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ABSTRACT 

There is an ongoing need for improved autonomous virtual characters for military training, particularly in areas such 
as squad-level scenarios for the Army and Marines. In the past, simulations have often used techniques such as 
scripting or Finite State Machines for Artificial Intelligence (AI) control of non-player characters. These approaches 
allow the scenario creator to have precise control over the actions of the characters, but the cost of configuration and 
the quality of the result scale poorly as the complexity of the AI grows. As a result, they tend to lead to AI behaviors 
that are rigid and predictable, and thus are insufficiently reactive to unexpected situations and not suitable for replay 
or repeated use.  

In previous papers we have endorsed utility-based AI as our preferred alternative. This approach enables the 
developer to think in terms of heuristic equations rather than simple black-and-white decisions, and thus to create an 
AI which can examine the subtle nuance of the situation and select actions accordingly. The resulting characters 
retain the strong authorial control of previous approaches, but they can be far more believable, adaptable, and 
reactive to the situation around themselves. 

Utility-based AI is flexible and powerful, but newcomers may find guidance useful in the face of such flexibility. In 
this paper we propose several design patterns that can be applied to the configuration of utility-based AI. Much like 
design patterns for software engineering, the intent is to share “simple and succinct solutions to commonly occurring 
design problems” (Gamma et. al., 1994). These patterns can provide a complete solution for simple AI problems, but 
more importantly they provide a solid foundation on which more complicated logic can be built. 
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There is a strong need for high quality autonomous 
virtual characters for military training, particularly in 
areas such as squad-level training for the Army and 
Marines. Such characters require Artificial Intelligence 
(AI) to control their behavior. Utility-based AI is one 
commonly used approach (Mark 2009, Dill 2012, 2011, 
2008, and 2006, and Davis 1999, among others). It 
provides a combination of authorial control, reactivity, 
and believability that can be difficult to match using 
other architectures (Dill 2012).  

The term utility-based AI is used to describe a class of 
techniques in which decisions are made on the basis of 
heuristic functions that represent the relative value (or 
appropriateness) of each option under consideration in 
terms of a floating-point value. Thus, utility-based 
approaches typically have three general steps: 

1. Build a list of options, which are the choices from 
which we will choose. 

2. Evaluate each option and calculate one or more 
floating point values that describe how attractive 
the option is given the current situation. These 
values can have a variety of names, such as utility, 
priority, weight, rank, urgency, importance, etc. 

3. Select an option (or set of options) for execution 
on the basis of the values calculated in step 2. 

A key point is that the evaluation in step 2 must occur 
at run time. In other words, the utility values are not 
selected when the scenario is designed and fixed 
thereafter, but rather calculated at run time based on the 
details of the situation in the simulation at that 
particular moment. Thus utility-based AI is constantly 
reevaluating the situation and selecting the most 
appropriate option or options at each moment in time. 

The use of a floating point evaluation, rather than a 
series of Boolean checks, allows us to have a much 
higher level of granularity. Instead of only having a few 

values to choose from (a series of “yes or no” checks), 
we can express things in ways that are fully continuous.  

For example, we might decide that the importance of 
reloading should vary as the cube of the percent of 
ammo expended (Figure 1). While that might seem a bit 
strange and awkward, it is actually quite expressive. It 
tells the AI that the importance of reloading increases 
as ammo is expended. Furthermore, this urgency 
increases gradually at first but then more and more 
rapidly as the current magazine empties. Thus if we 
have a typical infantryman's magazine with 28 rounds 
then we will only assign an importance of 0.125 to 
reloading when 14 rounds remain, but that importance 
will increase to roughly 0.42 when seven shots remain 
and 0.8 when we are down to our last two shots. 
Finally, we can further modify the formula at will – so 
we might prevent early reloads by setting the utility to 0 
when the magazine is less than ¾ empty, for instance, 
and then use the above formula thereafter. 

Utility values are meaningless in isolation. In other 
words, the above formula doesn't tell us anything by 
itself, because we have nothing to compare it to. Thus 

Figure 1: A hypothetical utility function calculating the 
importance of reloading based on percent ammo 
expended. 
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the next step is to calculate the importance for every 
other option – that is, the importance of getting behind 
cover, of firing at the enemy, of applying first aid to a 
wounded buddy, and so forth. We might scale each of 
these from 0 to 10, so reloading is relatively 
unimportant as long as we have rounds left, but we still 
might consider it if we didn't have any other good 
options. Of course we can’t fire a weapon with an 
empty magazine, but that can be reflected by setting the 
utility of the firing option to 0 when the magazine is 
empty. Thus we would be prevented from trying to fire 
in that situation, but we still might choose to get behind 
cover or to apply first aid if appropriate. 

Again, and this can't be over-emphasized, each of these 
values is calculated in simulation, at run time, based on 
the moment-to-moment situation facing the character, 
so that the utility values represent an up-to-date 
appraisal of current priorities. The result is an AI that is 
capable of examining the subtle nuance of the situation 
in as much detail as we care to encode and selecting a 
course of action accordingly. It is able to think in terms 
of shades of gray, rather than the stark black and white 
of purely Boolean approaches. 

That expressiveness does come at a cost. Configuring a 
utility-based AI requires the programmer to express 
every decision in terms of numbers, which is somewhat 
unnatural (especially at first). Of course, the same could 
be said of any programming task. Humans don't think 
the way that computers do, and as a result we have to 
learn to express ourselves in ways that the computer 
can more easily understand.  

The field of software engineering has sprung up to 
provide programmers with a collection of shared 
techniques and conventions for writing computer code. 
From object oriented design to polymorphism to design 
patterns to newer concepts such as test-driven 
development and pair programming, these techniques 
can be used to help manage the complexity of 
expressing human ideas in terms of machine code. 

In Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma et. al., 1994), one of the 
classic books on software engineering, the authors 
describe the situation in the early 1990s as follows: 

None of the design patterns in this book describe 
new or unproven designs… [but] most of [them] 
have never been documented before. They are 
either part of the folklore of the object-oriented 
community, or are elements of some successful 

object-oriented system – neither of which is easy 
for novice programmers to learn from. 

Much the same could be said of the situation for utility-
based AI today. There are a variety of techniques which 
are known to some, but engineers either have to 
discover these on their own or learn them by word of 
mouth. Although there is a book dedicated to the topic 
(Mark 2009), and some shorter articles exist, there 
hasn’t been a coherent effort to lay out shared tips, 
tricks, conventions, and techniques for the process of 
configuring a utility-based AI. 

The goal of this paper, then, is to begin to discuss what 
we might call Utility Engineering, and in particular to 
present design patterns that we have found in our work 
with utility-based AI. These patterns serve several 
purposes. First, many AI problems really are quite 
simple. Advocates of more Boolean approaches often 
argue that utility-based AI is needlessly complex, 
complicating the configuration process when in many 
cases simpler approaches can work just as well. Utility 
patterns address this by giving us consistent, reusable 
solutions for the simple problems, while retaining the 
flexibility to use more complex evaluations as needed. 

When we do face one of those more complex decision-
making problems, utility patterns can provide us with a 
starting point from which our solution can grow. While 
not all decisions can be expressed in terms of patterns, 
it is often possible to combine these patterns together to 
create behavior that is much more complex than any of 
the patterns alone, or to start with a pattern and then 
extend or modify it to fit our needs. 

Finally, utility patterns are shared conventions. Thus 
they can provide us with a common vocabulary to use 
when discussing the details of an AI configuration with 
our teammates or other professionals, and can also 
allow us to more quickly recognize the intent of 
unfamiliar code. 

The remainder of this paper will first briefly discuss the 
particular utility-based architecture that we use, not 
because that architecture is necessary for the use of 
utility patterns but rather because the examples we give 
will rely on an understanding of it. Next, we will talk 
about some of the other conventions (aside from utility 
patterns) that are important to agree upon within your 
team. Third, we will present several of the most 
common patterns we've found in our own work. 
Finally, we will give an example that combines several 
utility patterns together into a cohesive whole.  
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GAME AI ARCHITECTURE OVERVIEW 

It is difficult to talk about utility engineering without 
having a specific utility-based architecture in mind. 
While the techniques we discuss are adaptable to other 
architectures (just as software engineering techniques 
designed for Java can often be adapted to C++ or vice 
versa), it's difficult to describe them without the context 
of the architecture that they will run on. With that in 
mind, we first present an overview of the relevant 
aspects of the Game AI Architecture (GAIA). 

GAIA provides a modular, hierarchical decision 
making framework which, similar to the popular 
behavior tree architecture (Isla 2005), allows the user to 
select the most appropriate approach to decision 
making for each decision to be made. The architecture 
was described in detail in a recent paper (Dill 2012), so 
we focus here on modular decision making and the 
Dual Utility Reasoner.  

The Dual Utility Reasoner 

There are two common approaches to utility-based 
selection. The first, absolute utility, is to evaluate every 
option and take the one with the highest utility. The 
second, relative utility, is to select an option at random, 
using the utility of each option to define the probability 
that it will be selected. The probability (P) for selecting 
an option (O) is determined by dividing the utility (U) 
of that option by the total utility of all options: 
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This approach is commonly referred to as weight-based 
random or weighted random. 

The Dual Utility Reasoner combines both of these 
approaches. It assigns two utility values to each option: 
a rank (absolute utility) and a weight (relative utility). 
Conceptually, rank is used to divide the options into 
categories, where we only select options that are in the 
best category. Weight is used to evaluate options within 
the context of their category. Thus the weight of an 
option is only meaningful relative to the weights of 
other options within the same rank category – and only 
the weights of the options in the best category truly 
matter. 

When making a decision, we begin by calculating the 
rank and weight for each option and eliminating any 
options with a weight of 0. As the above formula 
indicates, these options cannot be selected by the 
weighted random step, so eliminating them at this early 
stage simplifies the remaining logic. It also gives the AI 
designer a convenient way to eliminate a particular 
option in a given circumstance – simply set the weight 
to 0 and an option will be rejected, even if it otherwise 
would have had the highest rank. 

Next, we find the highest rank from among the options 
that remain, and eliminate any options with lower rank. 
Again, conceptually what we are doing is finding the 
most appropriate category of options, and eliminating 
options that don’t belong. 

Third, we eliminate options whose weight is 
significantly less than that of the best remaining option. 
The intent here is to eliminate options that would look 
stupid if selected.  

The exact cutoff ratio to use in this step is data-driven, 
and varies depending on the decision being made. For 
example, if we’re choosing between two weapons, one 
with a weight of 5 and the other with a weight of 1, then 
we should probably not select the second weapon 
(doing so will look stupid). On the other hand, 
sometimes we have a large number of options that are 
very similar, whose collective weight is what’s 
important. For example, if we’re configuring a target 
selection AI for a sniper shooting at a platoon of 
Marines, we might want the probability of shooting the 
platoon leader to be roughly twice that of shooting one 
of the other Marines. Since there are roughly 40 
enlisted Marines in a platoon, the probability of 
shooting each of them would only be about 1.25% that 
of shooting the platoon leader – far less than the 20% 
cutoff ratio given above. If we allow this step to 
eliminate those low weight options then the probability 
of shooting the platoon leader becomes 100%, which 
was not the intent. 

Finally, we use weight-based random to select from 
among the options that remain. 

Again, those four steps are as follows: 

1. Eliminate all options with a weight of 0. 
2. Determine the highest rank category, and 

eliminate options with lower rank. 
3. Eliminate options whose weight is significantly 

less than that of the best remaining option.  
4. Use weighted random on the options that remain.  
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We will work through numerous examples of this 
process as we present the design patterns.  

Modular Decision Making 

The modular approach to decision making used in the 
Dual Utility Reasoner was first discussed in Game 
Programming Gems 8 (Dill 2010) and further refined in 
more recent papers (Dill 2011, Dill 2012). The key idea 
is that the logic for a decision can be broken into one or 
more discrete considerations. A consideration is a piece 
of code which examines a single aspect of the situation 
in isolation and then returns an evaluation that can be 
combined with those of the other considerations to 
guide the overall decision.  

There are a near-infinite number of possible decisions 
that might need to be made in some AI somewhere. For 
example, we might need to select a target to shoot at or 
to look at, we might need to select a weapon to use, we 
might need to decide whether to lay down suppressive 
fire or to advance toward the enemy, or we might need 
to decide whether to eat a hamburger or a hot dog. 
There are far fewer types of considerations that might 
be used to make those decisions, however. We currently 
support only 16 types of considerations, and that has 
been sufficient for several different scenarios.  

Using this approach, the process of configuring an 
option becomes one of simply specifying the 
considerations to apply and the control parameters for 
each consideration. Because there are relatively few 
types of considerations, this turns out to be much more 
compact than fully implementing that logic each place 
it is used. Furthermore, the considerations map much 
more closely to human concepts than do C++ 
commands. Thus AI designers are able to think in terms 
of larger, higher-level concepts that more naturally fit 
the way that they themselves make decisions. Finally, 
each consideration is reused over and over again. Thus 
rather than duplicating our AI logic each place that it is 
needed, we implement it once, test it carefully, and then 
rely on a single, well-maintained implementation. This 
results in code that is far more robust and maintainable 
than would otherwise be possible.  

In our current implementation, each consideration 
returns a rank (Ri), a bonus (Bi), and a multiplier (Mi). 
The overall rank and weight of an option are then 
determined as follows: 

The rank of an option (RO) is typically calculated by 
taking the maximum of the ranks returned by its 
considerations: 

( )in
iO RMaxR 1==  

Recently we have experimented with allowing the AI 
designer to specify that a particular decision should take 
the minimum or sum instead, but those are rarely used. 

The weight of an option (WO) is calculated by 
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As with the ranks, this approach for combining the 
considerations' results is quite simple, but experience 
has shown that it is extremely expressive. Each 
consideration can do any of the following: 

• Give the option a higher rank  
• Eliminate the option by returning a multiplier of 0 
• Adjust the option's weight through the use of non-

zero bonuses and multipliers 

When we need a more complex formula – for example, 
the ammo formula given in Figure 1 – we can simply 
encapsulate that formula within the consideration itself 
and return its value in the form of a bonus or multiplier.  

CONVENTIONS 

Configuration of a utility-based AI is easier if you have 
a set of conventions which describe consistent values to 
be used in common situations. The following are 
examples of conventions from our work: 

• The default weight for an option is 1 (that is, an 
option with no considerations will be given a 
weight of 1). We tune the weights of other options 
accordingly. Thus if we want to make the AI 
twice as likely to select an option, then that 
option's weight should be 2. 

• The default rank for an option is 0. Higher or 
lower ranks can be used. 

• Most normal, unexceptional options should have a 
rank between -5 and +5, with 0 as the baseline. 
For example, the ambient (noncombat) behavior 
of civilians would typically have a rank of 0, but 
specific options might be slightly higher or lower. 

• Urgent, high priority options should have a rank 
between 5 and 15, with 10 as the baseline. For 
example, that same character would typically use 



Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 

2012 Paper No. 12146 Page 7 of 12 

a weight of 10 for combat options (fleeing, 
seeking cover, returning fire, etc). Again, specific 
options might be slightly higher or lower. 

• A rank of 20 or higher indicates an option that is 
extremely important and should always be 
executed immediately. 

• A rank of 1,000,000 is reserved for autonomic 
reactions that the AI has no control over, such as 
stumbling backward or dying when hit by a bullet. 

These conventions serve three purposes. First, when we 
are debugging the AI and we see a particular value, we 
know at a glance roughly what that value should 
indicate – and we can judge whether it is appropriate, 
and adjust it if it is not. Second, when we are adding a 
new option to the AI, we have guidelines as to how we 
should set its utility values so that they will function 
smoothly with the values of other options. Finally, 
much like a coding standard, they define a shared 
standard that all of the AI engineers on a project can 
agree to, so that work done by one engineer will 
function smoothly when used in a portion of the AI 
configured by somebody else. 

UTILITY PATTERNS 

We are ready to turn our attention to the utility patterns. 
Each pattern is designed to be as simple as possible 
while still capturing the concept that it is represents.  

We will use two hypothetical characters in our 
examples. Neither exactly matches one that we have 
built, but both are based on genuine characters from our 
recent work.  

Our first example character is an insurgent who has 
climbed onto a rooftop with the intention of sniping at a 
Marine patrol that is passing through the marketplace 
below. This character is very similar to a character 
we've created for a recent GAIA demonstration. We 
will examine the decision making process he goes 
through as he decides when to take a shot and when to 
withdraw in hopes of fighting again another day. 

The second character is a Muslim woman, very similar 
to our Angry Grandmother character (Dill 2011) who is 
home alone when the Marines enter and search her 
house. This is a nonkinetic scenario in which the 
woman largely just rants at the Marines, exhorting them 
to leave, but she can respond to Marine actions (e.g. if 
they aim their weapons at her, fire their weapons, enter 
or leave the room, and so forth). Thus her decisions 

largely involve picking her next line of dialog and 
selecting moments to play specialized sequences (such 
as when the Marines enter the room or aim at her). 

OPTION VALIDATION PATTERNS 

While the great strength of utility-based AI is that it 
allows us to evaluate the situation in terms of shades of 
gray, there are often cases where decisions are clear cut. 
Thus we need to be able to validate our options, 
ensuring that only those that are reasonable (given the 
current situation in the simulation) will execute.  

Opt Out 

The Opt Out pattern is the simplest pattern that we will 
discuss. At times, there is a consideration which knows 
absolutely that an option should not be executed – even 
if the option would otherwise have a high rank. We do 
this by having the consideration return a multiplier of 0. 
Doing so will result in an overall weight of 0, which 
will cause the option to be eliminated in the first step of 
the decision-making process (as described above). 

For example, imagine an experienced sniper deciding 
whether or not to take a shot. He will not fire if any one 
of the following is true: 

• He does not have a clear line of sight to his target 
• He does not have a clear line of retreat (i.e. his 

planned escape route is under observation) 
• He has fired a shot too recently 
• He has already fired enough times that he fears 

further shots will expose his position 

Each of these four factors would be represented by a 
single consideration, which will return a multiplier of 0 
if that consideration feels that the shot should not be 
taken. Since any multiplier of 0 will set the option's 
overall weight to 0, and we eliminate options with a 
weight of 0 in the first step of the decision-making 
process, this will prevent the Shoot option from being 
selected when firing is inappropriate.  

Opt In 

The Opt In pattern is similar to Opt Out, except that 
instead of ruling the option out, the considerations rule 
it in. Conceptually, the Opt In pattern is appropriate 
when there is more than one reason that you might 
select a particular option, and only one of those reasons 
needs to be true in order for the option to be valid. In 
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contrast, the Opt Out pattern says that all reasons must 
be valid if we are to select the option. In other words, 
Opt Out provides a logical and, while Opt In provides a 
logical or. 

In order to make the Opt In pattern work, we first need 
to have a default option which has a relatively low rank, 
but is always valid. For example, it might always return 
a rank of 0 and a weight of 1 (the defaults from our 
shared conventions). We would then configure the 
option which can be opted in so that its base rank is -1 
(i.e. lower than that of our default option). Each of its 
considerations will return a rank greater than 0 when 
the option is a reasonable choice. Since the option’s 
rank is the maximum of the ranks of its considerations, 
the result is that if none of the Opt In considerations 
apply then the rank will be -1, which will prevent the 
option from being selected (the default option will be 
selected instead). If at least one consideration “opts in,” 
however, than the option is certain to be selected over 
the default option (although there may be other options 
with still higher tanks as well). 

As an example, consider our angry woman. Through 
much of her performance, she will simply scream at the 
Marines, nearly incoherent, trying to get them out of 
her house. This screaming could be handled by the Rant 
option. We might also want to have several specialized 
performances which can be delivered in particular 
situations. For example, the Marines Threaten option 
might be selected if the Marines aim their weapons at 
her, if shots are fired, or if the exercise operator presses 
the corresponding button at the Instructor/Operator 
Station (IOS). This option would have our character 
take a few steps backwards, raise her hands in 
supplication, and say something like "Please! Don't 
shoot! I'm just an innocent woman!" 

In order to implement this, we would use the Rant 
option as our default option. Thus it will always have a 
rank of 0 and a weight of 1. Next we would place four 
considerations on the Marines Threaten option:  

• A Tuning consideration (which sets the default 
rank to -1). 

• An Aimed At consideration, which returns a rank 
of 10 if the Marines point their weapons at her. 

• A Shots Fired consideration, which returns a rank 
of 10 when shots are fired nearby. 

• A Button consideration, which returns a rank of 
10 when the corresponding IOS button is pressed. 

The result is that the character will normally just rant, 
but if she is threatened by the Marines (or if the 
exercise operator tells her to) then she will play her 
specialized performance instead. 

Combining Opt In and Opt Out 

It is often useful to combine the Opt In and Opt Out 
patterns. For example, we might not want our sniper to 
open fire the moment the first Marine enters the 
marketplace. Instead, we might want him to wait until 
one of the following is true: 

• At least five Marines are in the market 
• The last Marine is leaving the market 
• He has identified a high priority target (such as an 

officer, medic, or radio operator) in the market 
• The corresponding IOS button is pressed 

Of course, he should still not fire if any of the four 
considerations discussed in the Opt Out section are true.  

In order to make Opt In work, we need a default option. 
Thus we would create a Wait option with a fixed rank 
of 0 and weight of 1 This option would simply have the 
character remain in hiding, waiting for the opportunity 
to take a shot. Next, we would add Opt Out 
considerations to the Fire option. Thus he would have 
considerations for checking line of sight, line of retreat, 
and so forth that will return a multiplier of 0 when a 
shot is inappropriate. Finally, we would add the Opt In 
considerations: a tuning consideration that sets his 
default rank to -1, and a collection of situational 
considerations that return a higher rank when there are 
at least 5 Marines in the market, when the last Marine is 
leaving the market, and so forth. The end result would 
be that he will only fire if (a) none of the opt-out 
considerations apply and (b) at least one of the Opt In 
considerations is valid. 

We could further extend this character by adding a Flee 
option, which uses the Opt In pattern to make the 
character run away if he has reached the maximum 
allowable number of shots, or if he’s taking aimed fire 
from the enemy. Fleeing is more important than firing, 
so the considerations might set a rank of 11 or 12, 
rather than the 10 used by the Fire option. 

More complex combinations of Opt In and Opt Out are 
possible, but they require us to be able to group 
considerations together (much as the parentheses group 
together logical and and or clauses). This is a fairly 
obvious extension that is supported in our code, but is 
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beyond the level of complexity appropriate to a utility 
pattern. Remember that the purpose of utility patterns is 
to provide simple examples which can illustrate the 
basic concept and serve as the foundation for your 
implementation, not to cover every possible use case.  

EXECUTION HISTORY PATTERNS 

There are a number of patterns which depend on 
knowledge of the option's execution history. We might 
want to adjust our decision if the option has never been 
selected, for example, or if it is (or is not) currently 
executing. Consequently we have an Execution History 
consideration which can be configured to return 
different values in each of these states. In each case, the 
values returned can vary as a function of the amount of 
time since the last state change (i.e. the time since we 
last started or stopped execution, or the time since the 
scenario was loaded if we have never been selected). 
There are several patterns which capitalize on this 
consideration. 

Commit 

There are often cases where we want to ensure that we 
carry an action through to completion, even if the 
considerations that originally caused us to select it are 
no longer being triggered. For example, consider the 
Flee option for our sniper. This option will be selected 
if the sniper takes aimed fire from the Marines. If the 
Marines stop firing – perhaps because the sniper ran 
around a corner, or got behind cover – he should still 
keep fleeing. Once this option is selected, we should 
commit to it until it has been successfully completed. 

The Commit pattern uses an execution history 
consideration to return a high rank value whenever the 
option is executing. Thus the option can only start 
executing as a result of some other consideration, but 
once it is executing the rank will remain high until 
execution stops. Because we want to commit to this 
option, we set the rank to be even higher than the rank 
used to select the option in the first place (i.e. now that 
this option has been selected, it is more important than 
other options which would otherwise be in its rank 
category). Thus if the Flee option normally used a rank 
of 12, the Commit pattern might set a rank of 14. 

The option can still be deselected normally. For 
example we might have a consideration which opts out 
(setting a multiplier of 0), which forces the option to be 
deselected, or we might have another option with even 
higher rank that replaces it. 

Inertia 

The Inertia pattern is similar to the Commit pattern, 
except that in this case we configure the execution 
history consideration so that it will only maintain a 
portion of the original rank.  

For example, imagine that the Marines aim their 
weapons at our angry woman, triggering her "Marines 
Threaten" performance, and then aim away again. We 
don't want her to go back to ranting in the middle of 
this performance – that would look odd. On the other 
hand, we do want her to remain responsive if something 
else important happens (if the operator presses a 
different button, for example, or if the Marines find 
contraband in her room). Thus if the special 
performance options are selected with a rank of 10, then 
we will configure our execution history consideration to 
set the rank to something like 7 whenever the option is 
executing. Again, these values should be standardized 
where possible, and specified in your shared 
conventions. 

Is Done 

The Is Done pattern is a special case of the Opt Out 
pattern, in which we return a multiplier of 0 when (a) 
the option is currently selected, and (b) the option's 
execution has been completed. We have a specialized 
consideration, the Is Done consideration, whose only 
responsibility is to make this check.  

For example, our sniper would have an Is Done 
consideration on his Shoot action. This forces him to 
stop executing that option once the shot has been taken, 
so that he doesn't get stuck in a completed option 
forever. Similarly, our angry woman would have an Is 
Done consideration on her Marines Threaten option, 
which would return her to ranting once the option's 
performance is complete. 

Cooldown 

We often need to prevent the AI from selecting the 
same thing twice in close succession. For example, if 
our sniper does take more than one shot, he should 
delay several minutes between them so as to reduce the 
probability that he will be spotted on successive shots. 

The Cooldown pattern enforces this by opting out (that 
is, returning a multiplier of 0) for a predetermined 
period of time once the option stops executing. The 
duration of the cooldown can either be fixed (for 
example, the sniper might always wait three minutes 
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between shots) or it can be randomly selected (so in the 
sniper's case, we might vary the duration of the 
cooldown randomly between 90 seconds and five 
minutes). In the latter case, we should select a new 
random duration each time the option stops executing. 

Cooldowns are not only used for purely behavioral 
reasons. Often, we use a cooldown to disguise the reuse 
of assets. For example, the angry woman’s Rant option 
would use a subreasoner to select specific lines of 
dialog, and specific gesture animations to play with 
each line. We want to ensure that we don’t ever repeat 
the same line of dialog or gesture twice in a row, or 
even twice within a few seconds of each other, because 
such repetition would be obvious to the viewer, and 
would look distinctly odd. As a result, we might place a 
20 second cooldown on every gesture and every line of 
dialog, to prevent immediate reuse. This technique is 
one of several that was described in our 2011 I/ITSEC 
paper for building characters that are more believable 
and immersive (Dill 2011). 

Do Once 

One of the reasons why animated movie characters can 
be so much more compelling than video game 
characters is that a movie is a single two-hour-long 
animation, with every moment carefully choreographed 
and hand-animated. At any given moment in the movie 
the animator knows exactly what happened a moment 
before – down to the jiggle in the earlobe – and exactly 
what will happen a moment in the future. In contrast, 
characters for games and simulations are built out of 
hundreds or often thousands of animations, each 
extremely short (often less than a second), procedurally 
stitched together in real time to create an interactive 
experience. These animations are used over and over, 
but each is so short, and they are combined in so many 
ways, that the repetition is typically not obvious (or at 
least, it's not obvious if we've done our job well). 

We can give our characters longer, deeper, more 
compelling animations, but there are two challenges 
with this approach. First, these animations are hard to 
interrupt – they often take the character far away from 
their base pose, resulting in at best an awkward blend 
(and often foot sliding or worse) if you interrupt them. 
The second problem is that the whole point of these 
animations is for them to be big and memorable – so if 
we reuse them, that repetition is bound to be noticed. 
Real humans rarely do exactly the same thing exactly 
the same way, so this sort of repetition will break the 
viewer's suspension of disbelief. 

As a result, we tend to reserve these animations for big, 
dramatic moments in our simulation – the ones where 
we really want to make an impact on the viewer. For 
example, when the Marines first enter, our angry 
woman might lurch to her feet from a sofa, dropping 
her knitting and frantically pulling her veil over her 
face, while she cries out "What! Who are you! Why are 
you here? This is my house – my husband isn't home! 
Get out, get out, get out!!" Similarly, our sniper might 
have a rant which he delivers from his rooftop while 
waving his gun in the air, just before he runs away. 

We want to commit to these options once they have 
begun, so that they won't be interrupted, but we already 
know how to do that using the pattern described above. 
Additionally, we want to ensure that we only ever do 
them once. If the Marines leave and then come back, 
for instance, the angry woman should not play that 
particular sequence – the repetition would be obvious. 
If this is likely to happen then we might have more than 
one performance to pick from (see the Sequence 
pattern, below), or she might go straight into ranting. 

The Do Once pattern is the pattern that we use to ensure 
that an action is only done a single time, and it is one of 
the simplest patterns. In order to implement it, we use 
an execution history consideration that is configured to 
opt out if the option has ever been selected in the past. 

One-Time Bonus 

Similar to the Do Once pattern, there are sometimes 
situations where we want to give an option high priority 
to be selected the first time, but then lower priority 
thereafter. For example, while there are situations in 
which our sniper should not take any shots at all, he 
should also be significantly less aggressive when 
deciding to take a second, third, or fourth shot, because 
each additional shot significantly increases the 
likelihood that he will be spotted. As a result, we might 
apply a One-Time Bonus to the rank of the Shoot 
option, which is simply an execution history 
consideration which applies a bonus to the weight or 
proposes a high rank. In the case of the sniper, we 
might configure it to propose a rank of 15. This marks it 
as something that is quite important, while still 
allowing other considerations to opt out when shooting 
is inappropriate (for instance if there are no targets, or if 
the sniper's escape route is compromised). 

Note that this pattern is incompatible with the Opt In 
pattern as it’s described above. Again, there are 
possible solutions (such as a Reasoner Selection 
Consideration, which uses a reasoner to select from 
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among two or more sets of child considerations), but 
they are beyond the complexity appropriate for a design 
pattern.  

Repeat Penalty 

Applying a one-time bonus to the first shot fired is one 
way to discourage the sniper from taking multiple 
shots. It would be preferable, however, to decrease the 
rank of the Fire option with each shot fired. We might 
have an initial rank of 10, for example, and then 
decrease that rank by 2 for every shot fired (so the first 
shot would be rank 10, the second rank 8, the third rank 
6, and so forth). We could then balance the rank of the 
Flee option accordingly – perhaps giving a higher rank 
if the AI is taking aimed fire, or a lower rank if the 
Marines are running away.  

The Repeat Penalty pattern uses a special consideration 
(called the Repeat Penalty consideration) to keep track 
of how many times an option has been selected, and 
adjust its rank accordingly. It will return a rank (R) 
equal to the initial rank (I) minus the repeat penalty (P) 
times the number of past executions (E)  

( )EPIR ⋅−=  

In the case of the Fire option, we would use an initial 
rank of 10 and a repeat penalty of 2. 

COMBINING PATTERNS 

While each of these patterns defines a conceptual 
building block that can be used in the creation of our 
character configuration, the most interesting thing is not 
that they can be applied in isolation, but rather the ways 
in which they can be used together to shape behavior. 
We have already hinted at that in many of the examples 
above, but it's worth pulling together all of the pieces of 
our sniper's AI so that we can examine the ways in 
which they work together. 

Our sniper has two options: Shoot and Flee. The Shoot 
option has him select an actual target, and then take a 
single shot at that target. The Flee option has him select 
an appropriate exit strategy. This could include 
anything from leaving his weapon and calmly walking 
away (if he hasn't been spotted) to frantically jumping 
from rooftop to rooftop as he flees under fire.  

For the Fire option, the first thing we will do is apply 
the Opt Out considerations, as follows: 

• Check line of sight and opt out if there aren't any 
valid targets in the kill zone. 

• Check whether any Marines are able to observe 
our escape route, and opt out if this is the case. 

• Use an Execution History consideration to apply 
the cooldown. 

Next we will apply the One-Time Bonus and the Repeat 
Penalty: 

• Use an Execution History consideration to 
suggest a rank of 15 if the option has not yet 
executed 

• Use a Repeat Penalty consideration to suggest a 
rank of 10 with a repeat penalty of 2. 

As a result the Fire option will be invalid if there are no 
targets, when the escape route is compromised, or when 
on cooldown. If none of those applies, the option's rank 
will be set based on the One-Time Bonus and the 
Repeat Penalty. 

The final option we need to configure is the Withdraw 
option. We could apply considerations as follows: 

• Use a Shots Fired consideration to check if the 
Marines are firing at or near the sniper (i.e. is he 
taking aimed fire). If so, propose a rank of 20. 

• Use another Shots Fired consideration to check if 
shots are being fired, but they aren’t shooting near 
him. In this case we could set a lower rank, such 
as 7 or 5 (allowing him to fire two or three shots, 
respectively) 

• Check if the Marines are moving to encircle the 
building. If so, propose a rank of 10 (allowing 
him to fire only a single shot, and then only if his 
line of retreat is still clear). 

• Check to see if the Marines are moving away 
from the marketplace. If not, propose a rank of 1 
(so if they stay in the marketplace, he’s limited to 
five shots). 

• Finally, use a tuning consideration to set a 
minimum rank of -10.  

The result will be that the character will withdraw 
immediately if he is taking fire. He will take only a 
single shot if the Marines are surrounding his building. 
Otherwise, he will normally take five shots, but may 
take as many as ten if the Marines appear to be running 
away. 

As discussed above, the one thing we weren’t able to 
include here is the Opt In strategy that would allow the 
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sniper to wait until there are multiple targets, until there 
is a high priority target, or until the last Marine is 
leaving the kill zone. That level of complexity is 
beyond the scope of these design patterns, but is the 
sort of thing that utility-based AI can do very well.  

The design patterns are intended to provide a place to 
begin, a place where novice users can look as they learn 
to work with utility-based AI and a place where 
experienced users can find consistent implementations 
for common, simple use cases. More complex cases can 
often build upon them, such as in the case of the 
consideration sets and Reasoner Selection 
Consideration which we alluded to above. For the 
advanced user, Behavioral Mathematics for Game AI 
(Mark 2009) provides a good starting point for learning 
how to build formulas that represent complex decisions. 

CONCLUSION 

In this paper we first outlined the benefits of utility-
based AI in general, and described our Dual Utility 
Reasoner and its modular approach to decision making. 
Next, we talked briefly about the importance of using 
shared conventions when configuring utility-based AI, 
even when working alone but especially when more 
than one AI designer is working on the same project. 
Finally, we outlined a number of the recurring design 
patterns that we have found in our work, discussed how 
they could be configured in the Dual Utility Reasoner, 
and gave an example showing how multiple patterns 
can be combined to create a more complex 
configuration. 

As utility-based AI continues to become better known 
and more widely used, we hope that we will see an 
increase in the number of papers and books that discuss 
utility engineering, which is to say, best practices for 
configuring utility-based AI. 
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