
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 1 of 12

Design Patterns for the Configuration of Utility-Based AI

Kevin Dill Eugene Ray Pursel Pat Garrity, Gino Fragomeni

Lockheed Martin
Global Training and Logistics

Marine Corps
Warfighting Laboratory

U.S. Army Research Laboratory
Simulation and Training Technology Center

Burlington, Massachusetts Quantico, Virginia Orlando, Florida
 Kevin.Dill@lmco.com

Eugene.Pursel@usmc.mil Pat.Garrity@us.army.mil

Gino.Fragomeni@us.army.mil

ABSTRACT

There is an ongoing need for improved autonomous virtual characters for military training, particularly in areas such
as squad-level scenarios for the Army and Marines. In the past, simulations have often used techniques such as
scripting or Finite State Machines for Artificial Intelligence (AI) control of non-player characters. These approaches
allow the scenario creator to have precise control over the actions of the characters, but the cost of configuration and
the quality of the result scale poorly as the complexity of the AI grows. As a result, they tend to lead to AI behaviors
that are rigid and predictable, and thus are insufficiently reactive to unexpected situations and not suitable for replay
or repeated use.

In previous papers we have endorsed utility-based AI as our preferred alternative. This approach enables the
developer to think in terms of heuristic equations rather than simple black-and-white decisions, and thus to create an
AI which can examine the subtle nuance of the situation and select actions accordingly. The resulting characters
retain the strong authorial control of previous approaches, but they can be far more believable, adaptable, and
reactive to the situation around themselves.

Utility-based AI is flexible and powerful, but newcomers may find guidance useful in the face of such flexibility. In
this paper we propose several design patterns that can be applied to the configuration of utility-based AI. Much like
design patterns for software engineering, the intent is to share “simple and succinct solutions to commonly occurring
design problems” (Gamma et. al., 1994). These patterns can provide a complete solution for simple AI problems, but
more importantly they provide a solid foundation on which more complicated logic can be built.

ABOUT THE AUTHORS

Kevin Dill is a member of the Group Technical Staff at Lockheed Martin Global Training and Logistics, and the
Chief Architect of the Game AI Architecture. He is a recognized expert on Game AI and a veteran of the game
industry, with seven published titles. He was the technical editor for Introduction to Game AI and Behavioral
Mathematics for Game AI, and a section editor for AI Game Programming Wisdom 4. He has taught classes on
game development and game AI at Harvard University, Boston University, and Worcester Polytechnic Institute.

Ray Pursel served over 23 years as a Marine in both enlisted and officer roles. His billets ranged from Aviations
Operations Clerk to Helicopter Section Leader to Modeling and Simulations Officer. He earned a B.S. in Computer
Science and Mathematics Minor from the Pennsylvania State University in 1995 and an M.S. in Modeling, Virtual
Environments and Simulation from the Naval Postgraduate School in 2004. Now retired from active duty, he is
serving as a Modeling and Simulations Analyst with the Marine Corps Warfighting Laboratory.

Pat Garrity is the Chief Engineer for Dismounted Soldier Training Technologies at the Army Research
Laboratory’s Simulation and Training Technology Center. He currently works in the Ground Simulation
Environments Branch conducting research and development in the area of dismounted Soldier training and
simulation where he was the Army’s Science and Technology Objective Manager for the Embedded Training for
Dismounted Soldiers Science and Technology Objective. His current interests include Human-In-The-Loop

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 2 of 12

networked simulators, virtual and augmented reality, and immersive dismounted training applications. Garrity
earned his B.S. in Computer Engineering from the University of South Florida in 1985 and his M.S. in Simulation
Systems from the University of Central Florida in 1994.

Gino Fragomeni serves as a Science and Technology Manager for Dismounted Soldier Technologies at the U.S.
Army Research Laboratory, Simulation and Training Technology Center. He currently works in Ground Simulation
Environments Branch conducting research and development in the area of dismounted soldier training and
simulation. His current interests include artificial intelligence and immersive environments centric to dismounted
training applications. Gino is a highly qualified science and technology manager as well as being a reservist with the
United States Army Special Operations Command-Central with over 28 years of military experience. He earned a
Master of Science from the University of Central Florida (2002) and has specialized training in Systems
Engineering.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 3 of 12

Design Patterns for the Configuration of Utility-Based AI

Kevin Dill Eugene Ray Pursel Pat Garrity, Gino Fragomeni

Lockheed Martin
Global Training and Logistics

Marine Corps
Warfighting Laboratory

U.S. Army Research Laboratory
Simulation and Training Technology Center

Burlington, Massachusetts Quantico, Virginia Orlando, Florida
 Kevin.Dill@lmco.com

Eugene.Pursel@usmc.mil Pat.Garrity@us.army.mil

Gino.Fragomeni@us.army.mil

There is a strong need for high quality autonomous
virtual characters for military training, particularly in
areas such as squad-level training for the Army and
Marines. Such characters require Artificial Intelligence
(AI) to control their behavior. Utility-based AI is one
commonly used approach (Mark 2009, Dill 2012, 2011,
2008, and 2006, and Davis 1999, among others). It
provides a combination of authorial control, reactivity,
and believability that can be difficult to match using
other architectures (Dill 2012).

The term utility-based AI is used to describe a class of
techniques in which decisions are made on the basis of
heuristic functions that represent the relative value (or
appropriateness) of each option under consideration in
terms of a floating-point value. Thus, utility-based
approaches typically have three general steps:

1. Build a list of options, which are the choices from
which we will choose.

2. Evaluate each option and calculate one or more
floating point values that describe how attractive
the option is given the current situation. These
values can have a variety of names, such as utility,
priority, weight, rank, urgency, importance, etc.

3. Select an option (or set of options) for execution
on the basis of the values calculated in step 2.

A key point is that the evaluation in step 2 must occur
at run time. In other words, the utility values are not
selected when the scenario is designed and fixed
thereafter, but rather calculated at run time based on the
details of the situation in the simulation at that
particular moment. Thus utility-based AI is constantly
reevaluating the situation and selecting the most
appropriate option or options at each moment in time.

The use of a floating point evaluation, rather than a
series of Boolean checks, allows us to have a much
higher level of granularity. Instead of only having a few

values to choose from (a series of “yes or no” checks),
we can express things in ways that are fully continuous.

For example, we might decide that the importance of
reloading should vary as the cube of the percent of
ammo expended (Figure 1). While that might seem a bit
strange and awkward, it is actually quite expressive. It
tells the AI that the importance of reloading increases
as ammo is expended. Furthermore, this urgency
increases gradually at first but then more and more
rapidly as the current magazine empties. Thus if we
have a typical infantryman's magazine with 28 rounds
then we will only assign an importance of 0.125 to
reloading when 14 rounds remain, but that importance
will increase to roughly 0.42 when seven shots remain
and 0.8 when we are down to our last two shots.
Finally, we can further modify the formula at will – so
we might prevent early reloads by setting the utility to 0
when the magazine is less than ¾ empty, for instance,
and then use the above formula thereafter.

Utility values are meaningless in isolation. In other
words, the above formula doesn't tell us anything by
itself, because we have nothing to compare it to. Thus

Figure 1: A hypothetical utility function calculating the
importance of reloading based on percent ammo
expended.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 4 of 12

the next step is to calculate the importance for every
other option – that is, the importance of getting behind
cover, of firing at the enemy, of applying first aid to a
wounded buddy, and so forth. We might scale each of
these from 0 to 10, so reloading is relatively
unimportant as long as we have rounds left, but we still
might consider it if we didn't have any other good
options. Of course we can’t fire a weapon with an
empty magazine, but that can be reflected by setting the
utility of the firing option to 0 when the magazine is
empty. Thus we would be prevented from trying to fire
in that situation, but we still might choose to get behind
cover or to apply first aid if appropriate.

Again, and this can't be over-emphasized, each of these
values is calculated in simulation, at run time, based on
the moment-to-moment situation facing the character,
so that the utility values represent an up-to-date
appraisal of current priorities. The result is an AI that is
capable of examining the subtle nuance of the situation
in as much detail as we care to encode and selecting a
course of action accordingly. It is able to think in terms
of shades of gray, rather than the stark black and white
of purely Boolean approaches.

That expressiveness does come at a cost. Configuring a
utility-based AI requires the programmer to express
every decision in terms of numbers, which is somewhat
unnatural (especially at first). Of course, the same could
be said of any programming task. Humans don't think
the way that computers do, and as a result we have to
learn to express ourselves in ways that the computer
can more easily understand.

The field of software engineering has sprung up to
provide programmers with a collection of shared
techniques and conventions for writing computer code.
From object oriented design to polymorphism to design
patterns to newer concepts such as test-driven
development and pair programming, these techniques
can be used to help manage the complexity of
expressing human ideas in terms of machine code.

In Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma et. al., 1994), one of the
classic books on software engineering, the authors
describe the situation in the early 1990s as follows:

None of the design patterns in this book describe
new or unproven designs… [but] most of [them]
have never been documented before. They are
either part of the folklore of the object-oriented
community, or are elements of some successful

object-oriented system – neither of which is easy
for novice programmers to learn from.

Much the same could be said of the situation for utility-
based AI today. There are a variety of techniques which
are known to some, but engineers either have to
discover these on their own or learn them by word of
mouth. Although there is a book dedicated to the topic
(Mark 2009), and some shorter articles exist, there
hasn’t been a coherent effort to lay out shared tips,
tricks, conventions, and techniques for the process of
configuring a utility-based AI.

The goal of this paper, then, is to begin to discuss what
we might call Utility Engineering, and in particular to
present design patterns that we have found in our work
with utility-based AI. These patterns serve several
purposes. First, many AI problems really are quite
simple. Advocates of more Boolean approaches often
argue that utility-based AI is needlessly complex,
complicating the configuration process when in many
cases simpler approaches can work just as well. Utility
patterns address this by giving us consistent, reusable
solutions for the simple problems, while retaining the
flexibility to use more complex evaluations as needed.

When we do face one of those more complex decision-
making problems, utility patterns can provide us with a
starting point from which our solution can grow. While
not all decisions can be expressed in terms of patterns,
it is often possible to combine these patterns together to
create behavior that is much more complex than any of
the patterns alone, or to start with a pattern and then
extend or modify it to fit our needs.

Finally, utility patterns are shared conventions. Thus
they can provide us with a common vocabulary to use
when discussing the details of an AI configuration with
our teammates or other professionals, and can also
allow us to more quickly recognize the intent of
unfamiliar code.

The remainder of this paper will first briefly discuss the
particular utility-based architecture that we use, not
because that architecture is necessary for the use of
utility patterns but rather because the examples we give
will rely on an understanding of it. Next, we will talk
about some of the other conventions (aside from utility
patterns) that are important to agree upon within your
team. Third, we will present several of the most
common patterns we've found in our own work.
Finally, we will give an example that combines several
utility patterns together into a cohesive whole.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 5 of 12

GAME AI ARCHITECTURE OVERVIEW

It is difficult to talk about utility engineering without
having a specific utility-based architecture in mind.
While the techniques we discuss are adaptable to other
architectures (just as software engineering techniques
designed for Java can often be adapted to C++ or vice
versa), it's difficult to describe them without the context
of the architecture that they will run on. With that in
mind, we first present an overview of the relevant
aspects of the Game AI Architecture (GAIA).

GAIA provides a modular, hierarchical decision
making framework which, similar to the popular
behavior tree architecture (Isla 2005), allows the user to
select the most appropriate approach to decision
making for each decision to be made. The architecture
was described in detail in a recent paper (Dill 2012), so
we focus here on modular decision making and the
Dual Utility Reasoner.

The Dual Utility Reasoner

There are two common approaches to utility-based
selection. The first, absolute utility, is to evaluate every
option and take the one with the highest utility. The
second, relative utility, is to select an option at random,
using the utility of each option to define the probability
that it will be selected. The probability (P) for selecting
an option (O) is determined by dividing the utility (U)
of that option by the total utility of all options:

∑
=

= n

i
i

O
O

U

U
P

1

This approach is commonly referred to as weight-based
random or weighted random.

The Dual Utility Reasoner combines both of these
approaches. It assigns two utility values to each option:
a rank (absolute utility) and a weight (relative utility).
Conceptually, rank is used to divide the options into
categories, where we only select options that are in the
best category. Weight is used to evaluate options within
the context of their category. Thus the weight of an
option is only meaningful relative to the weights of
other options within the same rank category – and only
the weights of the options in the best category truly
matter.

When making a decision, we begin by calculating the
rank and weight for each option and eliminating any
options with a weight of 0. As the above formula
indicates, these options cannot be selected by the
weighted random step, so eliminating them at this early
stage simplifies the remaining logic. It also gives the AI
designer a convenient way to eliminate a particular
option in a given circumstance – simply set the weight
to 0 and an option will be rejected, even if it otherwise
would have had the highest rank.

Next, we find the highest rank from among the options
that remain, and eliminate any options with lower rank.
Again, conceptually what we are doing is finding the
most appropriate category of options, and eliminating
options that don’t belong.

Third, we eliminate options whose weight is
significantly less than that of the best remaining option.
The intent here is to eliminate options that would look
stupid if selected.

The exact cutoff ratio to use in this step is data-driven,
and varies depending on the decision being made. For
example, if we’re choosing between two weapons, one
with a weight of 5 and the other with a weight of 1, then
we should probably not select the second weapon
(doing so will look stupid). On the other hand,
sometimes we have a large number of options that are
very similar, whose collective weight is what’s
important. For example, if we’re configuring a target
selection AI for a sniper shooting at a platoon of
Marines, we might want the probability of shooting the
platoon leader to be roughly twice that of shooting one
of the other Marines. Since there are roughly 40
enlisted Marines in a platoon, the probability of
shooting each of them would only be about 1.25% that
of shooting the platoon leader – far less than the 20%
cutoff ratio given above. If we allow this step to
eliminate those low weight options then the probability
of shooting the platoon leader becomes 100%, which
was not the intent.

Finally, we use weight-based random to select from
among the options that remain.

Again, those four steps are as follows:

1. Eliminate all options with a weight of 0.
2. Determine the highest rank category, and

eliminate options with lower rank.
3. Eliminate options whose weight is significantly

less than that of the best remaining option.
4. Use weighted random on the options that remain.

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 6 of 12

We will work through numerous examples of this
process as we present the design patterns.

Modular Decision Making

The modular approach to decision making used in the
Dual Utility Reasoner was first discussed in Game
Programming Gems 8 (Dill 2010) and further refined in
more recent papers (Dill 2011, Dill 2012). The key idea
is that the logic for a decision can be broken into one or
more discrete considerations. A consideration is a piece
of code which examines a single aspect of the situation
in isolation and then returns an evaluation that can be
combined with those of the other considerations to
guide the overall decision.

There are a near-infinite number of possible decisions
that might need to be made in some AI somewhere. For
example, we might need to select a target to shoot at or
to look at, we might need to select a weapon to use, we
might need to decide whether to lay down suppressive
fire or to advance toward the enemy, or we might need
to decide whether to eat a hamburger or a hot dog.
There are far fewer types of considerations that might
be used to make those decisions, however. We currently
support only 16 types of considerations, and that has
been sufficient for several different scenarios.

Using this approach, the process of configuring an
option becomes one of simply specifying the
considerations to apply and the control parameters for
each consideration. Because there are relatively few
types of considerations, this turns out to be much more
compact than fully implementing that logic each place
it is used. Furthermore, the considerations map much
more closely to human concepts than do C++
commands. Thus AI designers are able to think in terms
of larger, higher-level concepts that more naturally fit
the way that they themselves make decisions. Finally,
each consideration is reused over and over again. Thus
rather than duplicating our AI logic each place that it is
needed, we implement it once, test it carefully, and then
rely on a single, well-maintained implementation. This
results in code that is far more robust and maintainable
than would otherwise be possible.

In our current implementation, each consideration
returns a rank (Ri), a bonus (Bi), and a multiplier (Mi).
The overall rank and weight of an option are then
determined as follows:

The rank of an option (RO) is typically calculated by
taking the maximum of the ranks returned by its
considerations:

()in
iO RMaxR 1==

Recently we have experimented with allowing the AI
designer to specify that a particular decision should take
the minimum or sum instead, but those are rarely used.

The weight of an option (WO) is calculated by
multiplying the sum of its bonuses by the product of its
multipliers.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠

⎞
⎜
⎝

⎛
= ∏∑

==

n

i
i

n

i
iO MBW

11

As with the ranks, this approach for combining the
considerations' results is quite simple, but experience
has shown that it is extremely expressive. Each
consideration can do any of the following:

• Give the option a higher rank
• Eliminate the option by returning a multiplier of 0
• Adjust the option's weight through the use of non-

zero bonuses and multipliers

When we need a more complex formula – for example,
the ammo formula given in Figure 1 – we can simply
encapsulate that formula within the consideration itself
and return its value in the form of a bonus or multiplier.

CONVENTIONS

Configuration of a utility-based AI is easier if you have
a set of conventions which describe consistent values to
be used in common situations. The following are
examples of conventions from our work:

• The default weight for an option is 1 (that is, an
option with no considerations will be given a
weight of 1). We tune the weights of other options
accordingly. Thus if we want to make the AI
twice as likely to select an option, then that
option's weight should be 2.

• The default rank for an option is 0. Higher or
lower ranks can be used.

• Most normal, unexceptional options should have a
rank between -5 and +5, with 0 as the baseline.
For example, the ambient (noncombat) behavior
of civilians would typically have a rank of 0, but
specific options might be slightly higher or lower.

• Urgent, high priority options should have a rank
between 5 and 15, with 10 as the baseline. For
example, that same character would typically use

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 7 of 12

a weight of 10 for combat options (fleeing,
seeking cover, returning fire, etc). Again, specific
options might be slightly higher or lower.

• A rank of 20 or higher indicates an option that is
extremely important and should always be
executed immediately.

• A rank of 1,000,000 is reserved for autonomic
reactions that the AI has no control over, such as
stumbling backward or dying when hit by a bullet.

These conventions serve three purposes. First, when we
are debugging the AI and we see a particular value, we
know at a glance roughly what that value should
indicate – and we can judge whether it is appropriate,
and adjust it if it is not. Second, when we are adding a
new option to the AI, we have guidelines as to how we
should set its utility values so that they will function
smoothly with the values of other options. Finally,
much like a coding standard, they define a shared
standard that all of the AI engineers on a project can
agree to, so that work done by one engineer will
function smoothly when used in a portion of the AI
configured by somebody else.

UTILITY PATTERNS

We are ready to turn our attention to the utility patterns.
Each pattern is designed to be as simple as possible
while still capturing the concept that it is represents.

We will use two hypothetical characters in our
examples. Neither exactly matches one that we have
built, but both are based on genuine characters from our
recent work.

Our first example character is an insurgent who has
climbed onto a rooftop with the intention of sniping at a
Marine patrol that is passing through the marketplace
below. This character is very similar to a character
we've created for a recent GAIA demonstration. We
will examine the decision making process he goes
through as he decides when to take a shot and when to
withdraw in hopes of fighting again another day.

The second character is a Muslim woman, very similar
to our Angry Grandmother character (Dill 2011) who is
home alone when the Marines enter and search her
house. This is a nonkinetic scenario in which the
woman largely just rants at the Marines, exhorting them
to leave, but she can respond to Marine actions (e.g. if
they aim their weapons at her, fire their weapons, enter
or leave the room, and so forth). Thus her decisions

largely involve picking her next line of dialog and
selecting moments to play specialized sequences (such
as when the Marines enter the room or aim at her).

OPTION VALIDATION PATTERNS

While the great strength of utility-based AI is that it
allows us to evaluate the situation in terms of shades of
gray, there are often cases where decisions are clear cut.
Thus we need to be able to validate our options,
ensuring that only those that are reasonable (given the
current situation in the simulation) will execute.

Opt Out

The Opt Out pattern is the simplest pattern that we will
discuss. At times, there is a consideration which knows
absolutely that an option should not be executed – even
if the option would otherwise have a high rank. We do
this by having the consideration return a multiplier of 0.
Doing so will result in an overall weight of 0, which
will cause the option to be eliminated in the first step of
the decision-making process (as described above).

For example, imagine an experienced sniper deciding
whether or not to take a shot. He will not fire if any one
of the following is true:

• He does not have a clear line of sight to his target
• He does not have a clear line of retreat (i.e. his

planned escape route is under observation)
• He has fired a shot too recently
• He has already fired enough times that he fears

further shots will expose his position

Each of these four factors would be represented by a
single consideration, which will return a multiplier of 0
if that consideration feels that the shot should not be
taken. Since any multiplier of 0 will set the option's
overall weight to 0, and we eliminate options with a
weight of 0 in the first step of the decision-making
process, this will prevent the Shoot option from being
selected when firing is inappropriate.

Opt In

The Opt In pattern is similar to Opt Out, except that
instead of ruling the option out, the considerations rule
it in. Conceptually, the Opt In pattern is appropriate
when there is more than one reason that you might
select a particular option, and only one of those reasons
needs to be true in order for the option to be valid. In

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 8 of 12

contrast, the Opt Out pattern says that all reasons must
be valid if we are to select the option. In other words,
Opt Out provides a logical and, while Opt In provides a
logical or.

In order to make the Opt In pattern work, we first need
to have a default option which has a relatively low rank,
but is always valid. For example, it might always return
a rank of 0 and a weight of 1 (the defaults from our
shared conventions). We would then configure the
option which can be opted in so that its base rank is -1
(i.e. lower than that of our default option). Each of its
considerations will return a rank greater than 0 when
the option is a reasonable choice. Since the option’s
rank is the maximum of the ranks of its considerations,
the result is that if none of the Opt In considerations
apply then the rank will be -1, which will prevent the
option from being selected (the default option will be
selected instead). If at least one consideration “opts in,”
however, than the option is certain to be selected over
the default option (although there may be other options
with still higher tanks as well).

As an example, consider our angry woman. Through
much of her performance, she will simply scream at the
Marines, nearly incoherent, trying to get them out of
her house. This screaming could be handled by the Rant
option. We might also want to have several specialized
performances which can be delivered in particular
situations. For example, the Marines Threaten option
might be selected if the Marines aim their weapons at
her, if shots are fired, or if the exercise operator presses
the corresponding button at the Instructor/Operator
Station (IOS). This option would have our character
take a few steps backwards, raise her hands in
supplication, and say something like "Please! Don't
shoot! I'm just an innocent woman!"

In order to implement this, we would use the Rant
option as our default option. Thus it will always have a
rank of 0 and a weight of 1. Next we would place four
considerations on the Marines Threaten option:

• A Tuning consideration (which sets the default
rank to -1).

• An Aimed At consideration, which returns a rank
of 10 if the Marines point their weapons at her.

• A Shots Fired consideration, which returns a rank
of 10 when shots are fired nearby.

• A Button consideration, which returns a rank of
10 when the corresponding IOS button is pressed.

The result is that the character will normally just rant,
but if she is threatened by the Marines (or if the
exercise operator tells her to) then she will play her
specialized performance instead.

Combining Opt In and Opt Out

It is often useful to combine the Opt In and Opt Out
patterns. For example, we might not want our sniper to
open fire the moment the first Marine enters the
marketplace. Instead, we might want him to wait until
one of the following is true:

• At least five Marines are in the market
• The last Marine is leaving the market
• He has identified a high priority target (such as an

officer, medic, or radio operator) in the market
• The corresponding IOS button is pressed

Of course, he should still not fire if any of the four
considerations discussed in the Opt Out section are true.

In order to make Opt In work, we need a default option.
Thus we would create a Wait option with a fixed rank
of 0 and weight of 1 This option would simply have the
character remain in hiding, waiting for the opportunity
to take a shot. Next, we would add Opt Out
considerations to the Fire option. Thus he would have
considerations for checking line of sight, line of retreat,
and so forth that will return a multiplier of 0 when a
shot is inappropriate. Finally, we would add the Opt In
considerations: a tuning consideration that sets his
default rank to -1, and a collection of situational
considerations that return a higher rank when there are
at least 5 Marines in the market, when the last Marine is
leaving the market, and so forth. The end result would
be that he will only fire if (a) none of the opt-out
considerations apply and (b) at least one of the Opt In
considerations is valid.

We could further extend this character by adding a Flee
option, which uses the Opt In pattern to make the
character run away if he has reached the maximum
allowable number of shots, or if he’s taking aimed fire
from the enemy. Fleeing is more important than firing,
so the considerations might set a rank of 11 or 12,
rather than the 10 used by the Fire option.

More complex combinations of Opt In and Opt Out are
possible, but they require us to be able to group
considerations together (much as the parentheses group
together logical and and or clauses). This is a fairly
obvious extension that is supported in our code, but is

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 9 of 12

beyond the level of complexity appropriate to a utility
pattern. Remember that the purpose of utility patterns is
to provide simple examples which can illustrate the
basic concept and serve as the foundation for your
implementation, not to cover every possible use case.

EXECUTION HISTORY PATTERNS

There are a number of patterns which depend on
knowledge of the option's execution history. We might
want to adjust our decision if the option has never been
selected, for example, or if it is (or is not) currently
executing. Consequently we have an Execution History
consideration which can be configured to return
different values in each of these states. In each case, the
values returned can vary as a function of the amount of
time since the last state change (i.e. the time since we
last started or stopped execution, or the time since the
scenario was loaded if we have never been selected).
There are several patterns which capitalize on this
consideration.

Commit

There are often cases where we want to ensure that we
carry an action through to completion, even if the
considerations that originally caused us to select it are
no longer being triggered. For example, consider the
Flee option for our sniper. This option will be selected
if the sniper takes aimed fire from the Marines. If the
Marines stop firing – perhaps because the sniper ran
around a corner, or got behind cover – he should still
keep fleeing. Once this option is selected, we should
commit to it until it has been successfully completed.

The Commit pattern uses an execution history
consideration to return a high rank value whenever the
option is executing. Thus the option can only start
executing as a result of some other consideration, but
once it is executing the rank will remain high until
execution stops. Because we want to commit to this
option, we set the rank to be even higher than the rank
used to select the option in the first place (i.e. now that
this option has been selected, it is more important than
other options which would otherwise be in its rank
category). Thus if the Flee option normally used a rank
of 12, the Commit pattern might set a rank of 14.

The option can still be deselected normally. For
example we might have a consideration which opts out
(setting a multiplier of 0), which forces the option to be
deselected, or we might have another option with even
higher rank that replaces it.

Inertia

The Inertia pattern is similar to the Commit pattern,
except that in this case we configure the execution
history consideration so that it will only maintain a
portion of the original rank.

For example, imagine that the Marines aim their
weapons at our angry woman, triggering her "Marines
Threaten" performance, and then aim away again. We
don't want her to go back to ranting in the middle of
this performance – that would look odd. On the other
hand, we do want her to remain responsive if something
else important happens (if the operator presses a
different button, for example, or if the Marines find
contraband in her room). Thus if the special
performance options are selected with a rank of 10, then
we will configure our execution history consideration to
set the rank to something like 7 whenever the option is
executing. Again, these values should be standardized
where possible, and specified in your shared
conventions.

Is Done

The Is Done pattern is a special case of the Opt Out
pattern, in which we return a multiplier of 0 when (a)
the option is currently selected, and (b) the option's
execution has been completed. We have a specialized
consideration, the Is Done consideration, whose only
responsibility is to make this check.

For example, our sniper would have an Is Done
consideration on his Shoot action. This forces him to
stop executing that option once the shot has been taken,
so that he doesn't get stuck in a completed option
forever. Similarly, our angry woman would have an Is
Done consideration on her Marines Threaten option,
which would return her to ranting once the option's
performance is complete.

Cooldown

We often need to prevent the AI from selecting the
same thing twice in close succession. For example, if
our sniper does take more than one shot, he should
delay several minutes between them so as to reduce the
probability that he will be spotted on successive shots.

The Cooldown pattern enforces this by opting out (that
is, returning a multiplier of 0) for a predetermined
period of time once the option stops executing. The
duration of the cooldown can either be fixed (for
example, the sniper might always wait three minutes

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 10 of 12

between shots) or it can be randomly selected (so in the
sniper's case, we might vary the duration of the
cooldown randomly between 90 seconds and five
minutes). In the latter case, we should select a new
random duration each time the option stops executing.

Cooldowns are not only used for purely behavioral
reasons. Often, we use a cooldown to disguise the reuse
of assets. For example, the angry woman’s Rant option
would use a subreasoner to select specific lines of
dialog, and specific gesture animations to play with
each line. We want to ensure that we don’t ever repeat
the same line of dialog or gesture twice in a row, or
even twice within a few seconds of each other, because
such repetition would be obvious to the viewer, and
would look distinctly odd. As a result, we might place a
20 second cooldown on every gesture and every line of
dialog, to prevent immediate reuse. This technique is
one of several that was described in our 2011 I/ITSEC
paper for building characters that are more believable
and immersive (Dill 2011).

Do Once

One of the reasons why animated movie characters can
be so much more compelling than video game
characters is that a movie is a single two-hour-long
animation, with every moment carefully choreographed
and hand-animated. At any given moment in the movie
the animator knows exactly what happened a moment
before – down to the jiggle in the earlobe – and exactly
what will happen a moment in the future. In contrast,
characters for games and simulations are built out of
hundreds or often thousands of animations, each
extremely short (often less than a second), procedurally
stitched together in real time to create an interactive
experience. These animations are used over and over,
but each is so short, and they are combined in so many
ways, that the repetition is typically not obvious (or at
least, it's not obvious if we've done our job well).

We can give our characters longer, deeper, more
compelling animations, but there are two challenges
with this approach. First, these animations are hard to
interrupt – they often take the character far away from
their base pose, resulting in at best an awkward blend
(and often foot sliding or worse) if you interrupt them.
The second problem is that the whole point of these
animations is for them to be big and memorable – so if
we reuse them, that repetition is bound to be noticed.
Real humans rarely do exactly the same thing exactly
the same way, so this sort of repetition will break the
viewer's suspension of disbelief.

As a result, we tend to reserve these animations for big,
dramatic moments in our simulation – the ones where
we really want to make an impact on the viewer. For
example, when the Marines first enter, our angry
woman might lurch to her feet from a sofa, dropping
her knitting and frantically pulling her veil over her
face, while she cries out "What! Who are you! Why are
you here? This is my house – my husband isn't home!
Get out, get out, get out!!" Similarly, our sniper might
have a rant which he delivers from his rooftop while
waving his gun in the air, just before he runs away.

We want to commit to these options once they have
begun, so that they won't be interrupted, but we already
know how to do that using the pattern described above.
Additionally, we want to ensure that we only ever do
them once. If the Marines leave and then come back,
for instance, the angry woman should not play that
particular sequence – the repetition would be obvious.
If this is likely to happen then we might have more than
one performance to pick from (see the Sequence
pattern, below), or she might go straight into ranting.

The Do Once pattern is the pattern that we use to ensure
that an action is only done a single time, and it is one of
the simplest patterns. In order to implement it, we use
an execution history consideration that is configured to
opt out if the option has ever been selected in the past.

One-Time Bonus

Similar to the Do Once pattern, there are sometimes
situations where we want to give an option high priority
to be selected the first time, but then lower priority
thereafter. For example, while there are situations in
which our sniper should not take any shots at all, he
should also be significantly less aggressive when
deciding to take a second, third, or fourth shot, because
each additional shot significantly increases the
likelihood that he will be spotted. As a result, we might
apply a One-Time Bonus to the rank of the Shoot
option, which is simply an execution history
consideration which applies a bonus to the weight or
proposes a high rank. In the case of the sniper, we
might configure it to propose a rank of 15. This marks it
as something that is quite important, while still
allowing other considerations to opt out when shooting
is inappropriate (for instance if there are no targets, or if
the sniper's escape route is compromised).

Note that this pattern is incompatible with the Opt In
pattern as it’s described above. Again, there are
possible solutions (such as a Reasoner Selection
Consideration, which uses a reasoner to select from

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 11 of 12

among two or more sets of child considerations), but
they are beyond the complexity appropriate for a design
pattern.

Repeat Penalty

Applying a one-time bonus to the first shot fired is one
way to discourage the sniper from taking multiple
shots. It would be preferable, however, to decrease the
rank of the Fire option with each shot fired. We might
have an initial rank of 10, for example, and then
decrease that rank by 2 for every shot fired (so the first
shot would be rank 10, the second rank 8, the third rank
6, and so forth). We could then balance the rank of the
Flee option accordingly – perhaps giving a higher rank
if the AI is taking aimed fire, or a lower rank if the
Marines are running away.

The Repeat Penalty pattern uses a special consideration
(called the Repeat Penalty consideration) to keep track
of how many times an option has been selected, and
adjust its rank accordingly. It will return a rank (R)
equal to the initial rank (I) minus the repeat penalty (P)
times the number of past executions (E)

()EPIR ⋅−=

In the case of the Fire option, we would use an initial
rank of 10 and a repeat penalty of 2.

COMBINING PATTERNS

While each of these patterns defines a conceptual
building block that can be used in the creation of our
character configuration, the most interesting thing is not
that they can be applied in isolation, but rather the ways
in which they can be used together to shape behavior.
We have already hinted at that in many of the examples
above, but it's worth pulling together all of the pieces of
our sniper's AI so that we can examine the ways in
which they work together.

Our sniper has two options: Shoot and Flee. The Shoot
option has him select an actual target, and then take a
single shot at that target. The Flee option has him select
an appropriate exit strategy. This could include
anything from leaving his weapon and calmly walking
away (if he hasn't been spotted) to frantically jumping
from rooftop to rooftop as he flees under fire.

For the Fire option, the first thing we will do is apply
the Opt Out considerations, as follows:

• Check line of sight and opt out if there aren't any
valid targets in the kill zone.

• Check whether any Marines are able to observe
our escape route, and opt out if this is the case.

• Use an Execution History consideration to apply
the cooldown.

Next we will apply the One-Time Bonus and the Repeat
Penalty:

• Use an Execution History consideration to
suggest a rank of 15 if the option has not yet
executed

• Use a Repeat Penalty consideration to suggest a
rank of 10 with a repeat penalty of 2.

As a result the Fire option will be invalid if there are no
targets, when the escape route is compromised, or when
on cooldown. If none of those applies, the option's rank
will be set based on the One-Time Bonus and the
Repeat Penalty.

The final option we need to configure is the Withdraw
option. We could apply considerations as follows:

• Use a Shots Fired consideration to check if the
Marines are firing at or near the sniper (i.e. is he
taking aimed fire). If so, propose a rank of 20.

• Use another Shots Fired consideration to check if
shots are being fired, but they aren’t shooting near
him. In this case we could set a lower rank, such
as 7 or 5 (allowing him to fire two or three shots,
respectively)

• Check if the Marines are moving to encircle the
building. If so, propose a rank of 10 (allowing
him to fire only a single shot, and then only if his
line of retreat is still clear).

• Check to see if the Marines are moving away
from the marketplace. If not, propose a rank of 1
(so if they stay in the marketplace, he’s limited to
five shots).

• Finally, use a tuning consideration to set a
minimum rank of -10.

The result will be that the character will withdraw
immediately if he is taking fire. He will take only a
single shot if the Marines are surrounding his building.
Otherwise, he will normally take five shots, but may
take as many as ten if the Marines appear to be running
away.

As discussed above, the one thing we weren’t able to
include here is the Opt In strategy that would allow the

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012

2012 Paper No. 12146 Page 12 of 12

sniper to wait until there are multiple targets, until there
is a high priority target, or until the last Marine is
leaving the kill zone. That level of complexity is
beyond the scope of these design patterns, but is the
sort of thing that utility-based AI can do very well.

The design patterns are intended to provide a place to
begin, a place where novice users can look as they learn
to work with utility-based AI and a place where
experienced users can find consistent implementations
for common, simple use cases. More complex cases can
often build upon them, such as in the case of the
consideration sets and Reasoner Selection
Consideration which we alluded to above. For the
advanced user, Behavioral Mathematics for Game AI
(Mark 2009) provides a good starting point for learning
how to build formulas that represent complex decisions.

CONCLUSION

In this paper we first outlined the benefits of utility-
based AI in general, and described our Dual Utility
Reasoner and its modular approach to decision making.
Next, we talked briefly about the importance of using
shared conventions when configuring utility-based AI,
even when working alone but especially when more
than one AI designer is working on the same project.
Finally, we outlined a number of the recurring design
patterns that we have found in our work, discussed how
they could be configured in the Dual Utility Reasoner,
and gave an example showing how multiple patterns
can be combined to create a more complex
configuration.

As utility-based AI continues to become better known
and more widely used, we hope that we will see an
increase in the number of papers and books that discuss
utility engineering, which is to say, best practices for
configuring utility-based AI.

ACKNOWLEDGEMENTS

The authors would like to thank the US Marine Corps
Warfighting Laboratory and the U.S. Army Research
Laboratory’s Simulation and Training Technology
Center for their generous support of this work.

REFERENCES

Davis, I. (1999). Strategies for Strategy Game AI. AAAI
1999 Spring Symposium on AI and Computer
Games Proceedings.

Dill, K. (2006). Prioritizing Actions in a Goal-Based
RTS AI. AI Game Programming Wisdom 3. Boston,
Massachusetts: Cengage Learning.

Dill, K. (2008). Embracing Declarative AI with a Goal-
Based Approach. AI Game Programming Wisdom 4.
Boston, Massachusetts: Cengage Learning.

Dill, K. (2010). A Pattern-Based Approach to Modular
AI for Games. Game Programming Gems 8. Boston,
Massachusetts: Cengage Learning.

Dill, K. (2011). A Game AI Approach to Autonomous
Control of Virtual Characters. Proceedings of the
2011 Interservice/Industry Training, Simulation and
Education Conference.

Dill, K. (2012). Introducing GAIA: A Reusable,
Extensible Architecture for AI Behavior.
Proceedings of the 2012 Spring Simulation
Interoperability Workshop.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software, Boston, Massachusetts:
Addison-Wesley.

Isla, D. (2005). Handling Complexity in Halo 2 AI.
http://www.gamasutra.com/gdc2005/features/20050
311/isla_01.shtml.

Mark, D. (2009). Behavioral Mathematics for Game AI,
Boston, Massachusetts: Cengage Learning.

