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‘ elcome to AI Game Engine Programming, This book is meant to give the

game artificial intelligence (Al) programmer the knowledge and tools
- ways to com needed to create Al engines for modern commercial games. What ex-
do we mean by “game AI”? It turns out this isn’t as straightforward a question
would think.
, the term “game” is somewhat hazy itself. A “game” could refer to a spoken
at a class full of kids might play or to a complex technological undertak-
r government for training purposes. For this book, we’ll be referring to
ideo games exclusively, although some of the concepts that we’ll cover
ably be applicable to board games, or other strategic competitive game-

e come to the term “AL” Seeing as its foundations were created in
cience of Al is relatively young. The usage of Al techniques within
nore contemporary, because of the computation and storage-space
lier game machines (not to mention the simplistic nature of many
e field’s immaturity means that the definition of game Al is not
ople, even those who practice game production. This chapter will
e AL identify practices and techniques that are commonly mis-
d discuss areas of future expansion. Later in the chapter, rel-
other fields, including mind science, psychology, and robotics,
rding game Al systems.
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s INTELLIGENCE?

The word intelligence is fairly nebulous. The dictionary will tell you it is the ca-
pacity to acquire and apply knowledge, but this is far too general. This definition,
interpreted literally, could mean that your thermostat is intelligent. It acquires the
knowledge that the room is too cold and applies what it learned by turning on the
heater. The dictionary goes on to suggest that intelligence demonstrates the fac-
ulty of thought and reason. Although this is a little better (and more limiting; the
thermostat has been left behind), it really just expands our definition problem by
introducing two even more unclear terms, thought and reason. In fact, the feat of
providing a true definition of intelligence is an old and harried debate that is far
beyond the scope of this text. Thankfully, making good games does not require this
definition.

Actually, this text will agree with our first dictionary definition, as it fits nicely
with what we expect game systems to exhibit to be considered intelligent. For our
purposes, an intelligent game agent is one that acquires knowledge about the world,
and then acts on that knowledge. This is not to say that our notion of intelligence

is completely reactive, since the “action” we might take is to build a complex plan
for solving the game scenario. The quality and effectiveness of these actions then
become a question of game balance and design.

is “Game AI”?

Let us start with a rigorous, academic definition of Al In their seminal AI Bible,
Artificial Intelligence: A Modern Approach, Russel and Norvig [Russel 95] say that
Al is the creation of computer programs that emulate acting and thinking like a
human, as well as acting and thinking rationally. This definition encompasses both
the cognitive and the behavioral views of intelligence (by requiring emulation of
both actions and thinking). It also includes, yet separates, the notions of rationali
and “humanity” (because being human is sometimes far from rational, but is st
considered intelligent; like running into a burning building to save your child).

In contrast, games don’t require such a broad, all-encompassing notion of
Game Al is specifically the code in a game that makes the computer-controll
elements appear to make smart decisions when the game has multiple choices for
given situation, resulting in behaviors that are relevant, effective, and useful. No
the word “appear” in the last sentence. The Al-spawned behaviors in games are Ve
results-oriented, and thus, we can say that the game world is primarily concet
with the behavioralist wing of Al science. Were really only interested with
responses that the system will generate, and don’t really care how the system art
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at it. We care about how the system acts, not how it thinks. People playing the game

— don’t care if the game is using a huge database of scripted decisions, is making di-
< the ca- rected sea.rches ofa dec.isio‘n tree, or is l?uilding an accur_ate knowledge base qf i.ts
cfinition, surroundings and making inferred choices based on logical rules. The proof is in
Juires the the pudding as far as game Al goes. . '
ng on the Modern game developers also use the term Al in other ways. For instance:
il,;};egf Ecle Some people refer to the behavioral mechanics of the game as AL These ele-
oblem by ments should actually bf.: thought of as gameplay, bl‘lt any time t}.IC.AI con-
the feat of trolled agents do _somethmg, people tend to think of it as Al, even if it’s using
’e that is far the exact mecha‘nlsm that the hun?an Players use. .
require this Ma.ny people think .o'f game Al primarily as animation select‘lon. Once a game
entity makes a decision as to what to do, animation selection then makes a
it fits nicely lower level decision as to homi (on a visual l.evel) to perform the move. Say that
ent, For our your Al controlled baseball pitcher has decided to throw a curveball. The exact
‘)ut the world, animation that he goes through performing that decision is animation selec-
¢ intelligence tion. H9w does the windup 80, whf.:re does he look, do.es' he.t1p his hat, etc:?
omplex plan Perceptions are polled, and an intelligent contextual decision is made. But this

kind of low-level decision making is much more short range than the kind of
intelligence we are talking about. People that think of animation selection as
Al tend to be working on games with very simple Al requirements, games that
don’t require heavily strategic solutions.

Even the algorithms that govern movement and collision can sometimes fall
— nder this label (if the game uses animation-driven movement, rather than
inal AT Bibl ysics-based methods).

sel 951 say tha
thinking like
compasses bot
ng emulation
Jns of rationa
tional, but iS

e Your Chﬁd)'

, actions then

act, the term “AI” is a broadly-used moniker in the game-development
1en discussing Al with someone else in the industry (or even within the
at which you work), it’s important to know that you both agree on the
d scope of the term; miscommunication can occur if your notion of Al
rent from the other person’s (be it simpler or more complex, or just
nds of the responsibility spectrum). So, let’s be clear. When this book
will use the rather narrow definition of character-based behavioral
care only about the behavioral smarts exhibited by some character
 (the main character, a camera, an overseeing “god,” or any other
e world).

Al programming was more commonly referred to as “gameplay
use there really wasn’t anything intelligent about the behaviors
~controlled characters. See Figure 1.1 for an overall game Al
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Chapter 1

In the early days of video gaming, most coders relied on patterns or some re-
petitive motions for their enemies (for example, Galaga or Donkey Kong), or they
used enemies that barely moved at all but were vulnerable to attack only in certain
“weak points” (like R-Type). The whole point of many of these early games was
for the player to find the predetermined behavior patterns so that the player could
easily beat that opponent (or wave of opponents) and move on to another. The
extreme restraints of early processor speed and memory storage lead naturally to
this type of game. Patterns could be stored easily, requiring minimal code to drive
them, and required no calculation; the game simply moved the enemies around in
the prescribed patterns, with whatever other behavior they exhibited layered on top
(for instance, the Galaga enemies shoot while moving in a pattern when a player is
beneath them).

In fact, some games that used supposed “random” movement could some-
times lead to a pattern. The random number generator in many early games used
a hard-coded table of pseudo-random numbers, eventually exposing a discernable
sequence of overall game behavior.

Another commonly used technique in the past (and sadly, the present) to make
games appear smarter was to allow the computer opponents to cheat; that is, to
have additional information about the game world that the human player does
ot have. The computer reads that a player pushed the punch button (before the
ayer has even started the punch animation) and responds with a perfectly timed
ng move. A real-time strategy (RTS) game employing Al cheating might have
orkers heading toward valuable resource sites early in the game, before they
cplored the terrain to legitimately find those resources. Al cheating is also
d when the game grants gifts to the computer opponent, by providing the
t additional (and strategically timed) abilities, resources, and so forth that
nent uses outright, instead of planning ahead and seeing the need for these
n its own. These tactics lead to more challenging but ultimately less sat-
onents because a human player can almost always pick up on the notion
uter is accomplishing things that are impossible for the human player
sh, because the “cheats” are not available or given to the human player.
e easier-to-notice and most frustrating examples of this impossible
se of what is called rubber banding in racing games. Toward the
layer is beating the Al-controlled cars by too much, some games
1e other cars until they’ve caught up with the human player, after
olled cars return to normal. Sure, it makes the race more of a
n player, watching a previously clueless race car suddenly per-
h up to him or her borders on ridiculous. The opposite case
iting. The Al-controlled cars are so far ahead of the player that
ng the leaders suddenly crash, screw up, or just slow down
up. Most players realize they’re being coddled; they don’t
‘accomplishment when the computer gives up.
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In modern games, the old techniques are being abandoned. The primary selling
point of games is slowly but surely evolving into the realm of Al accomplishments
and abilities, instead of the graphical look of the game as it was during the last big

s is actually somewhat causal

phase of game development. This emphasis on visua

in this new expansion of Al importance and quality; the early emphasis on graph-
ics eventually led to specialized graphics processors on almost every platform, and
the main CPU is increasingly being left open for more and more sophisticated Al
routines. Now that the norm for game graphics is so high, the “wow” factor of game
graphics is finally wearing thin, and people are increasingly concentrating on other
clements of the game itself.

So, the fact that we now have more CPU
ing that the current consumer push is now for games that contain much better

Alcontrolled enemies. In the 8-bit days of gaming or before, 1 to 2 percent of total
CPU time was the norm, if not an overestimation, for a game’s Al elements to run
in. Now, games are routinely budgeting 10 to 35 percent of the CPU time to the Al
system [Woodcock 01], with some games going even higher.

Today’s game opponents can find better game solutions without cheating and
can use more adaptive and emergent means—if for no reason other than that they
have access to faster and more powerful processors driving them. Modern game
Al is increasingly leading towards “real” intelligence techniques (as defined by aca-
demic Al), instead of the old standby of pre-scripted patterns ot behaviors that

only mimic intelligent behavior. As games (and gamers’ tastes) become more com-
k will continue to be infused with more complex Al techniques

time is very advantageous, consider-

plex, game Al wor
(heuristic search, learning, planning, etc.).

came Al Is Not

The term game Al can be used as quite the broad label, often loosely used when re-
ferring to all sorts of areas within a game: the collision avoidance (or pathfinding)
system, the player controls, the user interface, and sometimes the entire animation
system, To some extent, these elements do have something to add to the Al world
and are elements that, if done poorly, will make the game seem “stupider;” but they
are not the primary Al system in a game. An exception to this might be a game in
which the gameplay is simple enough that the entire smarts of the enemies are i
moving around or choosing the right animations to play.

The difference is this: Game Al makes intelligent decisions when ther
are multiple options or directions for play. The above-mentioned secondary
support systems, while making decisions from a pool of options/ animations/path
are more “find the optimal” (read: singular) solution for any particular inpu

The main Al in contrast might have many equally good solutions, but needs !
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imary selling consider planning, resources, player attributes (including esoteric attributes like
mplishments personal'ity type. or things like character flaws), and so on to make decisions for the
\g the last big game’s bigger picture.

An alternative way of thinking about this differentiation is that these support
systems are much more low-level intelligence, whereas this book will focus mostly
on the high-level decisions that an Al system needs to make. For example, you get
out of your chair and walk across the room to the refrigerator. The thought in your
mind was, “I want a soda out of the fridge.” But look at all the low-level intelli-
gence you used to accomplish the task: your mind determined the right sequence
of muscle contractions to get you out of the chair (animation picking), and then
started you moving toward the fridge (behavior selection), threading you through
all the things on the floor (pathfinding). In addition, you slightly lost your balance
_but regained it quickly (physics simulation) and scratched your head on the way
there (secondary behavior layering), in addition to a myriad of other minor actions.
None of these secondary concerns changed the fact that your entire plan was to go
get a soda, which you eventually accomplished. Most games split up the various
levels of decision making into separate systems that barely communicate. The point
that these low-level systems do support the intelligence of the agent but, for this
oolc’s purposes, do not define the intelligence of an Al-controlled agent.

_ A completely separate point to consider is that creating better game Al is not
ssarily a result of writing better code. This is what puts the “A” in AI. Many
rammers believe that Al creation is a technical problem that can be solved
ly with programming skill, but there’s much more to it than that. When build-
me Al a good software designer must consider balancing issues from such
te areas as gameplay, aesthetics, animation, audio, and behavior of both the
he game interface. It is true that a vast number of highly technical chal-
t be overcome by the Al system. However, the ultimate goal of the Al is
e the player with an entertaining experience, not to be a demonstration
ever code. Gamers will not care about your shiny new algorithm if it
mart and fun.

is not the best code; it is the best use of code and a large dollop of
. Some of the smartest-looking games have used very question-
y achieve their solutions, and although this book is not advocating
de, nothing should be thrown away if it helps to give the illusion
d enhances the fun factor of the game. Plus, some of the most
n the world started out as a mindless hack, which blossomed
1m later, upon retrospection and cleanup.

note, game Al is also not some kind of new life form—a dis-
will eventually take over your PlayStation® and command you
ywood routinely tells us that something sinister is probably
I us, but the truth is likely far less dramatic. In the future,
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we will most likely have access to a truly generic Al paradigm that will learn to
competently play any game, but for now this is not the case. Right now, game Alis _ B,
still very game-specific and very much in the hands of the coders who work on it. tional
The field is still widely misunderstood by the non-programming public, however, compt
and even by those people working in game development who don’t regularly work staten
with Al systems. ment.
on tot
humar
How THis DEFINITION DIFFERS FROM Tuat of Acapemic Al S‘(l)lutl“(li’
nd
The world of academic Al has two main goals. First is to help us understand intelli- Sa
gent entities, which will, in turm, help us to understand ourselves. Second is to build ’an;ceu
intelligent entities, for fun and profit, you might say, because it turns out that these {1111] I in
intelligent entities can be useful in our everyday lives. insgt;x
The first goal is also the goal of more esoteric fields, such as philosophy and in Ocs
ore functional way. Rather than the philosophical, ga%nepg

psychology, but in a much m
«“Where in the brain does intel- |
man

“Why are we intelligent?,” or the psychological,
ligence come from?,” Al is more concerned with the question, “How is that guy o br
econd goal mirrors the nature of the 3 pr
progra;

ding answer?” The s
western world), in that the research that is

fits is also the most likely to win the largest

people

finding the smart-soun
ing aga

practical economy (especially in the

most likely to result in the largest pro
funding. spend
As stated earlier, Russel and Norvig [Russel 95] define Al as the creation of . ~ settin
computer programs that emulate four things: . ; (i
- i

1. thinking humanly ; the difi
2. thinking rationally ‘ Quake
fectly, a

3. acting humanly
4, acting rationally ; map, it
. : s . i _we wan
In academic study, all four parts of this definition have been the basis for build it
e example of a program spe iddle

ntelligent programs. The Turing test is a prim
nbap

ated for acting humanly—the test states that if you cannot tell

etween the actions of the prograin and the actions of a person,
itive theorists, who are helping to blend tra
hope to lead towards human-l

think humanly. Sheer logic !
s without personal bias or emotion, purely by think
ms are concerned with acting rationally—aly
ect answer that, in turn, directs the syster

ingi
cifically cre
difference b
program is intelligent. Some cogn
tional human mind science into Al creation,
intelligence by actually g
tems try to solve problem
rationally. Lastly, many Al syste
trying to come up with the corr

behave correctly.

etting a computer to
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But, the vast majority of academic Al study is heavily biased towards the ra-
tionality side. If you think about it, rationality lends itself much more cleanly to a
computing environment, since it is algorithmic in nature. If you start with a true
statement, you can apply standard logical operators to it and retain a true state-

¢ill learn 1O
/, game Alis
) work on it.
lic, however,

gularly work ment. [n contrast, game Al focuses on acting “human,” with much less dependence
on total rationality. This is because game Al needs to model the highs and lows of
human task performance, instead of a rigorous search toward the best decision at
all times. Games are played for entertainment, of course, and nobody wants to be

soundly beaten every time.
—_— Say you're making a chess game. If you're making this chess game as part of
<tand intelli- an academic study, you probably want it to play the best game possible, given time
st to build and memory constraints. You are going to try to achieve perfect rationality, using
?n(itltsh;)t these highly-tuned Al techniques to help you navigate the sea of possible actions. If
> o1 instead, you are building your chess game to give a human player an entertain-
Jhilos ophy and k"ing opponent tf) play against, th'en your goal shifts dramatically. }\Iow you want a
phllOSOPhlcaL game that provides the person with a suitable challenge, but doesn’t overwhelm the

uman by always making the best move. Yes, the techniques used to achieve these
o programs might parallel in some ways, but because the primary goal of each
ogram s different, the coding of the two systems will dramatically diverge. The
ple who coded Big Blue did not care if Kasparov was having fun when play-
gainst it. But the people behind the very popular Chessmaster games surely
lot of time thinking about the fun factor, especially at the default difficulty

ain does intel-
Tow is that guy
L nature of the
research that is
5 win the largest

-eation Of
s the crea ‘ is an odd example because humans playing a chess program usually ex-

perform pretty well (unless they’re just learning and have specifically set
rating of the program to a low level). But imagine an Al-controlled
eathmatch opponent. If the bot came into the room, dodged per-
perfectly, and knew exactly where and when powerups spawned in the
dn’t be very fun to play against (not for very long, anyway). Instead,
more human level of performance from a game Al opponent. We
gainst an enemy that occasionally misses, runs out of ammo in the
jumps wrong and falls, and everything else that makes an oppo-
n. We still want competent opponents, but because our measure
humans, involves a measure of error, we expect shortcomings
ermining how intelligent, as well as how real, something is.
rfect isn’t seen as more intelligent; it is usually seen as either
'ei‘might say “like a computer”).

he basis for bu
of a program $
jou cannot teﬂ
1s of a person
bing to blend tr
)wards huma-
ly. Sheer logic

el by thif s are generally not trying to model humanity (although
1, P Gonallie ' They are mostly trymg to model intelligence—the abil-
g ra onal decision given all the possible decisions and the

cts the sys :
lire e and only requirement and, as such, the reason why
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all our limitations in games (such as time or memory) are not given thought. Also,
by distancing themselves from the issues of humanity, they don’t run into the sticky
problems in dealing with questions about what constitutes human intelligence
and proper problem solving. They just happily chug along, searching vast seas of
agreed-upon possibility for the maximum total value.

Eventually, computing power, memory capacity, and software engineering will
become so great that these two separate fields of Al research may no longer be dis-
sociated. Al systems may achieve the kind of performance necessary to solve even
the most complex of problems in ceal time, and as such, programming them might
be more like simply communicating the problem to the system. Game programmers
would then use the same general intelligence systems that any programmer would.

ApPLICABLE MIIND SCIENCE AND PsycHoLOGY THEORY

Thinking about the way that the human mind works is a great way to flavor your
Al programming with structural and procedural lessons from reality. Try to take
this section with a grain of salt, and note that different theories exist on the
workings and organization of the brain. This section is meant to give you ideas and
notions of how to break down intelligence tasks in the same ways that the human
mind does.

BraiN ORGANIZATION

Classically, the brain is divided up into three main subsections: the hindbrain (or
brain stem), the midbrain, and the forebrain. Most people may have heard these di-
visions somewhat wrongly referred to as the reptilian brain, the mammalian brain,
and the human brain, but recent research has shown this sort of clear-cut, species
related division to be false. Almost all animal brains have all three parts, just i
different sizes and, in some Cases, in dramatically different locations (thus, snake
have a mammalian brain region).

These brain regions can be divided into smaller working structures, each 0
which operate independently by using local working memory areas and acces!
ing neighboring synaptic connections to do specific tasks for the organism (fex
conditioning in humans is mostly centered in a brain structure called the amygdal
for example). But these regions are i
perform global-level tasking as well (the above-mentioned amygdala,
thalamus and some cortical regions, is also a primary first-step collection spot
emotional data, which will then be sent to another brain structure called the hip
campus for blending with other sensory input and eventual storage into long-t
memory). If you think of the brain as being an object-oriented class, the amyg
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would be a small class, with its own internal functions and data members. But it

pught. Also, A L. ] .

the sticky would also be an internal structure within other classes, like Long-Term Memory,
° relligence or Forebrain. This object-oriented, hierarchical organizational model of the brain
mtetlis has merit when setting up an Al engine, as seen in Figure 1.2, which shows a nice

vast seas of . . .
mirroring between brain and game systems.

By breaking down your Al tasks into atomic modules that require little knowl-

neering gﬂl_ edge of each other (like the brain’s small, independent structures), you'll find it
nger be 1Sn much easier to follow good object-oriented programming principles. Combina-
o solve e'veht tions of the atomic modules can be blended into more complex representations
 them M1 s as needed, without replicating code. This also represents the kind of efficiency we
grogrammﬁi should be trying to achieve in our Al systems. Avoid single-use calculations and
nmet WO code whenever possible, or input conditions that are so rare as to be practically
hard-coded. Alas, inefficiency cannot be completely overcome, but most inefficien-
cies can be eliminated with clever thinking and programming.
—

1o flavor your LEDGE BASE AND LEARNING

ity. Try to take
s exist on the
e you ideas and
that the human

Although the inner workings of the human memory system are not fully under-
tood, the common idea is that information is stored in the form of small changes
brain nerve cells at the synapse level. These changes cause differences in the
trical conductivity of different routes through the network and, as such, affect
firing potential of specific nerve cells as well as whole sub-networks. If you use
cular neural pathway, it gets stronger. The reverse is also true. Thus, memory
s use a technique that game designers could learn a lot from (no pun in-
that of plasticity. Instead of creating a set-in-stone list of Al behaviors
ions to human actions, we can keep the behavior mix exhibited by the
ble through plasticity. The AI system could keep track of its actions and
f whether or not the human consistently chooses certain behaviors
It could then recognize trends and bias its behaviors (or the requisite
ures, as a defense) to plastically change the overall behavior mix that
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n Al memory system would require a dependable way of deter-
good” to learn. We humans rely on teaching conventions and
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ids, the human brain would just store everything, leading to
ommunication, and even delusion. Although very contextu-
Al learning would keep the human player from exploiting
ching it misleading behaviors, knowing that the system
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- Physics
- Navigation

Frontal Lobe

- Higher Brain Functions
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- Learning

- Decision Making
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- Learning
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Occipital Lobe

- Visual Processing

- Perception

FIGURE 1.2  Object-oriented nature of the brain related to game Al systems,
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he low-blocking AL But another level of AT memory performance would
Al noticing that pattern, and making adjustments to how it would handle
i in the future, This would be tantamount to learning about how the

rer useful lesson from nature is that the rate of memory reinforcement
ation in the human brain is not the same for all systems. Usually, memo-
eated only after repeated exposure to the information. Likewise, already
mories tend to take a period of time before they either wither through
will require conscious counter-association in order to quell. Memories
with pain aversion, however, may never fully extinguish, even if the per-
xperienced the relation once. This is a good example of nature using
td coding. The usually plastic changes in the brain can be “locked in”
g the learning process or moving these changes into a more long-term
d thus not be allowed to degrade over time. But like the brain, too
oding used in the wrong place can lead to odd behavior, turning people
me characters) into apparent phobics or amnesiacs.
r concept to think about is long-term versus short-term memory.
r working memory, can be thought of as perception data that can
nto for a short time, in a small queue. The items sitting in short-term
e filtered for importance, and then stored away into longer-term
simply forgotten about by sitting idle until a time duration is hit or
ta comes in and bumps it off the end of the queue. Varying the size of
d the rates of storage creates such concepts as attention span, as well
edness.
have essentially digital memory. An enemy will see a player and
racter for a while. But if the player hides, the enemy eventually for-
layer and goes back to what he was doing, This is classic state-based
it is also very unrealistic and unintelligent behavior, It’s even more
n the enemy didn’t just see the player, but was shot and injured
1ge. By using a more analog memory model for our opponent, he
k to his post, but he’d be much more sensitive to future attacks,
kely spend the time at his post bandaging his wounds, would prob-
ority to call for backup, and so forth. For sure, some games do use
mory systems. But the vast majority does not.
also makes use of modulators, chemicals that are released into the
> change in brain state, and take a while to degrade. These are
aline or oxytocin. These chemicals’ main job is to inhibit or en-
of neurons in specific brain areas. This leads to a more focused
s flavoring the memories of the particular situation in a contex-
Al system, a modulator could override the overall Al state, or
avior exhibited within a certain state. In this way, conventional

stem
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state-based Al could be made more flexible by borrowing the concept of modula-
tion. The earlier-mentioned enemy character that the player alarmed could transi-
tion to an entirely different Alerted state, which would slowly degrade and then
transition back down to a Normal state. But using a state system with modifiers,
the enemy could stay in his normal Guard state, with an aggressive or alerted
modulator. Although keeping the state diagram of a character simpler, this would
require a much more general approach to coding the Guard state. More on this in
Chapter 15, under finite state machine extensions.

The human brain stores things in different memory centers. It does this in a
few different ways: direct experience, imitation, or imaginative speculation. With
the possible exception of speculation, which would require quite a sophisticated
mental model, game characters may gather information in the same ways. Keeping
statistics on the strategies that seem to work against the human and then biasing
future AT behavior could be thought of as learning by direct experience. Imitation
would involve recording the strategies that the human player is successfully using
and employing them in return.

The problem that games have had with classical Al learning algorithms is that
they usually take many iterations of exposure to induce learning. It is a slippery
slope to do learning in the fast-paced, short-lived world of the Al opponent. Most
games that use these techniques do all the learning before hand, during production,
and then ship the games with the learning disabled, so that the behavior is stable.
This will change as additional techniques, infused with both speed and accuracy,
are found and made public.

But learning need not be “conscious.” Influence maps (see Chapter 19) can be
used by a variety of games to create much lower level, or “subconscious” learning,
making Al enemies seem smarter without any of the iteration issues of normal
learning. A simple measure of how many units from each side have died on each
spot of the map could give an RTS game’s pathfinding algorithm valuable informa-
tion necessary to avoid kill zones where an opponent (human or otherwise) has
set up a trap along some commonly traveled map location. This learning effect
could even erode over time or be influenced by units relaying back that they have
destroyed whatever was causing the kill zone in the first place. Influence maps are
also being used successfully in some sports games. For example, by slightly perturb-
ing the default positions of the players on a soccer field to be better positioned for
the passes the human has made in the past. The same system can also be used by
the defensive team to allow them to be better able to possibly block these passes
Influence map systems allow cumulative kinds of information to be readily stored
in a quick and accessible way, while keeping the number of iterations that have (0
occur to see the fruition of this type of learning very low. Because the nature of the
information stored is so specific, the problem of storing misleading information|
also somewhat minimized.
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che concept of modul

f data coming from our senses bombards us at all times. How does
sw which bits of information to deal with first? Which pieces to
When to override the processing it is currently doing for a more life-
situation? It does this by using the brain’s various systems to quickly
| prioritize incoming data. Cognition can be thought of as taking all
g sense data, also called perceptions, and filtering them through your
ge (both instinctual and intuitive) as well as your reasoning centers
es your stored memories), to come up with some understanding of
ceptions mean to you. Logic, reason, culture, and all of your per-
-ules can be thought as merely ways of sorting out the important
m the background noise.

e sheer volume of input coursing into the mind of a person living in
ust contend with the sights, sounds, and smells of millions of people
nstant pathfinding through the crowd, the hawkers, and homeless
ttention, and countless other distractions. Perceptions are also not all
-essures of the modern world cause stress and anxiety that split your
igment your thoughts. Your mind also needs to try to distill the
ights inside your own head from the sea of transient, flighty ideas
constantly engaged in. If your brain tried to keep all this in mind,
able to concentrate sufficiently to perform any task at all. Only by
formation down to the most critical half-dozen perceptions or so
an you hope to accomplish anything.

we don’t suffer as much from the flood of data because we can
ur perceptions at any level in the process, and this makes the
a bit less mystical. In Figure 1.3, you can see a mock-up of a
g different perceptions for the various decisions being made
n the foreground. Make sure, when coding any particular Al
you only use those perceptions you truly need. Be careful not
r you may make the output behaviors from this subsystem
n auditory subsystem that only causes an enemy character to
its location is within some range to the enemy would seem
er sets off a particularly loud noise just outside of that range.
uld take into account distance and starting volume, so that
urally trail off as they travel. You might also want to take into
tics of the environment because sounds will travel much longer
n than in an office building (or underwater versus open air).
le examples, but you see the notion involved. Perceptions are
"'ngle value, because there are usually many ways to interpret
erception represents.
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Influences on Al
Player:

Time left in game
Score
Behavior/Skill of player

ignored by Al
Player:
Crowd noise
Bright lights
Human concerns (ie. rent,
girifriend, etc)

Guarding position
based on movement
7 of opponent

Hands

N
Head

m opponent, ball

Tracking position of

Feet
Navigation

Position data
Terrain data

FIGURE 1.3 A visual depiction of various perceptions being taken into account by a game character.

We can think of the systems used in the Al world as filters as well. Whatever
technique we are using as our primary decision-making system, to determine the
right action to perform, is really just a method of filtering the current game state
through all the possible things that the AT can do (or some subset of these possibili-

ties, as defined by some rule or game state). Thus, we see the primary observation
many people make about Al in general—that it all boils down to focused search-
ing, in some way or another. This is true to some degree. Most Al systems are just
different ways of searching through the variety of possibilities, and as such, the
topography of your game’s possibilities can be used to conceptually consider
the best Al technique to use. This topography is generally called the “state space” of
the game. If your game’s possible outcomes to different perceptions are mostly iso-
lated islands of response, with no real gray conditions, a state-based system might
be the way to go. You're dealing with a set of exclusive possible responses, an almost
enumerated state space. However, if the full range of possible responses is more
continuous, and would graph out more like a rolling hillside with occasional dips
(or another metaphor with more than three dimensions, but you get the idea),2.
fuzzy system or one using neural nets might be a better fit, as they tend to wor
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ng local minima and maxima in continuous fields of response, We
and the other Al systems in Part III and Part IV of the book; this
lustration.

Hands

} Guarding position
based on movemen
of opponent

al construct that is again being embraced as a major field of inves-
lkkbehavioralists and cognitive scientists is that of the so-called The-
Head M). This concept has a good deal of merit in the field of game Al
1ary job is creating systems that seem intelligent. A ToM is actually
tive capacity of human beings, rather than a theory. It fundamen-
ne person has the ability to understand others as having minds
that are separate from his own. In a slightly more technical fash-
1ed as knowing that others are intentional agents, and to interpret
gh theoretical concepts of intentional states such as beliefs and
78]. This isn’t as complicated as it sounds. Think of this as having
tent, rather than just strict recognition of action. We do it all the
d humanize even the most nonhuman of environmental elements.
 bit of code from a Java version (written by Robert C. Goerlich,
ly Al program Eliza, which, in its time, did a remarkable job of
ve it was much more than it really was. The idea of attributing
our environment is almost innate in humans, especially objects
le experiments in which subjects were asked to explain what they
scene consisting of a colored spot on a computer screen mov-

t, closely followed by a different-colored dot, a large portion

it as “the first dot was being chased by the second.” People give
ies, and even think (at some superstitious level) that if you talk
see the primary observ: st gettiI’l.g rid of it, it will perform poorly.

1s down to focused se ;t’he ability to form a ToM about others usually develops at

hree. A commonly used test to determine if the child has de-

trait is to question the child about the classic “False Belief
n this problem, the child is presented with a scene in which a

bby puts a personal belonging, such as a book, into his closet.

hile he’s away, his little brother comes and takes out the book

oard. The child is then asked where Bobby will look for his

ack. If the child indicates the cupboard, he reveals that he

understanding that Bobby wouldn’t have the same informa-
he child does. He, therefore, does not have an abstract frame
about Bobby’s mind, hence no ToM about Bobby. If the
nswer, it shows that he can not only determine facts about
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the world but can also form a theoretical, simplified model of others’ minds that
includes the facts, desires, and beliefs that they might have; thus providing a theory
of this other’s mind.

LISTING 1.1 Some sample code from a Java version of Eliza.

public class Eliza extends Applet
{

ElizaChat cqfl;
ElizaRespLdr ChatLdr;

static ElizaConjugate ChatConj;
boolean _started=false;
Font _font;

String _8;

public void init()

{

super.init();
Chatldr = new ElizaRespLdr();
ChatConj = new ElizaConjugate();

//{{INIT_CONTROLS
setLayout(nully);
addNotify(};
resize(425,313);
setBackground(new Color(16776960));
list1 = new java.awt.List(0,false);
listi.addItem(“Hi! I’'m Eliza. Let’s talk.”);
add(list1);
list1.reshape(12,12,395,193);
list1.setFont(new Font(“TimesRoman”, Font.BOLD, 14}));
list1.setBackground(new Color(16777215));
buttoni = new java.awt.Button

(“Depress the Button or depress <Enter> to send to Eliza”);
buttoni.reshape(48,264,324,26);
buttoni.setFont(new Font(“Helvetica”, Font.PLAIN, 12)});
buttont.setForeground(new Color(0));
add (buttoni);
textField! = new java.awt.TextField();
textField1.reshape(36,228,348,24);
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el of others’ minds th
 thus providing a theg

textFieldl.setFont(new Font(“TimesRoman”, Font.BOLD, 14));
textFieldl.setBackground(new Color(16777215));
add(textFieldl);

[} }
textFieldl.requestFocus();

hlic boolean action(Event event, Object arg)
-
if {event.id == Event.ACTION_EVENT && event.target

i
H

buttont)

clickedButtoni();
textFieldl.requestFocus();
~ return true;

} ‘
if (event.id == Event.ACTION_EVENT && event.target
textField1)

clickedButtoni();
textField1.requestFocus();
return true;

}

return super.handleEvent(event);

ublic void clickedButtoni ()

{

parseWords (textField1.getText());
textFieldtl.setText(“”);
textFieldl.setEditable(true);
)3 ; textFieldl.requestFocus();

. BOLD, 14)); blic void parseWords(String s_)

. ]

. . |

’ ' int idx=0, idxSpace=0;

r> to send to Eliza”); int length=0; /1 actual no of elements in set
. - int maxLength=200; // capacity of set

nt.PLAIN, 12)); - o int wy

'list1.add1tem(s_);

list1.makeVisible(list1.getVisibleIndex()+1);
5 =5 _.tolowerCase()+” «;
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while(s_.index0f (" “)>=0)
s_=s_.substring(O,S_.indeXOf(“‘“))+
s_.substring(s_.index0f (“‘“)+1,s_.length());

bigloop: for(_length=0; _length<_maxiLength &&
idx < s_.length(); _length++)
{
/] find end of the first token
idxSpace=s_.index0f (“ “,idx};
if (idxSpace == —1) idxSpace=s_.length(};

String _resp=null;
for(int i=0;i<ElizaChat.num_chats && _resp == null;i++)
{
_resp=ChatLdr.cq[i].converse
(s_.substring(idx,s_.length()));
if(_resp i= null)
{
list1.addItem(_resp);
list1.makeVisible(list1.getVisibleIndex()+1);
break bigloop;

}
/] eat blanks

while(s_.length() > ++idxSpace &&
Character.isSpace(s_.charAt(idxSpace)));
idx=idxSpace;

if(idx >= s_.length(})
{
_resp=ChatLdr.cq[ElizaChat.num_chats-1]
.converse(“nokeyfound”};
list1.addItem(_resp);
list1.makeVisible(list1.getVisibleIndex()}+1);

}
//{{DECLARE_CONTROLS

java.awt.List listl;
java.awt.Button buttont;
java.awt.TextField textFieldt;

113}
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num_chats=0;
‘ : \ V String _keyWordList[];
" k string _responselist[];
int _idx=0;
int _rIdx=0;
boolean _started=false;
_boolean _kw=true;
_String _response;
ate String _dbKeyWord;

== nullji++) _widx = 0;
wo=0;
X3

idx,s_.length()) _space;
_plus;

sIndex()+1);
um chatstt;
keyWordList= new String[20];
‘esponsel ist=new String[20];
1dx=0;

\ dx=0;

xSpace))) ; ceyWordList[ idx]=» «;

pace=" “.charAt(0);

plus="+" charAt(0);

5-11

wokeyfound”); String converse(String kw )

ndex()+1) . esponse = null;
r{int i=0; i <=

i _idx — 15i+4)
__dbKeyWord =

_keyWordList[i];

Vif(kw_.length()>=_deeyWord.length()&&
. _keyWordList[i].equals
(kw_.substring(0,_deeyWord.length())))

_ Widx (int) Math.round(Math.random()* ridx-.5);
_response = _responselList[_widx];
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_x=_response.index0f (“*”);
if (_x>0)
{
_response=_response.substring(o,_x)+
kw_.substring(_dbKeyWord.length(),
kw_.length(});
if(_x<_responseList[_widx].length()—1)
_response=_response+”?”;
_response=Eliza.ChatConj
.conjugate(_response,_x);
_response=_response.replace(_plus,_space);

}

break;

return _response;

}

public void loadresponse(String rw_)

{
_responseList[_rldx]=rw_;
_rldx++;

}

public void loadkeyword(String kw_)

{
_keyWordList[_idx]=kw_;
_idx++;

It has been routine in philosophy, and the mind sciences in general, to see this
ability as somewhat dependent upon our linguistic abilities. After all, language
provides us a representational medium for meaning and intentionality; thanks
to language, we are able to describe people’s actions in an intentional way. This
is also probably why Alan Turing gave us his famous test as to a true measute of
intelligence exhibited by a computer program. If the program could communi-
cate successfully to another entity (that being a human), and the human could
not tell it was a computer, it must be intelligent. Turing’s argument is thus that
anything we can successfully develop a ToM toward must be intelligent—great
news for our games, if we can get them to trigger this response within the people
who play them.
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further studies in chimpanzees and even some lower primates have
have rematkable abilities toward determining intention and predic-
ther and us without verbal communication at the human level. So,
11 ideas about another’s mindset is either biologically innate, can be
sual cues, ot is possibly something else entirely. Whatever the source
tion is that we do not require our Al-controlled agents to require
nication skills to instill the player with a ToM about our AL
he people playing our games to not seea creature in front of them
- health and Y amount of strength, but rather a being with beliefs,
then we will have really won a major battle. This superb suspen-
the human player can be achieved if the Al system in question
s of decisions that a human would make, in such a way as to
er traits and rise above the simple gameplay mechanic involved.
model minds, not behavior. Behavior should come out of the
our Al creations, not from the programmers’ minds. Note that
¢ need to give our creations perfect problem-solving abilities
Nor does this mean that every creature in the game must have
nteraction and nuance. The main bad guys that will be around
r long-term characters (including the protagonist) would be
hem more “rich” in terms of personal connection to the player.
things a lot of people attribute great movies to is a “great bad
use the bad guy has been written in such a way that people can
ality and get into his thinking to a certain extent.
ization of this human tendency give us as game producers? It
s we follow some rules, people’s brains actually want to believe
effect, knowledge of this fundamental, low-level goal (that of
rking to create a ToM about each other) can help give the pro-
ers guidelines about what types of information to show the
types to specifically not show, and what types to leave ambigu-
says, “ The audience sees what I want it to see.”
an Al-controlled behavior from a squad combat game. In
ayout of a simple battlefield, with the human player at the bot-
our CPU enemies closing in on him, moving between many
ole behavioral rules for these enemies are the following:

,_X)t
‘_deeyWord.length(

kw_.length())
yth()-1)

‘te(_response,_x);,
1lus,_space);

jences in general, to
abilities. After all, la
- and intentionality;
'in an intentional W
test as to a true me
e program could co
man), and the huma
ring’s argument is tht
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is response within the

ting at the player, and I'm (as the enemy) fully loaded and
hooting. Note that only one player can shoot at a time in this

open, I will head for the nearest unoccupied cover position,
ut something like “Cover me!” or “On your left!” or even just
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If 'm at a cover position, I'll reload, and then wait for the guy shooting to be
finished, maybe by playing some kind of scanning animation to make it look
like he’s trying to snipe the player.

Now imagine how this battle will look to the human player. Four enemy soldiers
come into view. One starts firing immediately, while the other three dive for cover,
Then, the one that was firing stops, shouts “Cover me!,” and runs forward for cover
as a different soldier pops up and starts firing. Here we have a system in which the
soldiers are completely unaware of each other (save for the small detail that “some-
one is shooting”), the player’s intentions, or the fact that they’re performing a basic
leapfrogging advance-and-cover military maneuver. But because the human player
is naturally trying to form a ToM about the enemy, the human player is going to see
this as very tightly-coordinated, intelligent behavior. Therefore, the ruse has worked,
‘We have created an intelligent system, at least for the entertainment world.

BounbeED OpTIMALITY

When rationality is a goal of your Al system, the degree of rationality you are striy-
ing for can be the prime determiner of the overall system design. If your goal is

I

FIGURE 1.4 Emergent Theory of Mind in a loosely coordinated enemy squad.
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 shooting to | erfect rationality, you might have to accept that your program is going to
‘ of time to run to completion, unless the decision state space
is very small indeed. For most entertainment games, perfect
ty is not only unnecessary, but actually unwanted. As discussed earlier, the
ame Al is usually to emulate a more human performance level, including
Jibles, falls, and outright screwups.
£ the reasons that humans make all these mistakes is the near certainty of
» ources. In the real world, it’s practically impossible to get everything you
etail that “som me up with the perfect solution. There’s always some bottleneck: too few
ot enough time, insufficient money, or just plain limited ability. We try to
e these hurdles by using what is called bounded optimality (or BO), which
s that we make the best decisions we can in the face of resource restric-

chances of getting the best possible solution are directly linked to the
d amount of limitations. In other words, you get what you pay for.
rechniques are prevalent in most academic Al circles (as well as in game
nd even philosophy) because “optimal” solutions to real-life problems are
; mputationally intractable. Another reason is that very few real-life prob-
ve no limitations. Given the realities of our world, we need a method of
ng success without requiring absolute rationality.

omputers, the decision-making ability of people is limited by a number
including the quality and depth of relevant knowledge, cognitive speed,
Il problem-solving skill. But that only covers the hardware and software.
uffer from environmental limitations that might make it impossible to
it our brains. We live in a “real-time” world, and must make decisions
save our lives (or merely save our careers) in very short time frames. All
rs come together to flavor our decisions with a healthy dose of incor-
So, instead of trying to brute force our programs into finding the ideal
we should merely guide our decision making in the right direction and
t direction for as much time as we have (of course, computing power
ally get to the level that any time restriction will vanish to the point of
1t for now we must still grapple with what we have). The decisions that
ill then, we hope, be somewhat more human and work well with the
onstraints of the platform and genre of game we are working on. In effect,
ptimal programs rather than achieve optimal actions.
lem with trying to use BO methods on many types of systems is that they re-
mental solutions; that is, solutions that get better by degrees as they are given
irces. Incremental solutions are definitely not universal to all problems, but
f computationally challenging hurdles that require BO thinking can often
in some way to an incremental level. Pathfinding, for example, can be given
els of complexity. You might start by pathfinding between very large map
n within those sectors, then locally, and then around dynamic objects. Each

to make it lo

r enemy soldi
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rer is going to
ruse has work
1t world.
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successive level solves the problem slightly better than the last, but even the earliest leve]
gets the player going in the right direction, at least in a primitive sense.

LeEssoNs FrRoM ROBOTICS

Robotics is one of the few academic fields with a good deal of similar tasking to the
world of game Al. Unlike other academic endeavors which can deal with large-scale
problems and can use exhaustive searches to find optimal results, robots usually
have to deal with many real-time constraints like physics, computation speed prob-
lems (because of limited on-board computer space), and physical perception of the
environment. Robots usually have to deal with the computational issues of solving
problems intelligently and must house this technology into a physical construct
that must deal with the real world directly. This is truly an ambitious task. As such,
academic theories are taken and ground against the stone of reality until finely
honed. Many techniques crafted by robotics end up in games because of the inher-
ent optimizing and real-world use that robotics adds to the theoretical Al work
done in research labs. The lion’s share of the successful pathfinding methods we
use in games, including the invaluable A* algorithm, came out of robotics research,
Some of the prime lessons that robotics has given us include the following:

SimpLICITY OF DESIGN AND SOLUTION

Many robotics methodologies, like games, use the “whatever works” model. Robot-
ics in general is a very hard problem, with an ambitious variety of challenges such
as navigating undefined terrains, or recognizing general environmental objects.
Every true perceptual sense that a researcher bestows on his or her robot translates
into a tremendous amount of technology and study necessary to break down the
system into workable parts. If the system can be made to work without the sense,
then the solution is just as good, if not better, considering that the expense in both
time and money was saved by not having to involve a complex perception sub-
system. Some of Rodney Brooks’s robots illustrate this perfectly: instead of trying
to navigate areas by recognizing obstacles and either circumventing or calculating
how to surmount them, some of his robot designs are largely mindless; insect
creations that blindly use general-purpose methods (like multiple simple fla
arms) to force their way over obstacles. The lesson here is that while others spe
years trying tech-heavy methods for cleverly getting around obstacles and failin:
Brooks’s designs are being incorporated into robots that are headed to Mars.

THEORY OF MIND

ToM concepts have also been advanced by robotics. Researchers have discovered th
people deal better with robots if they can in some way associate human attribuf
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1 thought processes) with the robot. Incorporating features into your
rove this humanization is a good thing for robotics researchers in
y makes the robot seem more intelligent to people, and more agree-
es of the public. Imagine a robot built to simply move toward any
umans, when asked to describe this simple behavior, will usually
robot “likes lights,” or “is afraid of the dark.” Neuroscientists usually
an behavior “attributing agency.” This is a fancy way of saying that
tendency to think of moving objects as doing so because of some in-
n, in most cases by a thinking agent. Think of it this way: you’re on a
and you see the bushes rustling. Your brain thinks: “Yikes, there must
iere!” and you head for the nearest tree. Youre much more likely to
erage) with this response rather than if you were thinking: “Huh, that
I wonder why?” It could just be the breeze, but statistically, it is less
die if you don’t take the chance. The other notion at work here is
pomorphizing. Humans love to think of non-human things as if they
ow many times have you seen someone at the park pleading with
etriever to “stop making this so hard, you know I've had a bad week,
y use your help with the other dog.” It’s all complete silliness. Spot
gs hard; he’s reacting to the smells of the park with mostly pre-
ctual behaviors. He has no knowledge whatsoever that you've been
ek, and for that matter really can’t understand English. I've heard
ame speech given to a computer, a car, and a 12-week-old baby.
with people’s natural inclination to attribute desires and inten-
f raw behaviors, to just about anything, researchers hope to make
ple will not just tolerate but enjoy working with in the real world.
like Cog and Kismet [Brooks 98] continue to push the realm of
iteraction, mostly through social cues that deepen and build upon
ut the robot to enliven the interaction itself and the learning that
ing in. People want to believe that your creation has a mind and
t have to push a little, and give the right signals.
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botics platforms use a system whereupon the decision-making
obot is broken down into layers which represents high-level to
s about the world [Brooks 91]. This bottom-up behavior design
d subsumption) allows robots to achieve a level of autonomy in an
Iways having some fail-safe behavior to fall back on. So, a robot

low-level layer whose only goal is to avoid obstacles or other
his “avoidance” layer would get fresh information from the world
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wrch t would also override or modify behaviors coming from further

associate human atfr!
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up the decision structure, as it represents the highest priority of decision making,
As you climb the layers, the priority lessens, the amount of interaction with the
world lessens, and the overall goal complexity goes up. So, at the highest level, the
robot could formulate the high-level plan: “I need to leave the room.” In contrast,
the bottommost layer might have as its plan “Turn 10 degrees clockwise, 'm going
to run into something.” The layers within this system know nothing about each
other (or as little as possible), they simply build on one another in such a way that
the various tasks normally associated with the goal at large are specialized and con-
centrated into distinct layers. This layer independence also creates a much higher
robustness to the system since it means that a layer getting confused (or receiving
bad data) will not corrupt the entirety of the structure, and thus, the robot may still
be able to perform while the rest of the system returns to normalcy.

A structure of this kind is very applicable to game genres that have to make
decisions at many levels of complexity concurrently, like RTS games. By sticking
to the formal conventions expressed (as well as experimentally tested) by robotics
teams using subsumption techniques, we can also gain from the considerable ben-
efits these systems have been found to exhibit, including automatic fault tolerance
(between layers of the system), as well as the robustness to deal with any number
of unknown or partially known pieces of information at each level. Subsumption
architectures do not require an explicit, start-to-finish action plan, and a well-
designed system will automatically perform the various parts of its intelligent plan
in an order that represents the best way the environment will allow. This book will
cover a general way of breaking down Al engine issues using a method something
like this approach in Chapter 23.

SUMMARY

This chapter covered some basic Al terminology that we will use in later chapters,
some general psychological theory, and some concepts from other fields that are
applicable to Al system design.

g This book will use the term game Al to mean character-based behavioral deci-
sion making, further refined by concentrating on tasks that require choosing
among multiple good decisions, rather than finding the best possible decision
Older games used patterns or let the computer opponent cheat by giving it clan-
destine knowledge that the human player didp’t have; both methods are being
abandoned because of the increasing power of Al systems being used in games
Al is becoming more important in today’s games, as players demand bett
opponents to more complex games. This is true even though many games are
going online because most people still play single-player modes exclusively:
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