until the material property changes. The
default material is:

Ambient: 0.20.20.2
Diffuse: 111
Specular: 11164
Transmissive: 0001

Primitives

Sphere primitives are defined by a point [x, y, z] and a radius defined as the norm of [dx, dy, dz]. Plane
primitives are defined by a vector that is normal to the surface: [dx, dy, dz] and a depth, the z component
of [x,v,z] ([x,y, z] is guaranteed to be on the plane). Triangle primitives are defined by three points in
clockwise order: [x1, y1, z1], [x2, y2, z2], [x3, y3, z3]. Each of these points has a normal vector [dx, dy, dz]
associated with it; these normal vectors will all be the same as each other (i.e. no curved triangles).
However, the normal vectors are not guaranteed to be normalized.

Other Instructions

If implementing reflection and/or refraction, make sure that you obey the maximum recursion depth
parameter from the scene file. The image resolution should be taken from the scene file, as should the
name of the file you will save.

Incremental Testing

If you do not add features slowly and test your code incrementally, your code will be impossible for
anyone to debug. At this point in your computer science career, you should be doing the majority of the
debugging work for your code yourself. Course staff are happy to help as much as possible, but nobody is
going to be able to solve a mess of code that you cannot help us through yourself.

The following order of feature implementation is recommended, but not required. If you follow this
implementation script it will make it easier for course staff to understand how far you have got in
building your raytracer when you request help.

1. Implement your parser. Store primitives and lights in arrays or another appropriate data
structure. Store materials in a data structure and build the references between primitives and
materials.

2. Be able to save anything to an image of the appropriate width and height. Test that your image
saving code is working.

3. Create a camera with a 60 degree view frustum that is looking straight at the scene. Make sure
your camera vectors are unit vectors.

4. Implement ray/sphere intersection, if you hit the sphere color set it to white, else color it the

background color.

Set your sphere to the ambient material color.

Implement ambient lighting.

Implement Lambertian shading for a single sphere and a single light in the scene.
Implement Blinn-Phong shading for a single sphere and a single light in the scene.
. Introduce new light types, still for just a single sphere. Test the lights incrementally.
10. Implement planes.

11. Implement shadows.

12. [Grad] Implement triangle primitives.

13. [Grad] Implement spot lights.

14. [Grad] Implement reflection.

15. Any extra credit.

© ™ N O

Examples

Here is an example scene file and the associated scene produced by the sample code. [Note the image has
been scaled to fit on the page.]

sample input file
al 0.1 0.1 0.1
output sample

ir 512 512

rdepth 2

back 0 0 0

cc 4

pl 5 0.8 0.8 0.8
dl 6 0.5 0.5 0.5
vvw 0 0 -10 -1 -1 3
am 1 0 O

vv 10 0 -10 1 -1 3
dm 1 0 O

vv 0 0 -100 0 50 O
sm 1 1 1 16

ts 0 1 3

am 0 1 O

dm 0 1 O

ss 2

vv 10 10 -10 1 1 3
vvw 0 0 10 0 0 -1
vv 100 100 0 0 0 O
vw 00000 -1

Submission Instructions
A zip file containing the following information must be uploaded to Blackboard:
* Your well-documented code
* A Windows or Linux executable
* Instructions for how to run your program and choose a scene file
* Three example output images and associated scene files
* Alist of features you implemented on top of the required features
* A README listing the number of late days you wish to use, providing the names of both team
members (or state if you worked alone), and whether you are an undergraduate or graduate
student team

Emailed assignments will not be accepted.

